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ABSTRACT

Software Product Line (SPL) is a group of software-intensive systems that share common and variable resources
for developing a particular system. The feature model is a tree-type structure used to manage SPL’s common and
variable features with their different relations and problem of Crosstree Constraints (CTC). CTC problems exist
in groups of common and variable features among the sub-tree of feature models more diverse in Internet of
Things (IoT) devices because different Internet devices and protocols are communicated. Therefore, managing
the CTC problem to achieve valid product configuration in IoT-based SPL is more complex, time-consuming, and
hard. However, the CTC problem needs to be considered in previously proposed approaches such as Commonality
Variability Modeling of Features (COVAMOF) and Genarch + tool; therefore, invalid products are generated. This
research has proposed a novel approach Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC), to
find all possible valid products by selecting the features according to cardinality constraints and cross-tree constraint
problems in the feature model of SPL. BOFS-CTC removes the invalid products at the early stage of feature selection
for the product configuration. Furthermore, this research developed the BOFS-CTC algorithm and applied it to,
IoT-based feature models. The findings of this research are that no relationship constraints and CTC violations
occur and drive the valid feature product configurations for the application development by removing the invalid
product configurations. The accuracy of BOFS-CTC is measured by the integration sampling technique, where
different valid product configurations are compared with the product configurations derived by BOFS-CTC and
found 100% correct. Using BOFS-CTC eliminates the testing cost and development effort of invalid SPL products.
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1 Introduction

A group of products with a common set of features to serve particular market segments is known
as a Software Product Line (SPL). The development of the software family is SPL’s primary objective.
Due to the reusability of core assets’ common and variable features, the SPL software family facilitates
the development of a wide range of software systems. All necessary features that indicate the family of
software’s specification and scope are the core asset of SPL. SPL is giving the best improvement in the
programming industry due to the quick advancement of programming by the reusability of elements
from center resources [1]. SPL is used by industries, such as mobile phones, Internet of Things (IoT)
applications, and automobiles for the development of a family of software to target specific market
segments and claimed that it provides a promising path for better, faster, and cheaper development of a
wide range of software systems. From the perspective of individual end-users or market requirements,
each product that aims to develop from SPL differs from the others. Reusable parts of SPL are normal
and variable elements utilized to foster the group of items. Due to the reusability of all SPL-derived
products, common features are simple to manage; however, variability features are chosen based on
the end user’s needs and create product differentiation and variety [2]. Therefore, variable features
must manage their relationship to other features during selection and rejection from actual product
development because they are not included in every product. A feature’s selection or rejection during
product configurations may result in relationship constraints and an invalid product. As a result,
SPL’s variability management is the primary obstacle encountered during the software’s development.
Variable features must be handled and managed inefficiently to enable the high reusability of SPL
features, as SPL supports the high reusability of features [3].

Fig. 1 illustrates how a feature model, a tree-like structure, is used in the literature to manage SPL’s
varied, common properties and crosstree constraints problem. An SPL’s configuration rules and the
relationships between its variation points can be recorded using the feature model. A feature model
concisely represents the entire SPL, complete with constraints and relationships between features [1,4].
For a functioning product configuration, parent-child relationships must be observed when selecting
features from the feature model. Features with predefined relationships in the feature model are (i)
additional features, in which a single feature from a group of features is chosen; (ii) optional features,
which can be chosen or not, (iii) OR set, where at least one feature from each group must be selected
and (iv) Crosstree Constrains, in which the relationships among features are included or excluded
of features in different parent sub-tree. It is necessary to develop all features in advance without
creating a running application at the domain level to ensure they can be used in real-world product
configurations [3,5].

Figure 1: Mobile phone feature model
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Organizations put in the time, money, and effort necessary for the product configuration based
on the feature model before constructing the features. The initial costs of SPL and single product
development are depicted in Fig. 2, indicating that SPL organizations invest in initial development
costs without benefiting from the market [3]. The break-even point of SPL shown in Fig. 2 depends
on the size of SPL, i.e., the total number of product configurations. The total valid number of
products is a major parameter for the advanced cost estimation of SPL. However, calculating the
total number of valid products is challenging due to the feature model’s predefined relationships and
crosstree constraints. Therefore, multiple methods and approaches exist, such as determining how
many products are included in the feature model. Binary Pattern for Nested Cardinality Constraints
(BPNCC) cardinality Constraints (dealing of Features (approach is applied to the Internet of Things
(IoT) and Software Product Line of Things (SPLOT) are discussed in the literature. However,
these approaches only consider the basic and nested cardinality constraints such as “OR,” “AND,”
“Alternate,” and “OR group” relationships to calculate the total number of products. However, there
are still possibilities of invalid product derivation due to the crosstree constraints in the sub-tree of the
feature model. This problem leads to wrong cost estimation of SPL due to invalid products [6].

Figure 2: Cost estimation of SPL and single product

The first problem is crosstree constraints in the IoT-based feature model, invalid feature com-
binations become part of SPL, leading to extra effort and cost in developing SPL. As shown in
Fig. 1, the crosstree constraints “Global Positioning System (GPS)” and “Basic” exclude each other;
therefore, any product that contains GPS and Basic will be invalid. Moreover, the crosstree constraint
“Camera” includes the “High Resolution”; if the camera is selected, the high resolution must be part
of the product. Fig. 1 shows “mobile phone” SPL where ten products are invalid due to the crosstree
constraints problem. It is important to remove the invalid products from the total number of products
before developing SPL. However, existing approaches find the total number of products but do not
consider the crosstree constraints that lead to both valid and invalid products. Due to invalid products,
the development cost and effort increase. “Hence, invalid feature combinations are generated due to
constraints problem, and relationships between varied features resultantly make this process complex
and consume extra effort during integration testing of SPL.”

This paper proposed a novel Binary Oriented Feature Selection Crosstree Constraint (BOFS-
CTC) approach that calculates the valid feature product combinations by considering IoT devices’
basic and nested cardinality and crosstree constraints. BOFS-CTC is applicable for all kinds of small
and large feature models with low to high complexity of constraints. The contribution of this paper is to
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mitigate the invalid feature combinations for product derivation at an early stage of SPL development.
Furthermore, BOFS-CTC has applied different complexity feature models to obtain the total valid
digit of products and found 100% accuracy. However, the previous approaches need to consider the
crosstree constraints problem to get valid products. In this paper, different approaches are compared
with the proposed BOFS-CTC algorithm, and it is found that BOFS-CTC is a more appropriate
and applicable approach for an accurate features’ combination of the feature model. In resultant, by
using BOFS-CTC, the total cost and effort of SPL product development are minimized. Furthermore,
BOFS-CTC is the independent approach of any specific tool as we have proposed its algorithm.

2 Related Work

This section discusses previous contributions related to the total number of products and product
configurations and for features selection of the SPL feature model. Due to the intricate interactions
between features in the SPL feature model, managing variability is difficult [7]. In addition, estimating
the precise total number of features and every potential combining feature in a large-scale feature
model is time-consuming and prone to error tasks [8]. Furthermore, constraint violations frequently
happen for SPL product configurations with several objectives, so it is challenging to identify the best
approach.

Cavalcanti et al. approached for SPL feature model variants traceability provided by the meta-
model level, the link between features and the constraints are defined using Unified Modeling
Language (UML) notations. The meta-model is based on SPL’s key assets and is arranged according
to UML models. Due to the necessity of common features being a component of every product,
requirement traceability in each product with variants must be linked. By keeping track of the variation
points, the meta-model variant traceability technique makes it possible to track product variation and
improve testability across the board in a single SPL scope [9].

AMPLET Traceability Framework (ATF) of SPL development process artifacts was proposed
by Anquetila et al. and is model-driven and based on AMPLET. The ATF traceability management
system improves the development of features, their import and export, their search for product
variations, and their visualization of linkages between artifacts. Implementations of the matrix model,
such as the domain engineering of SPL and the traceability link information stored in the database
repository, can be accessed by the query to find the variation points [10].

For modeling the needs of SPL, Shaker et al. [11] introduced Feature-Oriented Formal Language
(FORMAL). If the end user adds additional needs, they can be modeled using formal modeling.
To promote reusability, it allows the modularity of features to eliminate feature dependencies.
Decompose the features into tiny discrete features to increase reusability among SPL products.
The objectives of FORMAL modeling include precision, associative and commutative composition,
associative and commutative modularity, simplicity of development, modeling differences, and feature
modularity [11].

Cechticky et al. [8] suggested an Extensible Markup Language (XML) based modeling strategy
for the SPL feature model. All major feature model drawbacks can be found using an XML-based
modeling technique. The feature model is mapped using an XML schema, turned into an XML file,
and translated to an XML Schema Definition (XSD) by defining the needs and constraints of the
end user throughout application development. A primary information of feature relationships, such as
alternative, obligatory, optional, and OR group, must be predefined at the stage of domain engineering
to translate all constraints and relationships of the feature model in the XML schema. Also, at the
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application engineering level, feature constraints and end-user requirements must be specified at the
XSD level for proper feature selection [8].

Hartman et al. [7] suggested handling feature model contextual variability in diverse application
development contexts. Textual variation distinguishes each of SPL’s products in light of the end
customer’s needs. Due to the number of systems that interface with one another across numerous
product lines, contextual variability rises. This study suggested modeling contextual variability across
multiple product lines. Merging the various feature models in domain engineering, such as product
lines for tablets and mobile phones, shares some similarities. The opportunity to reuse features across
many product lines increases, resulting in faster time to market and lower development costs [7].
Relationships between features in the particular environment must be modeled using contextual
variability at the requirement engineering stage of product lines. Due to complicated interactions
(include or exclude) between features, several features affect the other features during the development
of the program.

Ali et al. [12] addressed SPL’s contextual variability in their work and suggested a unified
framework that begins with the application development goals before mapping those goals to feature
models at the beginning of modeling. The feature model classifies each aim as the terminal feature, and
their relationships are specified. This framework’s problem frame manages the cross-tree restrictions
between features to reduce complexity as goals are enhanced during requirement elicitation and feature
model complexity rises [12]. The limitations of variation points in each SPL product make it difficult to
manage variance. Hence, carefully managing these restrictions in the variability feature model makes
the right product configurations possible. The authors’ method for automatically creating variability
models for product development defines build-time faults and heuristic feature extraction limitations
from the code. Three goals were set for this study’s evaluation of four open-source SPL systems: (1)
correctness of the suggested technique, (2) recovery of the original constraint variability feature model,
and (3) classification of constraints. The suggested method effectively manages variability utilizing
build-time and extracts feature model constraints for the proper product derivation [13].

Selecting practicable and significant characteristics is challenging and time-consuming for stake-
holders in big feature models with complicated relationships. The inability of stakeholders to examine
the feature model and pinpoint the key features for a given proposal. Hence, to make it simple for
stakeholders to choose key features for particular product development, authors have proposed the
goal-based design of the SPL domain. The suggested method transforms the feature model into a goal-
oriented one and identifies the functionally complete characteristics that are most useful across various
applications. As a result, stakeholders can choose features from the goal-oriented feature model based
on application needs. This procedure will aid in the better understanding of stakeholders and the better
application development of developers [14].

Finding suitable configurations from the fundamental assets that make up SPL is difficult because
of the high dimension of the data and the constraints. The author offered a practical way of creating
an SPL model to analyze features and produce a reliable product configuration. The basic asset of
SPL is defined using the schema in the suggested approach, which is based on XML. Products are
verified using an alloy analyzer once the feature properties from the core asset defined in the schema
are extracted. Moreover, decision models are generated for each configuration using Extensible Style
Sheet Language Transformation (XSLT) [15].

The complexity of SPL’s diversity and heterogeneity makes extracting the proper configuration
knowledge challenging. Authors have put up the idea of Domain Knowledge Modeling Language
(DKML) to specify the knowledge of SPL configuration. Additionally, the GenArch+ tool is used in
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this work to enhance the specification of configuration information for the SPL feature model and
to facilitate the composition and production of DKMLs. DKML and GenArch+ working together
suggested that SPL product derivations will perform better [16].

Cost-estimating models like Structured Intuitive Model for Product Line Economics (SIMPLE)
and Constructive Product Line Investment Model (COPLIMO) need information from the feature
diagram to determine the entire estimated cost of SPL. In addition to the overall number of potential
goods, these models require the total number of variables and shared attributes. To determine, authors
have suggested the method [17] based on Non-Fungible token (NFT) to account for all potential
products, which employs the same notations as VFD+ and NFT. For the management of variability
in feature models, the framework for the Feature Model Analyzer FAMA has been put forth in the
literature [5]. FAMA assists in identifying the valid feature model product by utilizing XML that
complies with all restrictions. It also computes the total number of all feature model products that
are theoretically possible. Another method requiring only one call to execute has been proposed
to calculate the entire number of possible products [18]. This algorithm, which improves on NFT
and VFD+ notations, is much more effective in computation and runtime efficiency. This technique
manages the restrictions between features like alternative, optional, and OR by using the cardinality
of leaf features.

Table 1 describes the advantages and disadvantages of existing approaches in literature.

Table 1: Comparison of existing approaches in literature

Source Year Approach Advantages Disadvantages

Cavalcanti et al. [9] 2011 UML base feature
model design

Transform the feature
model into UML diagram
to manage the common
and variable features.

UML diagrams map the
common and variable
features but do not
support the product
configurations.

Anquetil et al. [10] 2010 AMPLET
traceability
framework

Stored the variation points
into database and trace the
variability in each product
of SPL.

ATF is not supporting if
there is any update or
change in the existing
feature model.

Shaker et al. [11] 2012 FORMAL Modeling include
precision, associative and
commutative composition,
associative and
commutative modularity.

Convert the feature model
into separate modules
such as OR group and
alternate group. But
unable to convert the
feature model that have
crosstree constraints.

Cechticky et al. [8] 2004 XML and XSD
based variability
modeling

Mapping of feature model
into variability and
commonality and their
relationship.

Contextual variability is
not considered in this
study.

Ali et al. [12] 2009 SPL’s contextual
variability

Cardinality of features in
SPL.

Calculate the cardinality
of each group of features
in feature model. It do not
calculate the total number
of products.

(Continued)
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Table 1 (continued)
Source Year Approach Advantages Disadvantages

Nadi et al. [13] 2014 Build-time faults and
heuristic feature
extraction

Application based product
development by extracting
faults of relationships.

Detect the faults only
cardinality relationships of
feature model but do not
cover the crosstree
constraints.

Noorian et al. [14] 2014 Transforms the
feature model into a
goal-oriented

Development of single
product from the feature
model

Only single product
derivation is considered
but not whole SPL.

Lee [15] 2015 XML and XSLT
based variability
modeling

Mapping of features and
their relationship in XML
and XSLT.

Do not cover crosstree
constraints.

Cirilo et al. [16] 2013 DKML GenArch+ tool is used in
this work to enhance the
specification of
configuration information
for the SPL feature model.

Update the feature model
with new features at run
time without crosstree
constraints.

Fernandez-
Amoros et al. [17]

2009 SIMPLE Cost estimation of
applications development
of SPL.

Cost estimation of valid
and invalid products of
SPL.

Abbas et al. [6] 2017 BPNCC Product configurations of
SPL feature model and
find the total number of
products.

Binary oriented product
configurations without
crosstree constraint.

Through a literature review, it is concluded that this problem can be solved through combinatorial
testing. This type of testing selects a subset of products that covers all possible interactions of
features [6].

3 Material and Methods

All of the abovementioned approaches ignore the cross-tree constraints problem while using
feature models that produce some invalid products. Thus, if they consider these constraints, they can
reduce invalid configurations. Furthermore, they should have explored how we can automatically test
the feasibility of products for their cross-tree constraints problems such as include and exclude. Our
proposed algorithm overcomes these limitations and improves the correctness of feature selection. It
helps to automatically memorize all the constraints through our new algorithm while using the feature
model. Then, check these constraints among all products to get valid products. This approach reduces
the development cost, effort, and time before SPL product development.

3.1 Complexity of Crosstree Constraints

The complexity of the feature model depends on the crosstree constraints of the feature model.
CTCs include and exclude relationships among features and groups of the feature models. By
increasing the CTCs in the feature model, more inclusive and exclude operations are performed that
affect the other feature combinations of SPL. Developing complex systems that provide consumers
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with various functions takes much work. The Challenge lies in providing many options for various
application contexts with high versatility while restricting the customization of systems to achieve
maintainability and growth management. The Feature model is an important contribution to dealing
with invalid feature combinations by capturing and visualizing the similarities and dependencies
between features and the components that provide the features. Feature models have been widely used
in technical systems and as an element of implementing a line of software products for more than ten
years. Table 2 shows the comparison of existing approaches. Typically, the feature model depicts a tree
structure with various nodes known as features [19].

Table 2: Existing approaches comparison for managing variability with CTC

Approaches FM tree
relationship

CTC Total number of
products

Mapping of
feature model

Web interface to construct
syntactically and semantically Feature
model Miguel Horcas et al. 2020 [1]

Yes No No Yes

Extensible model driven engineering
approach Shatnawi et al. 2020 [5]

Yes No Yes Yes

Multi-Objective Optimization-Binary
Pattern for Nested Cardinality
Constraints Abbas et al. 2018 [20]

Yes No No No

Binary Pattern for Nested Cardinality
Constraints Abbas et al. 2017 [6]

Yes No Yes Yes

Our proposed framework consists of two phases. In the first phase, we identify the valid and invalid
features from the feature model according to the complexity of crosstree constraint problems. In the
second phase, we drive the product configurations of SPL based on valid and invalid features.

3.2 Factors of Invalid Features

Valid and invalid features are based on the complexity of crosstree constraints. Valid features have
low crosstree constraints, and invalid features have high crosstree constraints. Invalid features increase
the probability of invalid product configurations. Table 3 shows the product configurations of the
“Mobile Phone” feature model in Fig. 1. Table 3 consists of valid and invalid product configurations
due to not considering the crosstree constraints. In Fig. 1, “GPS” and “Basic” features exclude each
other, i.e., only one can be part of the product configuration. Therefore, Table 2 shows the invalid
product configurations that consist of both “GPS” and “Basic,” such as product numbers 3, 9, 15, and
21. Furthermore, the “Camera” requires “High Resolution”, i.e., if any product configuration adds
the camera in the final product derivation, then there must be a screen “High Resolution”. All the
products in Table 2 are invalid where the camera is one, and the high resolution is 0, such as 14, 15,
17, 20, 21, 23, and 24 are invalid. Therefore, we propose a framework that distinguishes the valid and
invalid features of the feature model.
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Table 3: Mobile phone SPL product configurations without considering crosstree constraints

Mobile phone products Accuracy Call GPS Basic Color High resolution Camera MP3

1 Valid 1 1 0 0 1 0 0
2 Valid 1 1 0 1 0 0 0
3 Invalid 1 1 1 0 0 0 0
4 Valid 1 0 0 0 1 0 0
5 Valid 1 0 0 1 0 0 0
6 Valid 1 0 1 0 0 0 0
7 Valid 1 1 0 0 1 0 1
8 Valid 1 1 0 1 0 0 1
9 Invalid 1 1 1 0 0 0 1
10 Valid 1 0 0 0 1 0 1
11 Valid 1 0 0 1 0 0 1
12 Valid 1 0 1 0 0 0 1
13 Valid 1 1 0 0 1 1 0
14 Invalid 1 1 0 1 0 1 0
15 Invalid 1 1 1 0 0 1 0
16 Valid 1 0 0 0 1 1 0
17 Invalid 1 0 0 1 0 1 0
18 Invalid 1 0 1 0 0 1 0
19 Valid 1 1 0 0 1 1 1
20 Invalid 1 1 0 1 0 1 1
21 Invalid 1 1 1 0 0 1 1
22 Valid 1 0 0 0 1 1 1
23 Invalid 1 0 0 1 0 1 1
24 Invalid 1 0 1 0 0 1 1

Violations of the given below factors lead to invalid product configurations:

• Or group relationships
• Alternative relationship
• Include crosstree constraints
• Exclude crosstree constraints
• One-to-One (optional to optional)
• One-to-many (optional to optional)
• One-to-One (optional to alternate)
• One-to-many (optional to alternate)
• One-to-One (optional to optional)
• One-to-many (alternate to alternate)
• One-to-one (alternate to alternate)
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3.3 Types of Crosstree Constraints

There are two types of crosstree constraints in the feature model:

• Include (Require)
• Exclude (Reject)

The complexity of the feature model is based on the number of features in SPL and the crosstree
constraint relationships. Increasing the features in the feature model gradually increases the crosstree
constraint problems [21]. Therefore, this research focuses on all types of feature models, such as,

• Small feature model with fewer crosstree constraints
• Small feature model with maximum crosstree constraints
• Large feature model with fewer crosstree constraints
• Large feature model with maximum crosstree constraints

Furthermore, these crosstree constraints are categorized into One-to-One and One-to-Many. One-
to-One crosstree constraint is simple due to the relationship between only two features. However, the
One-to-Many crosstree constraint is complex due to the relationship of one feature with more than
one feature that increases the dependency. These One-to-One and One-to-Many crosstree constraints
further imply optional and alternative feature model groups, categorized as optional to optional and
optional to an alternative.

4 Binary Oriented Feature Selections (BOFS)

The BOFS-CTC is a novel approach built on the binary combinations of features for cross-
tree (sub-tree), leaf, and parent node restrictions. The BOFS-CTC is a linear method for counting
all feature model products without violating crosstree and cardinality restrictions. Additionally, this
technique counts all products in a large feature model, with n backtrace nested constraints having zero
violation of the constraints. Since terminal features (leaf nodes) are usable and obvious to end users,
they are necessary for product derivation. Functional features known as terminal features are used to
create SPL goods because they do not have any further child features. At the terminal, the product’s
benefits and real functionality are visible. All connections between parents of terminal features are
represented by non-terminal features [6]. As a result, consider the connections between the constraints
on the sub-tree and the terminal characteristics of each group (alternative, optional, OR).

4.1 BOFS-CTC Framework

The framework suggested a fresh and efficient method to count all SPL products, as shown in
Fig. 3. OG is the number of optional features in one group, and OF is the number of optional features
in any group. The required, optional, alternative, and OR groups make up the SPL feature model. All
products must always have the required characteristics. However, varying features set the goods apart
in the wide range of features. The six stages that make up this BOFS-CTC strategy:

• In the fourth stage, formulas corresponding to various variable groups use a backtrace tree
structure to determine the products.

• The fifth step, which considers crosstree constraints of features, creates binary combinations of
each group and its subgroups.

• The third stage entails dividing the crosstree constraints in Fig. 3 into the groups listed below:
• Optional to Optional.

• One-to-One
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• One-to-Two
• One-to-Three or more

• Alternate to Alternate.
• One-to-Many

• Optional to Alternate and vice versa.
• One-to-Many

• In the fourth stage, equations corresponding to various variable groups use a backtrace tree
structure to determine the products.

• The fifth step, which considers crosstree constraints of features, creates binary combinations of
each group and its subgroups.

• The final sexist stage is to count all potential products in the feature model.

Figure 3: BOFS-CTC framework

4.2 BOFS-CTC Product Derivation

In the case of “one optional feature has the CTC with the single feature, ” to find the invalid
products from the feature model, we have derived the mathematical Eq. (1) “Accuracy Function” as
given below:

Number of invalid products = 1
2

× 2OG (1)

Here, OG shows the number of features in the OR group with constraints. Therefore, valid
products from the OR group can be derived from Eq. (2).

Total valid products = #P = 2n −
(

1
2

× 2OG

)
(2)

where n is the total optional features that have CTC.

In the case of “one optional feature has CTC with two features of OR group”, to find the invalid
products from the feature model, we have derived the mathematical Eq. (3).

Number of invalid products = 3
4

× 2OG (3)
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Therefore, valid products from the OR group can be derived from the Eq. (4).

Total valid products = #P = 2n −
(

3
4

× 2OG

)
(4)

In the case of “one optional feature has CTC with three or more features of OR group”, to find
the invalid products from the feature model, we have derived the mathematical Eq. (5).

Number of invalid products = 2OG − 2 (5)

Therefore, valid products from the OR group can be derived from Eq. (6).

Total valid products = #P = 2n − (2OG − 2) (6)

In the case of “Alternate to optional (One-to-many)”, to find the invalid products from the feature
model, we have derived the mathematical Eq. (7), and for all valid products, we have derived Eq. (8).

Number of Invalid Products = (2OF − 1) (7)

Total valid products = 2OF × A − (2OF − 1) (8)

where OF is the number of optional features, A is the number of alternate features. Eq. (7) calculate the
invalid products of CTC between alternate and optional OR group. Eq. (8) evaluates the total number
of valid products. In the case of “alternate to alternate (one-to-many)”, to find the invalid products
from the feature model, we have derived the mathematical Eq. (9).

Invalid products = #constraints are applied on the alternate group of features as only one feature
is selected among n number of features.

Total valid products = n × n − invalid products (9)

4.3 BOFS-CTC Algorithm

In this paper, the BOFS-CTC algorithm is developed to automatically generate product feature
combinations in binary form, whereby characteristics selected are denoted by one and those not chosen
by 0. BOFS-CTC algorithm consists of six modules and one main module that calls the other six
modules, as given below.

The first module of BOFS-CTC structured a tree known as the feature model, where root, parent
and chilled nodes with their name have been defined. This module requires the data set of features,
and their cardinality relationships such as mandatory, optional, alternate, and OR group.

Algorithm for Valid Features

import random

from anytree import Node, RenderTree, render, AsciiStyle

from anytree.exporter import DotExporter

# Creating tree structure

A = Node(“Mobile”) # root

B = Node(“Mandatory”, parent = A)

C = Node(“Optional”, parent = A)

D = Node(“c”, parent = B)
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E = Node(“Screen”, parent = B)

F = Node(“GPS”, parent = C)

G = Node(“Media”, parent = C)

H = Node(“Basic”, parent = E)

I = Node(“Color”, parent = E)

J = Node(“High Resolution”, parent = E)

K = Node(“Camera”, parent = G)

L = Node(“MP3”, parent = G)

In the second module, a list is generated of features that an SPL domain contains according to
their specific groups and relationships. As mentioned, the features name of the mobile feature model
is given below.

# Defining lists of features

Screen = [“Basic”,“Color”, “High Resolution”]

Media = [“Camera”, “MP3”]

Mandatory = [“Calls”, “Screen”]

Optional = [“GPS”, “Media”]

Mandatory features are always part of the product; however, constraints can also exist in leaf
nodes of mandatory features. Therefore, the third module deals with the mandatory features where an
alternate relationship exists. In the given bellow module, only one feature can be part of the product
configuration from the three mandatory alternate features (Basic et al. Resolution).

# Define function to display Mandatory Features

def display_mandatory_features(Mandatory, Screen, select):

print(“Mandatory Features for Product: ”, Mandatory [0])

print(“Mandatory Features for Product: ”, Mandatory [1])

print(“Select Screen Type: ”, Screen[select])

Forth module deals with optional features that may or may not be part of product configuration.
Therefore, it has only two options (1) select, i.e., 1, and (2) not selected, i.e., 0. The given bellow module
is applied on optional group media of mobile feature model where parent node media consists of
further two leaf nodes MP3 and camera.

# Define function to display Optional Features

def display_optional_features (Optional, Media, select1):

print(“Optional Features for product:”, Optional [0])

print(“Optional Features for product:”, Optional [1])

if select1 == 0:

print(“Selected Optional Feature: ”, Optional [select1])

elif select1 == 1:

print(“Selected Optional Feature: ”)

print(“Media Types: ”, Media [select1])
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print(“Media Types: ”, Media [0])

In the fifth and last module, input the crosstree constraints, including and excluding features;
if any configurations violate the crosstree constraints, that configuration is excluded from the total
number of products. This process generates final valid feature combinations for the whole SPL domain.
Therefore, get all valid features a combination without any cardinality relationship violation and
crosstree constraints.

# Define function to display total features and selected features count

def display_count_plot(O_count, T_count, T_M_count, T_S_count):

S_M_count = 2

selected = S_M_count + O_count

print(“Total Features:”, T_count)

print(“Selected Features:”, selected)

import matplotlib.pyplot as plt

left = [1,2,3,4]

height = [T_M_count, T_S_count, T_count, selected]

tick_label = [‘Mandatory’, ‘Optional’, ‘Total Features’, ‘Selected Features’]

plt.bar(left, height, tick_label = tick_label, width = 0.8, color=[‘blue’, ‘red’])

plt.xlabel(‘Labels’)

plt.ylabel(‘Count’)

plt.title(‘Features Modeling’)

plt.show()

# Define main function to call all functions

def main_function():

print(RenderTree(A, style = AsciiStyle()))

display_mandatory_features(Mandatory, Screen, random.randint(0, 2))

display_optional_features(Optional, Media, random.randint(0, 1))

display_count_plot(random.randint(1, 2), 7, 4, 3)

# Call main function

main_function()

Previously proposed algorithms have been applied to the mobile phone feature model in Fig. 1
and get 24 product configurations where some invalid configurations were also generated due to
crosstree constraints, as shown in Table 3. Therefore, BOFS-CTC is applied to the same feature model
with cardinality and crosstree constraints and has 14 product configurations. From Table 3, BOFS-
CTC removed ten invalid product configurations, as shown in Table 4. To verify the valid product
configurations in Table 3, use the relationships below. GPS has no relationship (exclude) with Basic
such as “GPS¬Basic,” where GPS is selected, i.e., GPS = 1, then Basic should not be selected, i.e.,
Basic = 0. GPS can be selected where the screen must be color or high resolution. The other CTC of
the camera requires a high-resolution screen; if camera = 1, then the high resolution must be 1. These
CTC are satisfied. Therefore, all 14 products are valid in Table 4.
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Table 4: Mobile phone feature model valid product configurations

Mobile phone
products

Call GPS Basic Color High resolution Camera MP3

1 1 1 0 0 1 0 0
2 1 1 0 1 0 0 0
3 1 0 0 0 1 0 0
4 1 0 0 1 0 0 0
5 1 0 1 0 0 0 0
6 1 1 0 0 1 0 1
7 1 1 0 1 0 0 1
8 1 0 0 0 1 0 1
9 1 0 0 1 0 0 1
10 1 0 1 0 0 0 1
11 1 1 0 0 1 1 0
12 1 0 0 0 1 1 0
13 1 1 0 0 1 1 1
14 1 0 0 0 1 1 1

4.4 Experimental Work

A comparative study is performed of BOFS-CTC with previously proposed approaches in the
literature, such as COVAMOF, GenArch+, Common Variability Language (CVL), and BPNCC,
as shown in Table 4. A comparative study is based on major parameters defining the proposed
approaches’ working and accuracy. These proposed approaches calculate and generate the total
number of SPL products. Table 5 indicates that BOFS-CTC is more appropriate and covers all the
major parameters used to generate all product configurations. The previously proposed approaches
do not consider the crosstree constraints during the product configurations; however, BOFS-CTC
generates binary combinations with the single-level, nested, and crosstree constraints. Therefore,
BOFS-CTC is the best approach to calculate and generate the binary combinations of SPL product
configurations.

Table 5: BOFS-CTC comparison with other proposed approaches based on feature model level

Approaches CTC Binary combinations Nested constraints Single level constraints

COVAMOF No Yes No Yes
GenArch+ No No No Yes
CVL No Yes No Yes
BPNCC No Yes Yes Yes
BOFS-CTC Yes Yes Yes Yes

BOFS-CTC is applied to small and large feature models with different relationships and limi-
tations. Table 6 shows the results of a total number of valid products by considering all the feature
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model’s basic relationships and crosstree constraints. Results show that the crosstree constraints
significantly affect the total number of valid products. If the crosstree constraints are not considered,
the total number of products is higher than the given products due to invalid product combinations.
Therefore, BOFS-CTC is more effective and accurate for all feature models, such as small, large,
simple, and complex (nested cardinality constraints, crosstree constraints).

Table 6: BOFS-CTC Applied on small and large feature models

Feature models No. of
features

Mandatory Optional XOR OR Grouped CTC # Valid
products

Web content delivery 15 1 4 3 1 9 6 23
Delay block semantics
specification

23 8 7 1 0 7 20 41

Epic slice machine 32 7 4 0 6 20 9 275352
Sale computers
Specification

38 0 2 10 1 35 23 12088

Route finder feature
model

51 10 1 7 11 39 6 9997020

Smart home 78 38 27 1 4 14 10 14480162

5 Conclusions and Future Work

SPL is a successful strategy for resource reuse. The commonalities and variable characteristics
of SPL are managed using a feature model. For an organization to implement SPL, cost estimates
for the entire SPL and individual applications are crucial knowledge. The budget anticipated to be
needed for creating all SPL products is identified by cost estimation. Organizations must compute
the budget before adaptation to ascertain whether or not a specific product line is within budget. The
total number of items is the main factor that cost-estimating models consider. Developing applications
using all feature combinations also allows for calculating each application’s functional and non-
functional characteristics and selecting and selecting features. The cardinality of each group and
crosstree constraints are required by the BOFS-CTC method. In order to determine the overall number
of products and solutions of all combinations, it finally combines all groups. We have demonstrated
the complete correctness of BOFS-CTC without violating the constraint (cardinality and crosstree) in
the complicated constrained feature model. The conclusions are validated because separately applied
BOFS-CTC for total numbers and total solutions of feature combinations are equivalent.

Future work will focus on choosing the best optimization features for each application by using
binary patterns and considering crosstree constraints. We will optimize speed and quality while
optimizing the minimal parameters, such as cost and memory utilization, following end-user needs.
Additionally, we will improve every product’s functional and non-functional aspects.
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