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ABSTRACT

In an era marked by escalating cybersecurity threats, our study addresses the challenge of malware variant
detection, a significant concern for a multitude of sectors including petroleum and mining organizations. This paper
presents an innovative Application Programmable Interface (API)-based hybrid model designed to enhance the
detection performance of malware variants. This model integrates eXtreme Gradient Boosting (XGBoost) and an
Artificial Neural Network (ANN) classifier, offering a potent response to the sophisticated evasion and obfuscation
techniques frequently deployed by malware authors. The model’s design capitalizes on the benefits of both static and
dynamic analysis to extract API-based features, providing a holistic and comprehensive view of malware behavior.
From these features, we construct two XGBoost predictors, each of which contributes a valuable perspective on
the malicious activities under scrutiny. The outputs of these predictors, interpreted as malicious scores, are then
fed into an ANN-based classifier, which processes this data to derive a final decision. The strength of the proposed
model lies in its capacity to leverage behavioral and signature-based features, and most importantly, in its ability
to extract and analyze the hidden relations between these two types of features. The efficacy of our proposed API-
based hybrid model is evident in its performance metrics. It outperformed other models in our tests, achieving an
impressive accuracy of 95% and an F-measure of 93%. This significantly improved the detection performance of
malware variants, underscoring the value and potential of our approach in the challenging field of cybersecurity.
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1 Introduction

The sectors like mining and petroleum sectors are increasingly vulnerable to Malware attacks due
to their reliance on information technology and their use of integrated systems and data. Malicious
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software also known as malware, has increased rapidly. Malware has a damaging effect on computer
systems, digital assets, and the community [1]. Malware can be used to spy on users, steal sensitive
information, disseminate fake news, destroy cyber-physical systems, perform assassinations, and many
other acts of evil [2]. The malware creation tools accessible to a wide range of malware developers,
including amateurs and script kiddies, lead to a proliferation of malware. Various types of malware
have been created, including viruses, worms, trojans, botnets, ransomware, and advanced persistent
threats, to name a few [3]. Numerous malware samples emerge every day. McAfee and Symantec
report that 69 new malware are detected every minute [4]. Most of this malware comprises malware
variants [5]. Existing malware is often re-engineered to produce some evasive and obfuscated malware.
Developers of malware often employ obfuscation strategies with the intent to disguise their true
characteristics and activities.

Various methodologies have been proposed in the realm of malware detection, and these can
be categorized according to the analysis type and the nature of features extracted during static and
dynamic analyses [0,7]. The static approach pertains to the extraction of features from portable
executable files without necessitating the execution of the malware. On the other hand, dynamic
features are gleaned from the interactions occurring between the malicious software and the Operating
System (OS). This interaction takes place within a controlled, isolated environment. Malware actions
are captured and used to extract features that represent the malware behavior. Both static and dynamic
analysis have been extensively researched. Dynamic features are more effective compared to static
features due to the complexity of extracting representative features using static analysis and the vast
amount of data in the malware files. Recently, many researchers have utilized deep learning techniques
to automatically extract representative features and construct accurate classifiers using static analysis-
based features. These techniques have substantially escalated the proliferation of new malware variants
capable of penetrating existing protective solutions. Nonetheless, identifying obfuscated and evasive
malware presents a formidable challenge, given their high resemblance to benign programs and the
elusive characteristics of their behavior.

The majority of existing methodologies for malware detection rely predominantly on either
static or dynamic analysis as the fundamental mechanisms for feature extraction [5,0,8,9]. These
features can become sparse and inadequate to represent malware behavior due to the injection of
random and benign API sequences within the malware files or the obfuscation of real behavior during
runtime. A few ensemble and hybrid models have been proposed that use dynamic and static-based
features, as in [5,10]. Most of the hybrid approaches have focused on combining different classifiers.
Only a few models have focused on the use of hybrid features, such as [5,10]. Integrating static and
dynamic features in one model is not a trivial task, as the decision of maliciousness becomes more
challenging. Within the context of this investigation, features from both static and dynamic API-
based analyses were harnessed to establish two variants of ensemble classifiers via the application
of the XGBoost algorithm. The underlying justification for amalgamating API features drawn from
the disparate analytical modes lies in the potential divergence between APIs discerned from static
analyses vs. those identified through dynamic analyses-an outcome attributable to the variance in
employed identification methods. The integration of static and dynamic analysis methodologies may
yield a holistic understanding of the APIs that malware exploits, with each analytical approach
contributing distinct insights and uncovering a unique set of problems. Because API-based features
have been reported to be among the most effective representative features, the scope of this study
focuses on such types of features. Similarly, XGBoost and Artificial Neural Networks (ANN) have
been frequently reported to be effective learners. Both aspects are integrated within the architecture
of the model proposed within this study. In this research, we are primarily driven by the rapidly
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increasing incidence of malware, particularly the more sophisticated malware variants, which presents
a significant threat to individual and organizational security. Traditional detection methods, whether
behavioral or signature-based, often fall short of identifying these advanced threats due to their evasion
and obfuscation techniques. This alarming situation motivated us to develop a more effective solution
for malware variant detection, aiming to improve the security posture of vulnerable entities.

The study presents a twofold main contribution. It extracts both static and dynamic API features
to train predictive models using the XGBoost algorithm. These models consist of an ensemble of
decision tree predictors, which sequentially score the sample class. The ensemble’s output trains ANN
classifiers based on a multilayer perceptron. XGBoost, a tree-based algorithm, excels in handling
structured data, outliers, and missing values. On the other hand, ANN, a flexible and adaptable
algorithm, deals well with unstructured data and learns complex patterns.

The results demonstrate that the proposed hybrid ensemble model surpasses non-hybrid and single
ensemble-based classifiers. The study provides the following contributions:

1. Extraction of hybrid API features from dynamic and static analysis. This combination offers
a more comprehensive and accurate understanding of malware behavior, leading to more
effective detection and mitigation of threats.

2. Development of a hybrid ensemble learning-based model (API-HM VD) architecture. It stacks
an ANN-based model onto the outputs of XGBoost classifiers to learn the correlation between
patterns detected for each feature type. The XGBoost model extracts features and makes
preliminary predictions, which then enhance accuracy when fed into the ANN model to learn
from intermediate results.

Additionally, the study proposes a novel hybrid malware variant detection model that leverages
an Application Programmable Interface (API). This model employs both static and dynamic analyses
to extract API-based features. These features are utilized by two predictors built on eXtreme Gradient
Boosting (XGBoost), providing a more comprehensive view of malware behavior and improving
detection accuracy. The output of these predictors is then utilized by an Artificial Neural Network
(ANN) classifier to make the final decision, effectively revealing the hidden relationship between
behavioral and signature-based features.

The structure of this paper is laid out as follows: Section 2 provides a comprehensive review of the
related literature. A detailed elaboration of the research’s proposed model is laid out in Section 3. The
experimental framework and evaluation metrics are delineated in Section 4. A thorough discussion
and analysis of the results are found in Section 5. Lastly, Section 6 presents the concluding thoughts
and notable findings derived from this study.

2 Related Work

The efficacy of malware detection models hinges on two key elements: feature extraction and
model design. Features are typically classified based on their analysis type, either static or dynamic.
Various types of features can be extracted through these analyses [11]. For instance, static features
might be derived from Portable Executable (PE) headers and sections, byte codes, opcodes, flow
graphs, strings, imported application programable interfaces (APIs), libraries and functions, and
logical architectures [2,9,12]. On the other hand, dynamic features might come from the malware
program’s interaction with the Operating System’s file system, registry, network, memory, Central
Processing Unit (CPU), and API call sequences. The extraction of API call features from both dynamic
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and static analysis has been a common practice in previous studies [3,13-21]. Table | summarizes key
methods used for malware detection in recent literature.

Regarding model design, supervised machine learning techniques such as Support Vector Machine
(SVM), Random Forest [3,22-24], Extreme Gradient Boost XGBoot [22,25-28], and Artificial Neural
Network (ANN) [7,14,19,29-31] are often employed to understand the correlation between the input
features and class label. Recently, deep learning has been utilized for training classifiers that can lever-
age various types of features. However, the majority of existing deep learning-based models primarily
focus on static-type features [32]. Given the complexity of malware representation, recent studies
have focused on integrating various feature types and classifiers to enhance detection performance.
Zhang et al. [5] proposed a hybrid malware variant detection approach that uses static features such
as opcodes and API calls. Their model consists of two classifiers: a computational neural network
designed to train the first classifier based on opcode-based features, and the multilayer perceptron
algorithm used to construct the second classifier, which relies on API calls extracted from static
analysis. Al-Hashmi et al. [1 1] have proposed a comprehensive and composite model designed for the
detection of malware variants. This model employs an assortment of behavioral features derived from
dynamic analysis to establish a multitude of classifiers using deep sequential learning methodologies.

Table 1: Summarizes key methods used for malware detection in recent literature

Reference Method Features Classification
algorithm
Zhang et al. [5] Static and dynamic Opcodes, API calls CNN, ANN
analysis
Al-Hashmi et al. [11] Static analysis API calls, registry access, XGBoost, SVM
file access, and network
traffic
Wang et al. [33] Static analysis String feature, structure ~ SVM, KNN, RV
feature
Kang et al. [34] Static and dynamic Byte sequence, API Random forest,
analysis sequence run time XGBoost
behavior graph
Rieck et al. [35] Dynamic analysis API call (ANN), (DT), Naive
Bayes (NB), SVM
Tian et al. [30] Static analysis User interaction SVM, KNN,
functions, coverage rate  decision tree, R.F
(CR), API

On the other hand, Wang et al. [33] have advanced a technique specifically tailored for the
detection of malware variants that capitalizes on static features. These encompass elements such
as strings, permissions, specifications of hardware and software, intents, API calls, opcode, and the
function call graph. The authors have further classified these features into two primary groupings-one
which is string-based and another that is structure-oriented. Despite the potential advantages of these
methods, their dependence on static features can be a limitation as malware authors often use basic
obfuscation techniques to hide malevolent patterns within binary code, reducing the effectiveness of
these detection methods. To address this issue, Kang et al. [34] suggested a holistic approach that
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integrates both static and dynamic analysis features. These features are subsequently leveraged to
construct an ensemble model, which exhibits the capability to effectively identify various malware
variants.

In their research, Rieck et al. [35] delivered a thorough examination of the automatic analysis
of malware behavior through the lens of machine learning. The team proposed a unique framework,
dubbed “MALheur”, which is adept at identifying and categorizing malware according to its behav-
ioral patterns, utilizing dynamic analysis. The framework harnesses a blend of feature extraction and
machine learning algorithms for the analysis of malware behavior. The researchers executed extensive
experiments on a sizable malware sample set to evaluate their framework’s effectiveness.

Tian et al. [36], on the other hand, proposed the use of a class-level dependence graph alongside a
method-level call graph as representative depictions of an application. By doing so, they were able to
extract static behavioral features, which they used to identify Android malware.

In summary, numerous strategies have been proposed to improve malware detection model accu-
racy by integrating different feature sets. However, these approaches often overlook the correlations
between the features due to the use of a single classifier for each feature type. Moreover, they pre-
dominantly rely on either static or dynamic features, which can be easily masked by malware authors
employing obfuscation and evasion techniques. Addressing these identified gaps, this investigation
encompasses the extraction of both static and dynamic API-based attributes to represent malware.
The employed methodology incorporates a two-tiered classifier system. In the initial phase, latent
characteristics from both dynamic and static attributes are independently extracted via the application
of the XGBoost algorithm. Subsequently, in the second phase, a multilayer perceptron algorithm
is utilized to decipher the correlations existing within these latent features. This process allows for
the discovery of new hidden patterns characterizing malware variants, leading to improved detection
performance. The following section provides a comprehensive description of our proposed model.

3 The Proposed Model

The proposed Application Programable Interface based Hybrid Malware Variant Detection (API-
HMYVD) model consists of four main phases: feature extraction using both static and dynamic analysis,
feature representation, prediction model construction, and decision-making phase. As illustrated in
Fig. 1, the structural framework of our proposed model is presented. Comprehensive insights into
each phase of this model are elaborated upon in the respective subsections that follow.

Static N TFIDF XGBoost Classifier N
Analysis "| Features Representation StaticAPI Features g
Short-Long N-Gram TFIDF
Features Dynamic N API Sequence N Se ugnce FerEs XGBoost Classifier
Extraction Analysis Creation q X X Dynamic API Features
Features Extraction Representation

Figure 1: The proposed application programable interface based hybrid malware variant detection
API-HMVD model
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3.1 Features Extraction

During the initial phase, we engaged in a meticulous extraction of features. This extraction was
guided by a two-pronged approach, incorporating elements of both static and dynamic analysis for a
more comprehensive understanding of the dataset.

3.1.1 Static Analysis-Based API Features

In this step, the API features have been extracted from the PE files without executing their files.
All the APIs that the suspect files intend to invoke are collected regardless of whether they are executed
or not. API features are extracted from the import table of the PE files. Each program incorporates
the API functions that are exported by other programs and libraries as part of code reuse for efficient
and effective software development. Malware authors usually inject random APIs to evade detection
by hiding malware patterns using polymorphic and metamorphic techniques.

3.1.2 Dynamic Analysis-Based API Features

Programmers, including malware authors, typically employ dynamic API loading to conceal API
features from reverse engineers. Many operating systems support dynamic loading, e.g., Windows
Operating System (OS) uses two well-known APIs for loading the APIs during the execution at
runtimes, such as LoadLibraryA and GetProcAddress. Once such functions are used by malware,
malware can access many API functions without writing directly to the PE file. Therefore, dynamic
analysis is an important element of malware detection. In this study, API calls have been monitored
in the sandbox environment. Sandbox records the APIs that are invoked by the program in a process
called API hooking. When PE files are executed, any API calls are intercepted by the API hooking
function. After the PEs are executed, a list of APIs is ordered according to their appearance in the
hooking process. Thus, an API sequence can be formed to represent the behavioral activities of PE.

3.2 Representation Phase of Features

In this phase, we represent both the attack signature and the behavioral features. The N-gram
technique was used to create the attack signature and the behavioral sequence of the extracted features
using static and dynamic analysis. Then, a statistical technique called term frequency/inverse document
frequency (TF/IDF) is used to represent the API features [19,31]. TE/IDF can convert APIs from
textual format to their equivalent numerical weights. It can evaluate how important an API function
is to a PE sample compared to the other samples. TF/IDF is applied to a single API function that
is extracted from static analysis and applied to a sequence of APIs consisting of two or three APIs
that occurred in order. In this study, the short sequence consists of one API function, and the longest
sequence consists of four API functions. Each sequence is treated as a term. The ¢f/idf can be calculated
as follows.

number of times API; in a sample

tf (API;) = 1

f( / ) Total number of API functions in the sample M
. number of a sample

df (API) =1 2

idf (4PL) = log (number of documents that have API, ) @

if Jidf (APL) = tf (APL) x idf (APL) 3)
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3.3 Prediction Models Construction Phase

In this phase, two predictive models were constructed, each of which has been trained based on
the API functions extracted from the static and dynamic analysis. The Extreme Gradient Boosting
XGBoost algorithm [25] was used to construct predictive models. The XGBoost algorithm constructs
a set of weak learners using boosting and decision tree algorithms. In the boosting, the trees are
constructed sequentially in such a way that the residual error generated from the previous tree is
considered during the building of the subsequent tree. Each tree is trained based on the lessons learned
from its predecessors. That is, each tree tries to reduce the error resulting from the previous trees
in the sequence. The grown trees are relatively small regression trees. Therefore, the model is highly
interpretable due to the limited number of splits. Nodes and splits in the tree are chosen based on a
similarity score (formula (4)). The following steps explain how XGBoost constructs the trees.

1- Create the first tree that consists of the root node with a single-leaf node.
2- Use the tree that was created in the previous step to make the prediction and then calculate the
residual error.

3- Use the following equation to2 calculate the similarity score.

Similarity Score = M 4)
Hessian + A

where Gradient® is the square root of the residuals, Hessian denotes the number of the residuals,
and A is a hyperparameter to make regularization and prevent dividing by zero.

4- Select the node with the highest similarity score to achieve homogeneity.

5- Calculate the information obtained for each split using the similarity score as follows.

6- information gain = left similarity+right similarity—root similarity (5)

7- Continue to construct the tree by creating the leaves and the decision nodes based on the
information gained with pruning by adjusting the regularized parameter A.

8- Use the constructed tree to predict the target class of the samples and calculate the residual

error.
9- Compute the new residual as follows.
New Residual = Old Residual + p Z predicted residual (6)

where p denotes the learning rate.
10- Repeat these nine steps to construct the subsequent tree, and all trees are created.

The output of the decision trees for each trained model is aggregated using the following formula.

=1 (7)

where y, is the aggregated output of the model k, m number of trees and f; is the predicted value of the
ith tree.

3.4 Decision-Making Phase

In this phase, the aggregated output of the predictive models from the previous phase was used
to build a classifier for the final decision on the sample class. This work hypothesizes that the features
used to represent benign and malicious samples might be sparse and contain outliers. Consequently,
XGBoost may not fit well for such samples, leading to misclassifying such samples and causing an
increase in false positive and negative rates. Therefore, a new classifier that uses the output of the week
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classifiers as a new feature is needed to learn the hidden relationships between the XGBoost predictions
and the output class.

In this study, the artificial neural network, namely, the multilayer perceptron algorithm [37],
has been trained to recognize fake patterns. Neural networks offer the advantage of self-learning
capabilities, which can detect hidden patterns within a given training dataset [38]. To train the
Multi-layer Perceptron (MLP) classifier for decision-making, the feed-forward with backpropagation
algorithm was used. The established model operates on a three-layered structure which includes an
input layer, an intermediary or hidden layer, and finally, an output layer. Each predictor stemming from
the XGBoost algorithm is linked to respective neurons present within the output layer, thus forming a
structured network of information processing. The chosen activation function for each neuron residing
in the hidden layer is the Rectified Linear Unit (ReLU) function, renowned for its efficiency and
performance in deep learning contexts. To identify the optimal number of neurons to be included
in this hidden layer, a process of iterative testing and refinement was undertaken, ultimately allowing
for a balance between complexity and predictive power within the model. The sigmoid function was
used for the final decision in the output layer. The MLP model is fully connected, which means that
the neurons in one layer are connected to all the neurons in the next layer. Weights are allocated to
the neurons in both the input and output layers. The optimization algorithm’s role is to find the best
or optimal set of weights that improve classification accuracy. Fig. 2 shows the structure of the MLP
model. If the predicted value p, is greater than 0.5 then the input features belong to a malware sample;
otherwise, it is a benign sample. The output decision was determined based on the following formula.

1
- 8
P =T (8)
where y;, is the aggregated output of the XGBoost predictors and m number of the predictors.
Input | |Hidden Output
Layer Layer Layer
L/\ »
yi '\A ' N
Po
v 70X -
Ym g\

Figure 2: Structure of the multi-layer perceptron model

4 Experimental Setup

The model employed in this research is constituted of two primary components: feature extraction
and classification processes. The feature extraction stage involves the extraction of API-centric
attributes from malware exemplars, utilizing both static and dynamic techniques. The motivation
behind this is to encompass both the configurationally and operational aspects of the malware. The
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second segment of the model is dedicated to classification, organized in a bi-level structure. In the initial
level, the XGBoost algorithm is leveraged to discern the association between the designated features
and their corresponding class tags. The selection of hyperparameters for the XGBoost algorithm was
accomplished through a methodical grid search procedure. Parameters selected include a ‘max_depth’
of 5, ‘min_child_weight’ of 1, and ‘gamma’ of 0, while ‘subsample’ and ‘colsample_bytree’ were both
configured to 0.8. The XGBoost model generates an output referred to as ‘malicious scores’, which
subsequently serve as input for the second level of the classification process. In this stage, a classifier
based on an Artificial Neural Network (ANN) is utilized to identify the obscured correlations between
behavioral and signature-based characteristics. The configuration of the ANN model comprises a
feed-forward network design with three distinct layers. The initial layer, the input layer, is designed
with a number of nodes equivalent to the total number of features. Following this, the hidden layer
incorporates 10 nodes and employs the Rectified Linear Unit (ReLU) as the activation function. The
final layer, the output layer, consists of a single node representing the anticipated class label. The
model’s learning rate was configured at 0.01 and training was conducted for a total of 100 epochs with
a batch size of 32. The model’s architecture and parameter settings were carefully chosen to ensure
optimal performance, while maintaining computational efficiency.

The collections of data leveraged for both the training and evaluation of the proposed model
incorporate two distinct classifications of software. These include benign, or non-harmful, software, as
well as malicious or malware software instances. Malicious samples were collected from the VirusShare
web portal (https://virusshare.com/), while benign samples were collected from freshly installed OS and
trussed repositories. The dataset encompasses a variety of malware samples, including viruses, Trojan
horses, ransomware, backdoors, and others. Most malware samples are variants that are generated
from old malware versions. To avoid detection, malware authors employed obfuscation and evasive
techniques. The final data set comprises 11,712 samples, including 6,877 malware and 4,835 benign
software samples. The dataset was divided into two subsets, with 60% allocated for training and 40%
for testing. Table 2 shows the statistics of the dataset used in this study.

Table 2: Number of samples in the data set

Malware Benign
Training 4,126 2,901
Testing 2,751 1,934
Total 6,877 4,835

Dataset size 11,712

The static features were extracted directly from the PE, while the dynamic features were obtained
from the cuckoo sandbox. The model is validated using six performance measures: accuracy (ACC),
recall, precision, F-M, FPR, and false FNR. In the context of our research, we operationalize the
concept of ‘accuracy ratio’ as the proportion of samples that have been correctly classified, relative
to the overall quantity of samples in the testing set. The metric known as ‘Recall’ is quantified by
the division of the quantity of accurately classified malware by the comprehensive count of malware
present within the test set. The measurement of ‘Precision’ is arrived at by determining the fraction
of accurately predicted malware over the total count of predicted malware instances. The F-measure
(F-M) is a metric that evaluates the overall performance of the model. The F-measure, often used as
a balanced performance indicator, represents the harmonic mean of precision and recall. A higher
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F-measure generally indicates decreased error rates in the classification process. The FPR, a key
parameter in error assessment, is derived by taking the ratio of benign samples that have been
inaccurately classified to the entirety of actual benign samples. Similarly, the FNR is ascertained by
calculating the proportion of malware samples that have been erroneously classified over the total
count of actual malware samples.

Total number of samples which are correctly classified

A = 9
ceuracy Total number of samples ©)

. Totalnumber of positive samples which are correctly classified
Precision = — — (10)
Total number of positive classified samples

Recall Total number of positive samples which are correctly classified (11)
ecall =
Total number of positive samples

F — Measure — 2 % Preci.sion * Recall (12)
Precession + Recall

number of misclassified benign samples

FPR = (13)

number of actual benign samples

FNR — number of misclassified malware samples (14)
number of actual malware samples

The presented model’s performance was evaluated relative to two other internally developed
models and three state-of-the-art models from the literature. The two internally developed models
utilized the XGBoost algorithm for training. The first was informed by API functions derived from
static analysis, while the second relied on API functions from dynamic analysis. Subsequently, a
comparative analysis was also conducted against the state-of-the-art models documented in [39—41].
The model referenced in [39] employed dynamic analysis for API feature extraction, and multiple
classifiers-Random Forest (RF), Support Vector Machines (SVM), Logistic Regression (LR), and
Naive Bayes (NB) were used for training. LR emerged as the most effective classifier in this case. In
[40], an ensemble model was created using SVM as the base classifier, with API features represented
using the doc2vec approach. Lastly, the model in [41] extracted API calls through dynamic analysis
and harvested Indicator of Compromise features, representing them through the Term Frequency-
Inverse Document Frequency (TF/IDF) technique. The LR algorithm was employed to formulate the
detection model in this instance.

5 Results Analysis and Discussion

Table 3 shows the training performance of the proposed model compared to other models. In
terms of overall accuracy performance, the proposed hybrid model achieved better training compared
to the others. Figs. 3 and 4 present the performance comparison between the models studied.

The results from testing the model after fitting, which are shown in Table 4, Figs. 5, and 6, reveal
that the proposed model outperforms the others. This suggests that hybrid features derived from both
static and dynamic analysis surpass individual feature types in effectiveness. This is clear from the
results obtained by the individual classifiers. The model performs better when using dynamic features
for classification, compared to relying solely on static API-based features. This is because malware
authors inject some unusable APIs to hide static analysis-based detection. Injecting random APIs into
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the malicious files increases the sparsity of the feature vector and thus reduces the learning ability,
as can be observed in Tables 3 and 4 see the API-static row. Concerning dynamic-based features, the
model performs better than static features. This is because the behavioral activities of the malware
can be easily captured. The injected features in the PE files may not be executed during execution.
Furthermore, many malware attempts to upload API functions during runtime. Such features will be
hidden from the static features vector and will appear in the dynamic-based features vector.

Table 3: The training performance of the proposed model compared to other models

ACC Recall Precision F-M FPR FNR

API-dynamic 0.96 0.93 0.92 0.92 0.03 0.03
API-static 0.94 0.89 0.89 0.89 0.04 0.04
The proposed model 0.96 0.96 0.95 0.95 0.02 0.04

H API-Dynamic = API-Static = Hybrid-ANN

0.98

0.96

0.94 —

0.92 — —

0.90 — — — —

0.88 _— _— _— -

0.86 — — — —

0.84
ACC Recall Precession F-M

Figure 3: Training accuracy, recall, precision, and F-measure comparison

m API-Dynamic m API-Static m Hybrid-ANN

0.05
0.05
0.04
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0.03
0.02
0.02
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0.00

FPR FNR

Figure 4: Training errors (FPR and FNR) comparison
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Table 4: Compares the proposed model’s test performance to that of other models

ACC Recall Precision F-M FPR FNR

API-dynamic 0.94 0.89 0.89 0.89 0.04 0.04
API-static 0.91 0.85 0.83 0.84 0.06 0.07
Finder 2022 [39] 0.86  0.94 0.9 092 011  0.16
Tran 2017 [40] 0.91 0.91 0.94 0.92 0.07 0.09
Ali 2020 [41] 0.87 0.90 0.92 0.91 0.17 0.10
The proposed API-HMVD 0.95 0.94 0.93 0.93 0.04 0.05
M API-Dynamic M API-Static ® Finder 2022 [37]
Tran 2017 [38] u Ali 2020 [39] u The proposed API-HMVD
1
0.95
E 09 g - 4
%oss ’ B [
o
g | |
= 038 N o -
S
0.75 . =
0.7 - .
ACC Recall Precession F-M

Performance Measure
Figure 5: Classification accuracy, recall, precision, and F-measure comparison
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Performance Measure

Correspondin,

Figure 6: Classification errors comparison

Tables 3 and 4 and Fig. 3 through 6 also illustrate that combining XGBoost with an ANN-based
classifier enhances both the training and classification performance. The proposed model achieves an
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overall classification performance of 93% in terms of the F-measure compared to 89% achieved by the
model that was constructed using dynamic features with individual classifiers using XGBoost. This
is because the MLP model uses the output of the XGBoost classifiers to train a model that identifies
correlations between the features extracted from both static and dynamic analyses. This integration
enables the MLP to identify hidden patterns representing correlations between static and dynamic
features. Thus, the proposed hybrid significantly boosts overall performance. As can be seen in Table 4
and Figs. 5 and 6, the proposed model outperformed the related work. It achieved the best accuracy
and overall performance (see Fig. 5) with the lowest classification error (see Fig. 6). Although the
model proposed in Tran 2017 [40] achieved higher precision, it compromised this precision with a
reduced detection rate. Both the false positive and negative rate are high as compared to the proposed
model (See Table 4).

As discernible from the data presented in Tables 3 and 4, our proposed model exhibits superior
performance when juxtaposed against individual static and dynamic API-based models as well
as contemporary state-of-the-art models. The hybrid model under consideration delivered elevated
performance measures such as accuracy, recall, precision, and F-measure, during both the training
and testing phases. This enhanced performance can be attributed to the amalgamation of static
and dynamic analyses that captures a broader spectrum of the software’s behavioural dynamics.
The achieved accuracy of 95% by the proposed model, as illustrated in Table 4, underscores its
proficiency in correctly classifying a substantial majority of the malware specimens. Moreover, the
model’s precision of 93% signifies that in cases where software is identified as malware, there exists a
high probability that the designation is accurate. The recall measure of 94% further emphasizes the
model’s robustness in identifying positive instances, in this scenario, being malware specimens. This
implies that the model was successful in accurately identifying 94% of all malware instances within the
dataset. The model’s F-measure, a harmonic mean of precision and recall, stands at 93%, signifying
that the model maintains an equilibrium between precision and recall.

Within the realm of cybersecurity, both FPR and FNR are deemed paramount. A diminished
FPR indicates the model’s low propensity to erroneously classify benign software as malicious, thus
mitigating unnecessary alerts. Our proposed model exhibits an FPR of a mere 4%. Similarly, a lower
FNR implies the model’s efficacy in correctly identifying malware, thereby reducing the potentiality
of cyber threats. The model under consideration exhibits an FNR of only 5%. When juxtaposed
against individual static and dynamic models, our proposed hybrid model evidently surpasses them,
as signified by a 1%-3% enhancement across all performance measures. These advancements suggest
that the integration of static and dynamic analyses provides a more effective mechanism for malware
identification. In relation to state-of-the-art models, our proposed model demonstrated superior per-
formance, thereby substantiating the efficacy of our proposed hybrid approach and the amalgamation
of XGBoost and ANN classifiers. In Figs. 3 and 4, the superior training performance of the proposed
model is graphically demonstrated. Similarly, Figs. 5 and 6 visually represent the superior classification
performance of the proposed model. These graphical representations serve to further underscore the
robustness and reliability of our proposed model.

6 Conclusion

This study presents the design and development of an API-based Hybrid Malware Variant
Detection Model using Extreme Gradient Boosting and Artificial Neural Network Classifiers. The
proposed model seeks to enhance malware variant detection by extracting hybrid API features from
both dynamic and static analysis and integrating these features with an ensemble of XGBoost learners
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and an MLP classifier. The hybrid features were leveraged to counteract the obfuscation and evasion
techniques employed by malware authors for generating malware variants. The XGBoost predictors
were created to discover and extract hidden relationships between static and dynamic API-based
features. The MLP classifier was developed to learn the hidden patterns that correlate these sets
of features. The proposed model’s effectiveness is demonstrated through its comparison with non-
hybrid models. The principal limitation of the proposed model is its requirement for an in-depth
analysis of API features that enhance performance and result in misclassifications, a topic beyond
the scope of this study. There exists potential for enhancing detection performance by exploring
the ideal number of hidden neurons in the Artificial Neural Network (ANN) model. The utility
of the single hidden layer feedforward neural network, as proposed in reference [38] for three-way
decisions, can be explored for achieving this aim. Moreover, additional machine learning algorithms
like SVM and RF, among others, could also be investigated to enhance detection performance. Future
investigations could encompass an in-depth examination of the model’s performance in detecting
malware employing sophisticated evasion and obfuscation techniques. Malware developer might
utilize complex obfuscation and evasion tactics to disguise their genuine behaviors, thereby eluding
both static and dynamic analyses. This highlights the significance of integrating a diverse array of
features extracted from both static and dynamic analyses into the hybrid model. Further research
could delve into creating more resilient models that can effectively identify these advanced obfuscation
techniques, thereby contributing to a more secure cyber landscape.
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