
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.041196

ARTICLE

Malicious Traffic Compression and Classification Technique for Secure
Internet of Things

Yu-Rim Lee1, Na-Eun Park1, Seo-Yi Kim2 and Il-Gu Lee1,2,*

1Department of Future Convergence Technology Engineering, Sungshin Women’s University, Seoul, 02844, Korea
2Department of Convergence Security Engineering, Sungshin Women’s University, Seoul, 02844, Korea

*Corresponding Author: Il-Gu Lee. Email: iglee@sungshin.ac.kr

Received: 14 April 2023 Accepted: 07 July 2023 Published: 08 October 2023

ABSTRACT

With the introduction of 5G technology, the application of Internet of Things (IoT) devices is expanding to various
industrial fields. However, introducing a robust, lightweight, low-cost, and low-power security solution to the IoT
environment is challenging. Therefore, this study proposes two methods using a data compression technique to
detect malicious traffic efficiently and accurately for a secure IoT environment. The first method, compressed
sensing and learning (CSL), compresses an event log in a bitmap format to quickly detect attacks. Then, the
attack log is detected using a machine-learning classification model. The second method, precise re-learning after
CSL (Ra-CSL), comprises a two-step training. It uses CSL as the 1st step analyzer, and the 2nd step analyzer is
applied using the original dataset for a log that is detected as an attack in the 1st step analyzer. In the experiment,
the bitmap rule was set based on the boundary value, which was 99.6% true positive on average for the attack
and benign data found by analyzing the training data. Experimental results showed that the CSL was effective in
reducing the training and detection time, and Ra-CSL was effective in increasing the detection rate. According to
the experimental results, the data compression technique reduced the memory size by up to 20% and the training
and detection times by 67% when compared with the conventional technique. In addition, the proposed technique
improves the detection accuracy; the Naive Bayes model with the highest performance showed a detection rate of
approximately 99%.

KEYWORDS
IoT security; intrusion detection; machine learning; traffic classification

1 Introduction

The development of wireless communication and 5G has increased the utilization of the Internet
of Things (IoT) [1]. Furthermore, IoT devices are used in various industrial fields such as agriculture,
medical care, and manufacturing, and real-time management and automation have improved the
efficiency of the related processes [2]. In addition, online services have become common because of
COVID-19, and there has been rapid growth in areas such as remote working and remote learning [3].
Consequently, the scale of damage caused by the leakage of personal information and industrial secrets
is increasing, which has highlighted the importance of endpoint security for personal computers (PCs)

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.041196
https://www.techscience.com/doi/10.32604/cmc.2023.041196
mailto:iglee@sungshin.ac.kr


3466 CMC, 2023, vol.76, no.3

and smartphones [4]. Regarding endpoint security, endpoint detection and response systems, that is,
digital forensic tools that monitor a system, have been attracting attention [5]. They analyze event logs
to detect external intrusions and respond to them.

As the amount of data received by IoT devices and the communication speed increase, the number
of attacks targeting these devices also increases, as does the need for rapid identification of vast
amounts of data. Particularly, attacks that take advantage of limited resources such as memory and
batteries frequently occur [6]. Among them, distributed denial-of-service (DDoS) and ransomware are
the most powerful attacks. DDoS and denial-of-service attacks cause a high load because of excessive
network traffic to the IoT, thus interrupting the regular operation of the victim device; additionally,
ransomware encrypts the victim’s data to disturb legitimate user access [7–9]. Furthermore, IoT devices
cannot perform their normal operations, making it difficult for organizations to provide smooth
services. Moreover, personal information and state secrets may be leaked, which can have spillover
effects that include terrorism and war. Therefore, endpoints, such as IoT devices, need to be more
secure [4].

However, it is challenging for a conventional network security solution to apply machine-learning
techniques to network traffic data because this requires considerable money and time [10]. In addition,
the overhead associated with storing and managing large volumes of data continuously collected in
a network is significant [11,12]. Because IoT has limited storage, installing network monitoring and
intrusion detection tools and managing logs are more challenging than that in the case of a general PC.
Because security solutions balance security, performance, and resource requirements, they cannot be
deployed on devices with limited resources or storage; even if they are implemented, their performance
will not be the same as that in a typical PC environment [13]. Therefore, a security solution applicable
to the IoT environment is needed, and its capability to detect malicious traffic quickly and accurately
should be verified. In addition, lightweight data processing and detection techniques are necessary to
prevent overload when applying the latest security solutions and reduce the cost of storing big data
and cost of improving the specifications of IoT devices.

This study proposes two techniques to process event logs more efficiently in terms of accuracy and
time and detect malicious traffic under environmental restrictions. An experiment was conducted using
the UNSW-NB15 dataset of malicious and benign traffic [14–18]; the features (string) were excluded.
The bitmap rule was set by comparing the values of the features between benign and attack, and all
data were expressed as 0 or 1 according to the rule. The first of the proposed methods, the compressed
sensing and learning (CSL) technique, performs binary classification with a compressed dataset and
then compares the inference results of the machine-learning model with a dataset that has not been
converted to the bitmap format. The second method, re-learning after CSL (Ra-CSL), classifies the
original dataset of the log that the CSL model predicted as malicious. In the experiment, five machine-
learning models were trained and compared to identify models that can effectively detect malicious
traffic.

The contributions of this study are as follows:

• A compression technique that minimizes the information loss of the original log data is
proposed, which can be applied to IoT environments with limited resources.

• A compression technique that can reduce memory usage and detection time is proposed.
• According to the characteristics of an application, either one of the techniques—lightweight or

high-precision—can be selected.



CMC, 2023, vol.76, no.3 3467

The remainder of this paper is organized as follows. Section 2 analyzes the related works
and Section 3 describes the compression-based log data analysis method. Section 4 describes the
experimental method and analyzes the results. Finally, Section 5 discusses the conclusions and future
research directions.

2 Related Works

This section discusses the literature on detecting and classifying malicious attacks in IoT environ-
ments. Table 1 summarizes the proposals and analysis results of previous studies.

Table 1: Analysis of related works

Author Method Advantages Limitations

Liu et al. [19] Behavior signature-based
detection after static and
dynamic analysis

It is estimated that
detection should be
carried out if the same
malicious behavior is
observed.

• This study does not
investigate the detection
accuracy. Instead, it analyzes
the characteristics of
malicious codes.
• Source code analysis is
challenging in real-time
monitoring and detection.

Mudgerikar et al. [20] Anomaly detection-based
intrusion detection system
(IDS) that views and
detects behaviors at the
system level

When combined with a
network-based detection
scheme, malicious
behavior can be detected
at both the system level
and network level.

• It is challenging to confirm
the accuracy of the results
because only the level of
comparison is shown in the
paper.

• It is more appropriate to
monitor network
information rather than
system information to detect
network attacks.

Eboya et al. [21] Imaging log files and
binary datasets and then
classifying them using the
generalized multilayer
perceptron technology

It can be used as a type of
forensic technology to
analyze malicious data
that are already detected,
and the characteristics of
the malicious behavior can
be identified.

• It is challenging to verify
the effectiveness of the
proposed method by
experimenting with MNIST
(a typical handwritten
dataset) rather than log files
or binary datasets.
• The study did not consider
the overhead of imaging.

Jeon et al. [22] A method that extracts
process, system calls,
virtual file systems,
memory, and network
behaviors, and then
classifies them using a
convolutional neural
network

When used to analyze the
detected malicious
behavior, it can generate
signatures that can be used
for real-time detection in
the future.

• The overhead occurs in the
process of converting the
extracted behavior data into
an image, and real-time
processing is impossible.

(Continued)



3468 CMC, 2023, vol.76, no.3

Table 1 (continued)
Author Method Advantages Limitations

Rajagopal et al. [23] A method for classifying
UNSW NB15 and
URG’16 datasets using an
ensemble of three
machine-learning
algorithms

After pre-training is
performed using the
proposed technique,
malicious traffic detection
can be performed if
applied to environments
with good performance.

• It is challenging to apply it
to various cases because of
the high precision and recall
deviations.

Choudhary et al. [24] A method for classifying
the KDD-Cup’99,
NSL-KDD, and UNSW
NB15 datasets using a
deep neural network

Malicious traffic can be
detected in environments
where good performance
has been verified after
pre-training using the
proposed technique.

• It shows the results of
simple training on a deep
neural network (DNN)
rather than efficient
processing of the dataset.

Kumar et al. [25] A method for classifying
the UNSW NB15 dataset
using algorithms based on
the decision tree (C5,
Chi-square Automatic
Interaction Detection
(CHAID), Classification
And Regression Tree
(CART), Quick,
Unbiased, Efficient
Statistical Tree (QUEST))

It can achieve an excellent
detection rate in fixed
scenarios.

• Rules must be set
differently according to the
classification model.
• The method cannot be
easily applied to a variety of
cases because of the high
precision and recall
deviations.

Wang et al. [26] A method for word2vec,
postprocessing algorithm
(PPA)-based lightweight

It is capable of real-time
detection.

• It reduces the size of the
model and detection time by
reducing the parameters.

log anomaly detection
algorithm: LightLog

• In the case of extensive
data, the model size may
increase as the parameters
increase.

Signoretti et al. [27] A method involving a data
compression algorithm for
IoT with TinyML: Tiny

It is capable of quick
detection.

• Only real-time data analysis
is considered, and anomaly
detection is not considered.

Anomaly Compressor
(TAC)

• Analysis time is not
considered.

Azar et al. [28] A method for data
compression into time
series and classification
using a deep learning
algorithm

It can compress data while
reducing errors.

• It can be challenging to
classify malicious traffic
because malicious and
normal traffic can be
combined into one.
• In the response stage, a
problem of blocking normal
traffic may occur.



CMC, 2023, vol.76, no.3 3469

The characteristics of IoT allow various devices to be assembled. These devices are vulnerable
to attacks, such as DDoS, which can destroy multiple devices simultaneously. Therefore, a study
performed static and dynamic analysis on the behavior of DDoS attacks on IoT and detected malicious
files based on the behavioral signatures [19]. However, the method proposed in this previous study
does not improve the detection accuracy but only analyzes the characteristics of the malicious codes.
Its main limitation is that it is challenging to utilize a static analysis that uses function call graphs
and extracts host and network behavior in real-time monitoring and detection. However, in this
study, after analyzing the distribution of the malicious and normal data, the detection accuracy
was improved by applying two-step training and inference. Another behavior-based detection study
proposed a system-level IDS named E-Spion that performs anomaly detection for IoT devices [20]. In
this study, malicious files were detected by analyzing the behavior information at the system level,
such as process parameters and system calls; the detection accuracy and overhead cost were then
compared and analyzed. However, the experimental results were expressed at a low/high/moderate
level rather than as an accurate value. In addition, this previous study utilized system information,
whereas the proposed technique utilizes packet and network information. Because this study focuses
on the problem of increased vulnerability of IoT systems to attacks such as DDoS when compared
with that of other environments owing to the constrained environment of the IoT, it is appropriate to
monitor and analyze the network information rather than the system information.

In addition to behavior analysis-based studies, some studies have been conducted to extract
features automatically by applying artificial intelligence techniques [21,22]. A study proposed an
intelligent detecting, recognizing, and predicting (i-DRP) framework that converts log files and binary
datasets into image files and then classifies malicious files using the generalized multilayer perceptron
[21]. However, they used MNIST—a typical handwritten dataset—rather than a dataset that imaged
the actual log files or binary data. The experimental results indicated a high F1-score, which reached
0.979 after performing parameter optimization, but it was difficult to identify the result of classifying
the handwritten dataset as the result of malware classification. However, this study used actual
malicious and normal traffic datasets to prove the effectiveness of the proposed method. Another
study proposed a dynamic analysis for the IoT malware detection (DAIMB) technique that trains
malware using a convolutional neural network (CNN). It dynamically analyzes the IoT malware in
a nested cloud environment [22]. This previous study extracted processes, system calls, virtual file
systems, memory, and network-related behaviors and converted them to images. Then, the images
were learned and classified on a CNN. However, in this previous study, although an overhead was
expected in imaging the extracted behavior, the training time was not measured. In addition, the study
had a limitation in that real-time monitoring and processing were difficult owing to the imaging step.
In this study, the cumulative time required for training and testing was measured, and the proposed
method aimed to shorten the total time, false detection rate, and miss detection rate.

Several studies have classified malicious packets by training the UNSW-NB15 dataset with
machine-learning algorithms [23–25]. A study applied the stacking results of four models—random
forest, logistic regression, support vector machine (SVM), and K-nearest neighbor (KNN)—using
UNSW-NB15 and the flow-based URG’16 datasets [23]. This prior study attempted to enhance
the generalization ability through an ensemble of three machine-learning algorithms, and multiple
classifications were performed. However, in the classification result of the UNSW-NB15 dataset, the
precision ranged from 41.6% to 99.42%, the recall ranged from 10.79% to 98.32%, and the deviation
was too high. Therefore, applying this method to various cases was difficult; moreover, the study
failed to measure the training time. In contrast, in this study, the measured training and testing times
demonstrated the effectiveness of the method in terms of speed. In addition, a study performed a



3470 CMC, 2023, vol.76, no.3

binary classification of the KDD-Cup’99, NSL-KDD, and UNSW NB15 datasets frequently used
in malware classification studies using a DNN [24]. Nonetheless, it did not propose a technique
for processing the dataset efficiently but only showed the prediction result of the DNN; moreover,
it did not measure the training and testing times. In contrast, this study proposes a method for
efficiently processing logs and detecting malicious logs in a constrained environment. It requires less
data processing than deep learning by employing machine-learning algorithms. In another study using
UNSW-NB15, multiple classifications were performed using C5, CHAID, CART, and QUEST based
on the decision tree (DT) algorithm [25]. This previous study analyzed the dataset, set the rules for each
attack, and integrated them to train the algorithm. However, this algorithm is difficult to use and has a
high processing overhead because the set rule varies depending on the classification model. In addition,
the deviation between precision and recall was significant depending on the attack, and the training
time was not considered. In contrast, because the rules were set depending on the characteristics of
each feature, they could be set regardless of the model in this study. Additionally, the total performance
time was measured. The technique proposed in this study shows a higher accuracy, and appropriate
algorithms may be utilized depending on the required detection environment. Other studies [26–28]
have proposed a low-power, lightweight data processing method for the IoT environment. In a study
[26] that proposed a lightweight log anomaly detection algorithm, real-time processing speed was
achieved using word2vec and PPA, and the detection time and size of the model were reduced by using
fewer parameters. However, sufficient detection performance is not guaranteed if the parameters are
excessively reduced to reduce the model size. When the data size is large, the model size may inevitably
increase as the parameters increase. In contrast, because the method proposed in this study is intended
to process data, not parameters of the model, both log processing speed and malicious behavior
detection performance are improved. A study [27] that proposed a data compression technology for
IoT using the TinyML perspective showed that real-time data processing was possible while achieving
a compression rate of up to 98.33% using a TinyML-based compression technology. However, this
previous study considered only the real-time data analysis aspect; the anomaly detection aspect was not
considered, and the analysis time was not measured. However, in this study, not only is the compression
rate considered but it is also used at an appropriate point in the trade-off between data loss and
detection rate because of compression. In addition, it was demonstrated to be a lightweight method
by measuring the training and testing time. In another study [28], data collected in chronological order
were grouped into different univariate time series and then compressed using a lifting scheme. After
linearizing the input array, a squeeze algorithm was applied, which compressed the unpredicted data
through adaptive curve fitting. This technology allows data to be compressed while reducing errors.
However, malicious traffic classification can be difficult with this technology because malicious and
normal traffic can be combined into one. In addition, even if malicious traffic is detected, a problem of
blocking normal traffic may occur in the response stage. In contrast, in this study, because compression
is performed by reducing the range of values of each feature, there is no problem with combining the
data of different records. In addition, it is possible to determine whether each unit of data is malicious,
even if the data do not exist in chronological order.

3 Proposed Malicious Traffic Classification Techniques

In this section, two malicious traffic detection techniques—CSL and Ra-CSL—are proposed,
which ensure less storage and resource requirements in environments with data storage constraints,
such as IoT. The CSL technique compresses the log data in a bitmap format and detects malicious
traffic using a machine-learning model. The Ra-CSL technique performs re-learning after decom-
pressing the data that are detected as an attack. Among the proposed methods, the bitmap rule setting



CMC, 2023, vol.76, no.3 3471

method was developed by referring to the “range encoding” used in a previous study, which applies
the bitmap according to the range of values [29]. The “range encoding” used in this study analyzes the
distribution of values of each feature by label and then expresses all values within a specific range as
an attack or normal. For example, if a feature value is [1, 6, 0, 2, 7], and the label of this feature
is [normal, attack, normal, normal, attack], then range encoding sets a bitmap rule as an attack
if the value is 5 or higher. Therefore, all values of each feature can simply be processed with only
short conditional statements. The CSL technique enables lightweight data processing through data
compression techniques, which can speed up processing and reduce the training and testing times. In
contrast, the Ra-CSL technique consists of two stages, including the CSL stage; hence, data processing
is slower than with CSL. However, it detects malicious traffic more accurately by performing two-stage
detection through the process of verifying the compressed data and original traffic data. Therefore,
the CSL or Ra-CSL techniques can be selected according to the characteristics of the application of an
IoT device. For example, CSL is suitable for IoT devices that perform manufacturing and automation
services where speed is important, and Ra-CSL is suitable for IoT devices that perform mission-critical
services where accuracy is important [30].

3.1 CSL Technique

The CSL technique is a method for malicious traffic detection based on machine-learning
algorithms after converting the log data collected from endpoints to a bitmap format. The basic process
of the CSL technique is shown in Fig. 1.

Figure 1: Process of CSL technique

The CSL technique involves compressing the accumulated data, training from the compressed
data, and inferring the labels of the compressed logs. The received log data pertain to network traffic,
which includes numerical data such as the number of communication bytes, number of connections,
and flag values. The client’s log data can be collected using tools or equipment, such as a network
intrusion detection system (NIDS) (e.g., Snort) or Wireshark, to capture incoming and outgoing
TCP/IP packets.

Before new log data are received, the server (analyzer) has a bitmap rule set using the accumulated
dataset. The bitmap rules can vary depending on the computing environment and the user’s normal
usage history, and the accumulated dataset can be analyzed and set in consideration of the average
value and deflection level of each feature in the normal state. For example, if an IoT sensor that
transmits and receives approximately 10 bytes of data on average in the normal state receives 100 bytes
of data in the attack state, the boundary between the two labels is specified based on a value between
10 and 100. In data compression, the received log data are compressed by converting the value of



3472 CMC, 2023, vol.76, no.3

each feature of the log data to 1 for the attack range or 0 for the benign range. If the boundary value
between two labels is 55, the values below 55 are converted to 0 and those above 55 are converted to
1. Thus, each feature has a label of 0 or 1 in the compressed log data. In addition, a machine-learning
classification model is trained by utilizing the result of compressing the accumulated dataset.

If new log data are received at the endpoint (client) side, data compression is performed according
to the bitmap rules stored in the server. The bitmap rule is not complicated and is performed for
each feature. Hence, the compression step is a simple task and can be applied to real-time received
data. The server performs inference using the machine-learning classification model to determine
whether the compressed data of the received log data represent an attack. If specific log data are
determined to be an attack by the model, the client that sent the log data can be notified of the attack
detection and response. This compression technique can reduce the data size while retaining important
information about the attack from the log data. Therefore, it is possible to change the malicious traffic
classification problem to a simple binary classification problem and reduce the memory and data
processing overhead.

3.2 Re-Learning After CSL Technique

Ra-CSL is a method for improving the accuracy of CSL. It performs a precision re-examination
based on conventional machine-learning only on the log data determined to be an attack through the
compression process. The basic process of the Ra-CSL technique is shown in Fig. 2.

Figure 2: Process of Ra-CSL technique



CMC, 2023, vol.76, no.3 3473

The CSL technique described in Section 3.1 is a method for extracting and training a significant
part of the entire data. Thus, the data can be trained in a short time while maintaining accuracy.
However, this is performed at the risk of some data loss. Therefore, Ra-CSL allows quick identification
of suspicious data using CSL and enables their sophisticated analysis while alleviating the data loss
problem of CSL.

In Ra-CSL, the CSL model first selects suspicious data and then trains with the entire data to
enable sophisticated inference with a model that has been trained with the entire dataset. Therefore,
the proposed methods enable the rapid identification and sophisticated analysis of suspicious data.

In Ra-CSL, the processes of training with a compressed dataset according to the bitmap rule
as a machine-learning model and performing intrusion detection are the same as those in the CSL
technique. However, in Ra-CSL, the CSL process is performed in the 1st step analyzer, and the 2nd
step analyzer is additionally utilized according to the 1st inference result. In addition, the classification
model trained from the original dataset without data compression is stored in the 2nd step analyzer
in advance.

If the 1st step analyzer determines a specific log data as an attack, it sends the original data received
from the endpoint and index of that specific log data to the 2nd step analyzer. In addition, because a
large amount of log data is collected in a short time in the real world, the client generally sends multiple
log data simultaneously. Therefore, index information enables the extraction of only the suspected logs
from the log data received from the endpoint.

Then, the 2nd step analyzer utilizes a machine-learning classification model trained with the
original dataset to detect whether this log is an attack. Finally, to determine whether the specific log
data represent an attack, the 2nd step analyzer extracts the suspected log using the index information
from the data sent by the 1st step analyzer. The client is notified of the log data that is determined
to indicate an abnormal behavior by the 2nd step analyzer so that the client, who has transmitted the
corresponding log data, can respond.

4 Performance Evaluation
4.1 Evaluation Environment

In the experiment, a VMware workstation-based virtual machine environment was used to
compare the performances of the proposed and conventional methods. The server operating system
was Ubuntu 18.04 LTS with a dual Intel Core i7-97003.00 GHz CPU, 2 GB RAM, and 20 GB hard
disk. The endpoint operating system was Ubuntu 18.04 LTS with a dual Intel Core i7-97003.00 GHz
CPU, 1 GB RAM, 1 processor, and 15 GB hard disk to represent a low-resource IoT environment.
All machine-learning algorithms used in the experiment were implemented in Python 3 using Jupyter
Notebook.

In this study, it was assumed that IoT devices collect data and transmit the processed data to a data
center. In this scenario, data collection using the IoT devices should not be interrupted, necessitating a
lightweight security solution. Therefore, a method to efficiently process the data and effectively detect
malicious behavior is proposed. In addition, the network traffic dataset was used because the network
must remain connected while transmitting and receiving data.

The UNSW-NB15 dataset was used to take advantage of network traffic data. UNSW-NB15
dataset contains network traffic data, including both benign and attack traffic data, in the raw pcap
format, collected using the tcpdump tool. In this study, to confirm the attack detection rate of the
proposed technique, the label was classified into the normal state (0) and attack state (1) without



3474 CMC, 2023, vol.76, no.3

distinguishing the attack type, and binary classification was performed. In the experiment, the number
of normal and attack labels was equally set to 37,000 samples by undersampling the training data to
prevent the effect of data imbalance.

If the attack data correspond to a small range of attacks, the characteristics not expressed in the
given data but expressed in other common attacks can be judged to be normal in the bitmap rules.
Therefore, even if binary classification is performed, various attack types must be included in the
attack data. Accordingly, in the experiment, binary classification was performed using the UNSW-
NB15 dataset containing attack data from nine attack families and 205 types of attacks; because it
includes various types of attacks, it is a widely used attack traffic dataset.

The UNSW-NB15 dataset comprises 49 features. Among them, only 21 features were utilized while
setting the bitmap rule because the binary classification of the features was difficult or they comprised
string types that required additional preprocessing before compression, thus causing overhead. Table 2
shows the data types and the dataset’s feature descriptions.

Table 2: Dataset configuration

Feature Type Description

Sbytes Integer Source-to-destination transaction bytes
Sloss Integer Source packets retransmitted or dropped
Sttl Integer Source-to-destination time-to-live value
trans_depth Integer Pipelined depth into the connection of HTTP

request/response transaction
swin Integer Source TCP window advertisement value
dwin Integer Destination TCP window advertisement value
spkts Integer Source-to-destination packet count
dpkts Integer Destination-to-source packet count
ct_src_dport_ltm Integer Number of connections with the same source address and

destination port in 100 connections according to the last time
ct_dst_sport_ltm Integer Number of connections with the same destination address

and source port in 100 connections according to the last time
ct_dst_src_ltm Integer Number of connections with the same source and destination

address in 100 connections according to the last time
dttl Integer Destination-to-source time-to-live value
ct_state_ttl Integer Number for each state according to the specific range of

values for source/destination time-to-live
is_ftp_login Binary If the FTP session is accessed using a user id and password,

then 1; else 0
ct_flow_http_mthd Integer Number of flows with methods, such as GET and POST, in

the HTTP service
is_sm_ips_ports Binary If the source and destination IP address are equal, and port

numbers are equal, then this variable has the value 1; else 0
dbytes Integer Destination-to-source transaction bytes
dloss Integer Destination packets retransmitted or dropped
smeansz Integer Mean of the flow packet size transmitted by the source

(Continued)



CMC, 2023, vol.76, no.3 3475

Table 2 (continued)

Feature Type Description

response_body_len Integer Actual uncompressed content size of the data transferred
from the server’s HTTP service

ct_srv_src Integer Number of connections that contain the same service and
source address in 100 connections according to the last time

label Binary 0 for normal and 1 for attack records

Table 3 summarizes the value ranges of the original data and bitmap rules of the proposed
compression method. The boundary between attack and benign is decided by analyzing the training
set. In a bitmap rule, the boundary value is valid in the dataset used in the experiment and may have
to be changed to different values depending on the environment. In this study, the bitmap rule was
set by directly analyzing the training data. When setting the bitmap rule, it was impossible to separate
the attack from benign by analyzing a single feature independently. Therefore, the bitmap rule was set
based on a boundary value, which was 99.6% true positive on average for the classification as attack
or benign. Even in a different environment than the dataset used in the experiment, the bitmap rule
can be set easily by selecting the boundary value that increases the true positive for one label of the
log dataset collected in each environment, as suggested in this study. In addition, once a bitmap rule is
set, a large amount of data can be compressed; thus, malicious traffic can be efficiently processed and
detected.

Table 3: Dataset bitmap rules

Feature Range of original data 1 (attack) 0 (benign)

Sbytes 24–14,355,774 ≥340,000 <340,000
Sloss 0–5,319 ≥130 <130
Sttl 0–255 =63, 255 �= 63, 255
trans_depth 0–131 �= 0, 1 = 0, 1
swin 0–255 =0, 255 �= 0, 255
dwin 0–255 =0, 255 �= 0, 255
spkts 1–10,646 ≥691 ≤690
dpkts 0–11,018 ≥1,433 ≤1,432
ct_src_dport_ltm 1–59 ≥5 ≤4
ct_dst_sport_ltm 1–38 ≥5 ≤4
ct_dst_src_ltm 1–63 ≥45 ≤44
dttl 0–253 253 29, 30, 31, 32
ct_state_ttl 6–82,332 4, 5 0, 1, 2, 3, 6
is_ftp_login 0–2 2 0, 1
ct_flow_http_mthd 0–16 0, 1, 2, 4, 16 6, 9, 12
is_sm_ips_ports 0–1 0 1
dbytes 0–14,657,531 ≥2,000,000 <2,000,000
dloss 0–5,507 ≥1,000 <1,000

(Continued)



3476 CMC, 2023, vol.76, no.3

Table 3 (continued)

Feature Range of original data 1 (attack) 0 (benign)

smeansz 24–1,504 ≥1,500 <1,500
response_body_len 0–5,242,880 ≥1,000,000 <1,000,000
ct_srv_src 1–63 ≥50 <50

The swin and dwin columns were 0 or 255 in the attack, and other values, including 0 and 255, in
the benign. For binary classification, 0 and 255 were set as an attack. spkts and dpkts are the number
of packets sent from the source to the destination and from the destination to the source, respectively.
When analyzing the data in both features, the number of packets sent and received during an attack
increased significantly. Therefore, according to the range of each feature, spkts greater than or equal
to 691 and dpkts greater than or equal to 1,433 were set as attacks. For ct_flw_http_mthd, the values
of 0, 1, 2, 4, and 16 for attack and 0, 1, 2, 4, 6, 12, and 16 for benign were displayed; the values of 0,
1, 2, 4, and 16 appeared as overlapped. In the experiment, overlapped values were set as an attack to
prevent the influx of malicious traffic, and the rest were set as normal. In the case of is_sm_ips_ports,
when the source and destination IP addresses and port numbers matched, the value was 1; otherwise,
when the IP address and port number did not match, it was 0. In the attack case, the value was 0, but
in the case of the normal state, both 0 and 1 appeared. Therefore, this feature was also set as an attack
when it was 0 and as a normal state when it was 1 to prevent the influx of malicious traffic.

4.2 Evaluation Results and Analysis

In the experiment, the efficiency of the proposed data processing method was demonstrated and its
performance was compared with those of the conventional, CSL, and Ra-CSL methods. As this study
proposes a bitmap-based compression technique that expresses the log data simply, simple machine-
learning models are used to classify the log data. The conventional method refers to a study that
classifies malicious IoT traffic data using various machine-learning algorithms [31]. The random forest
(RF), DT, Naive Bayes (NB), and gradient boosting algorithms were used in the comparative study. In
addition to the four algorithms used in the previous study, a data processing method that can reliably
classify malicious traffic even with a simple algorithm was proposed in this study; hence, the boosting
algorithm was excluded. Furthermore, two additional models, which were representative supervised
learning classification models, were used. In the experiment, five classification models were compared:
logistic regression (LR), SVM, RF, DT, and NB. The evaluation metrics were dataset size, accrual, and
training and testing time. The dataset size refers to the capacity of the .csv file; accuracy was calculated
by dividing the sum of the true positives and true negatives by the total number of logs. The training and
testing time was measured using Python’s time() function. The two techniques proposed in this study
include the processing and compressing of data between the training and inference steps. Therefore,
to demonstrate the performance of the proposed methods, the time required for the entire process to
be performed was measured, that is, the time from training to completion of inference was measured.

4.2.1 Dataset Size

For the performance evaluation of CSL and Ra-CSL, 30%, 50% and 100% of the data were ran-
domly selected from the original dataset and converted into a bitmap format to compare the accuracy
according to the compression rate (CR). A CR of 30% indicates that 7 features were compressed, 50%



CMC, 2023, vol.76, no.3 3477

indicates that 10 features were compressed, and 100% indicates that all 21 features were compressed;
the remaining uncompressed features were the same as in the original data. Therefore, the compressed
features may vary depending on the CR, but all compressed features have a value of 0 or 1 because the
same bitmap rule is applied.

Fig. 3 shows the dataset size of the conventional and proposed methods according to the CR.
Except for the deleted features, which were of the string type or were difficult to binary classification
(as explained in Section 4.2), the number of features used in each technique was the same. In CSL,
because each value is expressed in the binary form (0 or 1), the size of the dataset decreases as the
CR increases. Compared with the conventional technique, the size of the training set decreased by
approximately 10.77%, 12.92%, and 20.48%, respectively. Further, the size of the test set decreased by
approximately 10.92%, 12.94%, and 20.29%, respectively, after compression.

Figure 3: Dataset size comparison

4.2.2 Accuracy

In the following experiments, the dataset shown in Fig. 3 was used, and the accuracy and detection
time were compared for each technique. The performance of the Ra-CSL technique was compared in
terms of the CR, and the CR showing the best performance for each algorithm was adopted and
compared with those of the conventional and Ra-CSL techniques.

Fig. 4 shows the detection accuracies of the conventional technique for each classification model
and those of the CSL technique according to the CR.

The results of the experiment showed that the CSL technique had excellent performance with all
models except NB. In addition, RF, NB, and SVM showed the highest performance when the CR was
30%, and LR and DT showed the best performance when the CR was 50%. It was estimated that the
performance would decrease by 100% under a high CR when compared with the performance obtained
with the original data owing to data loss. However, at 30% CR, the algorithm acquired the highest
accuracy because the data loss was the smallest. At 50% CR, the data loss exceeded 30%, but this was
the only CR with more than 90% overall accuracy. Specifically, the best CR differed depending on the
characteristic of each algorithm; however, the best detection rate was achieved when the conventional
technique and compression method were used in combination.



3478 CMC, 2023, vol.76, no.3

Figure 4: Accuracy of training algorithms for different compression rates

The detection performance of the CSL technique also differed according to the CR of each
classification model. LR and DT showed the best performance when compressed by 50%, and the
other models performed the best when compressed by 30%. Additionally, the proposed CSL method
(except for NB) showed a higher performance than the conventional technique. Particularly, LR
and DT showed the highest accuracy of 91%. In the case of RF, which had the lowest detection
rate in the conventional technique, CSL showed 85% accuracy, which was an improvement of 53%
when compared with that of the conventional technique. Some of the original data were lost while
compressing the data, but the detection rate was improved in some cases. This seems to have minimized
the loss of important information, as the characteristics for classifying the malicious traffic were
retained. The average accuracy of the proposed method was improved by approximately 26% when
compared with that of the conventional technique.

Fig. 5 compares the conventional technique with CSL and Ra-CSL at the CR with the best
performance.

Figure 5: Accuracy of conventional, CSL, and Ra-CSL techniques

In the case of the CSL technique, the expressed CR in Fig. 5 was 30% for RF, NB and SVM,
and 50% for LR and DT. In the case of Ra-CSL, SVM was compressed by 30%, RF was compressed
by 50%, and LR, DT and NB were compressed by 100%. The experimental results showed that the



CMC, 2023, vol.76, no.3 3479

proposed model performed with a higher detection accuracy than the conventional technique for all
classification models. In addition, in the case of LR, DT and NB, the detection accuracy was the
highest for Ra-CSL. Particularly, in the case of NB, the detection accuracy was less than 65% for the
conventional and CSL techniques. However, the detection accuracy of Ra-CSL was approximately
99%, which was an improvement of more than 30% and the best performance among all experimental
results. Nevertheless, Ra-CSL showed a lower classification accuracy for RF and SVM.

4.2.3 Time

Table 4 shows the training and testing times.

Table 4: Time required for training and testing for the conventional, CSL and Ra-CSL methods

Feature Conventional CSL Ra-CSL

Logistic regression 3.443 s 1.113 s 597.002 s
Random forest 18.747 s 10.599 s 629.045 s
Decision tree 40.361 s 50.131 s 341.625 s
Naive Bayes 0.893 s 0.724 s 318.117 s
SVM 379.363 s 443.838 s 1,787.290 s

The experimental results showed that the time required for the CSL technique was the shortest
among the three models, excluding the DT and SVM models. However, in the case of DT and SVM,
it took longer than the conventional technique to generate a classification model with limited data
owing to the model characteristics.

Ra-CSL required approximately 646 s longer than the conventional method on average because it
performed an additional process of importing original data using index and classification twice. The
first step of classification was the pre-testing step with the CSL, and the second was the re-testing step
with the conventional technique on the log detected as positive in the pre-testing step. However, as
shown in Fig. 5, because the detection rate of Ra-CSL was higher, it is advisable to utilize Ra-CSL in
an environment where detection time is not a concern.

In addition, the results show that the two proposed techniques, CSL and Ra-CSL, have advantages
in terms of detection accuracy and speed when compared with the conventional method, but are
disadvantageous in terms of model complexity. However, the complexity of the model is not a
significant concern when considering the performance improvement, that is, up to 30% and 8 s
improvements in accuracy and speed, respectively.

Therefore, different techniques can be used depending on the application. If detection time is
important, CSL with LR, RF and NB would be the best combinations because they are faster than
the conventional and Ra-CSL techniques. Furthermore, if detection accuracy is important, Ra-CSL
with LR, DT and NB can be used to detect malicious traffic efficiently.

5 Conclusion

The widespread use of IoT devices in various industrial fields has resulted in increased cyber-
attacks targeting them. Particularly, IoT devices are often part of a network with various other devices;
hence, the damage caused by a cyber-attack is significant. At the same time, they are vulnerable to
attacks owing to the limitations of resources such as memory and batteries. However, it is challenging



3480 CMC, 2023, vol.76, no.3

to introduce traditional network monitoring methods and threat detection systems into IoT with
constrained environments because of the significant overhead of storing and managing a large amount
of constantly collected data.

This study proposed a bitmap-based data compression method for efficient attack detection in the
IoT environment. By comparing the experimental results under data compression rates of 30%, 50%
and 100%, the detection rate changed according to the degree of data loss, and the optimal degree of
compression for each model was confirmed. As the compression rate increased, the data size decreased
by up to 20%, proving that it is a suitable method in a constrained IoT environment. In addition, data
compression techniques reduced the training time by up to 67% in LR. Moreover, the training and
testing time in the CSL technique was reduced by 8 s when compared with that of the conventional
methods. The average detection rate of the conventional method was 57.4%, whereas those of the CSL
and Ra-CSL were 76.6% and 66.8%, respectively, which demonstrated the improved detection rate of
the proposed methods. Particularly, the highest accuracy of 99% was obtained with the NB model
of Ra-CSL under a CR of 100%. However, in the case of Ra-CSL, the detection time was increased
because of training with the first detected traffic through the compression process and the process
of importing the original dataset using the index information. Therefore, based on the characteristics
of the application, one of the two proposed methods can be selected. For example, in the case of
IoT devices that require real-time data collection and processing, such as in climate change and traffic
conditions, the CSL technique can be used to detect malicious traffic quickly. In the case of IoT devices
that need to be used for major infrastructure or for collecting research data, it is possible to accurately
detect malicious traffic by utilizing the Ra-CSL technique.

However, this study had a limitation: the training and detection time increases because of the two-
model training in Ra-CSL. In future studies, a pre-trained model and a more efficient algorithm to
import the original dataset will be used to shorten the training time; further, the performance will be
compared with that of the existing state-of-the-art. Another limitation of the current study is that the
effect of the dataset or feature used in the experiment was not measured. For example, the feature and
data values may vary depending on the dataset type, and the attack label may vary depending on the
attack scenario. Hence, the bitmap rule and performance may change. Therefore, a future study will be
conducted to analyze the effect of the proposed technique when using various datasets and features.

Acknowledgement: This paper is a supplementary and extended version of the paper presented at the
6th International Symposium on Mobile Internet Security (MobiSec’22).

Funding Statement: This work was partly supported by a Korea Institute for Advancement of
Technology (KIAT) Grant funded by the Korean Government (MOTIE) (P0008703, The Competency
Development Program for Industry Specialists) and the MSIT under the ICAN (ICT Challenge and
Advanced Network of HRD) program (No. IITP-2022-RS-2022-00156310) supervised by the Institute
of Information Communication Technology Planning and Evaluation (IITP).

Author Contributions: Conceptualization: Yu-Rim Lee, Il-Gu Lee; Methodology: Yu-Rim Lee, Na-
Eun Park; Software: Yu-Rim Lee, Na-Eun Park, Seo-Yi Kim; Validation: Yu-Rim Lee, Na-Eun
Park, Il-Gu Lee; Resources: Na-Eun Park, Seo-Yi Kim; Investigation: Yu-Rim Lee, Na-Eun Park;
Visualization: Yu-Rim Lee, Seo-Yi Kim; Supervision: Il-Gu Lee; Project administration: Il-Gu Lee;
Funding acquisition: Il-Gu Lee; Writing-original draft: Yu-Rim Lee, Na-Eun Park, Seo-Yi Kim;
Writing-review and editing: Il-Gu Lee.



CMC, 2023, vol.76, no.3 3481

Availability of Data and Materials: Data openly available in a public repository. The data that support
the findings of this study are openly available in UNSW-NB15 at https://research.unsw.edu.au/projects/
unsw-nb15-dataset.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] N. Gupta, S. Sharma, P. K. Juneja and U. Garg, “SDNFV 5G-IoT: A framework for the next generation 5G

enabled IoT,” in Proc. of the Int. Conf. on Advances in Computing, Communication & Materials, Dehradun,
India, pp. 289–294, 2020.

[2] Y. Siriwardhana, G. Gur, M. Ylianttila and M. Liyange, “The role of 5G for digital healthcare against
COVID-19 pandemic: Opportunities and challenges,” ICT Express, vol. 7, no. 2, pp. 244–252, 2021.

[3] S. Y. Kim, S. W. Yun, E. Y. Lee, S. H. Bae and I. G. Lee, “Fast packet inspection for end-to-end encryption,”
Electronics, vol. 9, no. 11, pp. 1937, 2020.

[4] H. Kaur and R. Tiwari, “Endpoint detection and response using machine learning,” Journal of Physics:
Conference Series, vol. 2062, pp. 12–13, 2021.

[5] N. E. Park, Y. R. Lee, S. Joo, S. Y. Kim, S. H. Kim et al., “Performance evaluation of a fast and
efficient intrusion detection framework for advanced persistent threat-based cyberattacks,” Computers and
Electrical Engineering, vol. 105, pp. 108548, 2023.

[6] J. S. Gomez, D. G. Carrillo, R. S. Iborra, J. H. Ramos, J. Granjal et al., “Integrating LPWAN technologies in
the 5G ecosystem: A survey on security challenges and solutions,” IEEE Access, vol. 8, pp. 216437–216460,
2020.

[7] A. Verma and V. Ranga, “Machine learning based intrusion detection systems for IoT applications,”
Wireless Personal Communications, vol. 111, pp. 2287–2301, 2020.

[8] M. Humayun, N. Jhanjhi, A. Alsayat and V. Ponnusamy, “Internet of Things and ransomware: Evolution,
mitigation and prevention,” Egyptian Informatics Journal, vol. 22, pp. 105–117, 2021.

[9] I. Varalakshmi, M. Thenmonzhi and R. Sasi, “Detection of distributed denial of service attack in an
internet of things environment-a review,” in Proc. of the Int. Conf. on System, Computation, Automation
and Networking (ICSCAN), Puducherry, India, pp. 1–6, 2021.

[10] S. Udipi, “The event data management problem: Getting the most from network detection and response,”
Network Security, vol. 2021, no. 1, pp. 12–14, 2021.

[11] P. Fei and Z. Li, “SEAL: Storage-efficient causality analysis on enterprise logs with query-friendly
compression,” in Proc. of the 30th USENIX Security Symp. (USENIX Security 21), Online, pp. 2987–3004,
2021.

[12] S. Eswaran, A. Srinivasan and P. Honnavalli, “A Threshold-based, real-time analysis in early detection of
endpoint anomalies using SIEM expertise,” Network Security, vol. 2021, no. 4, pp. 7–16, 2021.

[13] V. Panchami and M. M. Mathews, “A substitution Box for lightweight ciphers to secure Internet of Things,”
Journal of King Saud University-Computer and Information Sciences, vol. 35, no. 4, pp. 75–89, 2023.

[14] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set),” in Proc. of the Military Communications and Information Systems Conf.,
Canberra, Australia, pp. 166, 2015.

[15] N. Moustafa and J. Slay, “The evaluation of network anomaly detection systems: Statistical analysis of the
UNSW-NB15 data set and the comparison with the KDD99 data set,” Information Security Journal: A
Global Perspective, vol. 25, no. 1–32016, pp. 18–31, 2016.

[16] N. Moustafa, J. Slay and G. Creech, “Novel geometric area analysis technique for anomaly detection using
trapezoidal area estimation on large-scale networks,” IEEE Transactions on Big Data, vol. 5, no. 4, pp.
481–494, 2019.

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset


3482 CMC, 2023, vol.76, no.3

[17] N. Moustafa, G. Creech and J. Slay, “Big data analytics for intrusion detection system: Statistical decision-
making using finite dirichlet mixture models,” in Data Analytics and Decision Support for Cybersecurity:
Trends, Methodologies and Applications. Berlin/Heidelberg, Germany: Springer Cham, no. 5, pp. 127–156,
2017.

[18] M. Sarhan, S. Layeghy, N. Moustafa and M. Portmann, “NetFlow datasets for machine learning-based
network intrusion detection systems,” in Proc. of the 10th Int. Conf. on Big Data Technologies and
Applications (BDTA) 2020, 13th EAI Int. Conf. on Wireless Internet, WiCON 2020 Big Data Technologies
and Applications, Online, pp. 117–135, 2021.

[19] Z. Liu, L. Zhang, Q. Ni, R. Wang, Y. Li et al., “An integrated architecture for IoT malware analysis and
detection,” in Proc. of the Int. Conf. on Internet of Things as a Service, Xi’an, China, vol. 271, pp. 127–137,
2019.

[20] A. Mudgerikar, P. Sharma and E. Bertino, “E-Spion: A system-level intrusion detection system for IoT
devices,” in Proc. of the ACM Asia Conf. on Computer and Communications Security, New York, NY, United
States, pp. 493–500, 2019.

[21] O. Eboya, J. B. Juremi and M. Shahpasand, “An intelligent framework for malware detection in Internet of
Things (IoT) ecosystem,” in Proc. of the IEEE 8th R10 Humanitarian Technology Conf., Kuching, Malaysia,
pp. 1–6, 2020.

[22] J. Jeon, J. H. Park and Y. S. Jeong, “Dynamic analysis for IoT malware detection with convolution neural
network model,” IEEE Access, vol. 8, pp. 96899–96911, 2020.

[23] S. Rajagopal, P. P. Kundapur and K. S. Hareesha, “A stacking ensemble for network intrusion detection
using heterogeneous datasets,” Security and Communication Networks, vol. 2020, pp. 9, 2020.

[24] S. Choudhary and N. Kesswani, “Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using
deep learning in IoT,” Procedia Computer Science, vol. 167, pp. 1561–1573, 2020.

[25] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey and R. T. Goswami, “An integrated rule-based intrusion
detection system: Analysis on UNSW-NB15 data set and the real time online dataset,” Cluster Computing,
vol. 23, pp. 1397–1418, 2020.

[26] Z. Wang, J. Tiam, H. Fang, L. Chen and J. Qin, “LightLog: A lightweight temporal convolutional network
for log anomaly detection on the edge,” Computer Networks, vol. 203, pp. 108616, 2022.

[27] G. Signoretti, M. Silva, P. Andrade, I. Silva, E. Sisinni et al., “An evolving TinyML compression algorithm
for IoT environments based on data eccentricity,” Sensors, vol. 21, no. 12, pp. 4153, 2021.

[28] J. Azar, A. Makhoul, R. Counturier and J. Demerjian, “Robust IoT time series classification with data
compression and deep learning,” Neurocomputing, vol. 398, pp. 222–234, 2020.

[29] B. Yildiz, “Optimizing bitmap index encoding for high performance queries,” Concurrency and Computa-
tion: Practice and Experience, vol. 33, no. 18, pp. 1–9, 2020.

[30] M. Alabadi, A. Habbal and X. Wei, “Industrial internet of things: Requirements, architecture, challenges,
and future research directions,” IEEE Access, vol. 10, pp. 66374–66400, 2022.

[31] S. Susanto, D. Stiawan, M. A. S. Arifin, M. Y. Idris and R. Budiarto, “IoT botnet malware classification
using weka tool and scikit-learn machine learning,” in Proc. of the 7th Int. Conf. on Electrical Engineering,
Computer Sciences and Informatics, Yogyakarta, Indonesia, pp. 15–20, 2020.


	Malicious Traffic Compression and Classification Technique for Secure Internet of Things
	1 Introduction
	2 Related Works
	3 Proposed Malicious Traffic Classification Techniques
	4 Performance Evaluation
	5 Conclusion
	References


