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ABSTRACT

A newly proposed competent population-based optimization algorithm called RUN, which uses the principle
of slope variations calculated by applying the Runge Kutta method as the key search mechanism, has gained
wider interest in solving optimization problems. However, in high-dimensional problems, the search capabilities,
convergence speed, and runtime of RUN deteriorate. This work aims at filling this gap by proposing an improved
variant of the RUN algorithm called the Adaptive-RUN. Population size plays a vital role in both runtime
efficiency and optimization effectiveness of metaheuristic algorithms. Unlike the original RUN where population
size is fixed throughout the search process, Adaptive-RUN automatically adjusts population size according to two
population size adaptation techniques, which are linear staircase reduction and iterative halving, during the search
process to achieve a good balance between exploration and exploitation characteristics. In addition, the proposed
methodology employs an adaptive search step size technique to determine a better solution in the early stages
of evolution to improve the solution quality, fitness, and convergence speed of the original RUN. Adaptive-RUN
performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases, where the first one applies
linear staircase reduction with adaptive search step size (LSRUN), and the second one applies iterative halving
with adaptive search step size (HRUN), with the original RUN. To promote green computing, the carbon footprint
metric is included in the performance evaluation in addition to runtime and fitness. Simulation results based on the
Friedman and Wilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime
and carbon footprint values as compared to the original RUN and three recent metaheuristics. Therefore, with
its higher computation efficiency, Adaptive-RUN is a much more favorable choice as compared to RUN in time
stringent applications.
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1 Introduction

Many real-world problems in diverse fields such as engineering [1], machine learning [2], finance
[3], and medicine [4] can be formulated as optimization problems. Metaheuristic algorithms have
become the most widely used technique for quickly discovering effective solutions to challenging
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optimization problems due to their adaptability and simplicity of implementation. However, to
enhance the performance of these algorithms, various parameters must always be tuned. In general,
metaheuristic algorithms are designed based on four types of processes, such as swarm, natural,
human, and physics [5]. Particle Swarm Optimization (PSO) [6] is a widely used technique that
depends on the natural behavior of swarming particles. Genetic Algorithm (GA) [7], which is the most
often used evolutionary approach, is an efficient algorithm for a variety of real-world problems. The
socio-evolution learning optimizer [8] is constructed by simulating human social learning in social
groups such as families. The multi-verse optimizer [9] is based on the multi-verse theory proposed
by physics and has addressed several problems, including global optimization, feature selection, and
power systems. The sine cosine algorithm (SCA) [10] is another physics-based optimizer [5].

The search strategy, the exploitation phase, and the exploration phase are three key features
shared by all metaheuristic algorithms. In the exploration phase, the metaheuristic algorithm generates
random variables to search the complete solution space and examines the promising region, but
in the exploitation phase, the algorithm searches close to the optimal solutions to obtain the best
outcome from the search space. To prevent reaching the local optimum and keep enhancing the
solution’s quality, the optimization algorithm must balance the exploitation and exploration stages
[11]. In addition, running such algorithms can lead to environmental issues such as carbon footprints.
The carbon footprint typically calculates the amount of greenhouse gas (GHG) produced during
the execution of the algorithm. As a result, to develop green computing, it is critical to reduce
unnecessary CO2 emissions and calculate the carbon footprint of the running algorithm because the
carbon footprint relies on the energy used to power the device. Green computing will be shaped by
understanding the behavior of the algorithm, avoiding unused runs, and minimizing factors that have
a significant influence on the carbon footprint [12].

To solve a wide range of optimization problems, the RUN [13] population-based optimization
algorithm was developed. As a search mechanism, RUN uses the principle of slope variations
calculated using the Runge Kutta (RK) approach [13,14]. RK is a numerical method for integrating
ordinary differential equations by using multistage approaches in the middle of an interval to generate
a more accurate solution with a lower amount of error. This search approach makes use of two effective
exploitation and exploration stages to find attractive areas in the search space and progress to the
optimal global solution [13]. Despite RUN being a recent algorithm, it has demonstrated excellent
performance in solving complex real-world problems such as parameters estimation of photovoltaic
models [15,16], power systems [17,18], lithium-ion batteries management [19], identification of the
optimal operating parameters for the carbon dioxide capture process in industrial settings [20],
water reservoir optimization problems [21], resource allocation in cloud computing [22], and machine
learning models parameters tuning [23] to name a few.

However, it was noticed that the original RUN consumes more time in solving optimization prob-
lems without finding the optimal solution, and in high-dimensional problems, the search capabilities
and convergence speed of the original RUN deteriorate. As a result, to locate the optimal solution,
the max number of iterations should be increased, so RUN’s runtime will increase. To overcome
these issues, this work proposes an improved version of the original RUN called the Adaptive-RUN
algorithm intending to obtain a specific level of precision in the solution with the least amount of
computing cost, effort, and time, and to aid in the development of green computing. Population size
adaption has become prevalent in many population-based metaheuristic algorithms to enhance their
efficiency [5]. However, none of the reported works have considered population size adaptation to
enhance the performance of RUN. To fill this research gap, unlike the original RUN where population
size is fixed in every iteration, Adaptive-RUN will adaptively change population size to enhance
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runtime characteristics of both the exploitation and exploration phases of the algorithm. Furthermore,
the proposed technique employs the adaptive search step size to determine and update the better
solution in the early stages of evaluation, so the solution quality will be enhanced, and the algorithm
will find the best solution quickly by minimizing the objective function toward an optimal solution.
Therefore, the key contributions of this study can be summarized as the following:

– Propose an Adaptive-RUN algorithm that automatically adjusts population size during the
search process according to two population size adaptation techniques, which are linear staircase
reduction and iterative halving, by effectively balancing exploitation and exploration characteristics
of the original RUN algorithm. In addition, an adaptive search step size technique is employed to
improve the solution quality, fitness, and convergence speed of the original RUN.

– Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two
cases, where the first one applies linear staircase reduction with adaptive search step size (LSRUN),
and the second one applies iterative halving with adaptive search step size (HRUN), with the original
RUN and three recent metaheuristic algorithms. To promote green computing, the carbon footprint
metric is included in the performance evaluation.

– Simulation results based on the Friedman and Wilcoxon tests revealed that Adaptive-RUN
can achieve considerable reductions in the average fitness, runtime, and carbon footprint values as
compared to original RUN and other recent metaheuristic algorithms.

The rest of the paper is organized as follows: Section 2 provides an overview of related works. The
main mathematical equations for RUN and the implementation of Adaptive-RUN are presented in
Section 3. Section 4 examines the performance of Adaptive-RUN in tackling benchmark problems.
Section 5 provides conclusions and some ideas for future studies.

2 Literature Review

In the solution space, optimization is utilized to determine the optimal solution. There exists
a plethora of metaheuristics to solve optimization problems. All optimization strategies may be
characterized as tackling the following optimization problem: minimize f(x), subject to g(x) <= 0,
and h(x) = 0, where x is the set of values that need to be optimized, g(x) is a set of inequality
constraints, and h(x) is a set of equality constraints. The objective of the optimization algorithm is
to identify the values of x that minimize f(x) under the restrictions of g(x) = 0 and h(x) = 0 [24].
Ahmadianfar et al. [13] proposed the Runge Kutta optimizer (RUN). Based on the concept of the
swarm-based optimization algorithm, RUN constructs a set of guidelines for population development
and utilizes the estimated slope as a search method to identify the search space’s most likely region. The
fourth-order Runge–Kutta (RK4) method is used to compute the slope and tackle ordinary differential
equations. The RK4 depends on the weighted average of four slopes (k1, k2, k3, k4), and it can be
described as y (x + �x) = y (x) + 1

6
(k1 + 2k2 + 2k3 + k4) × �x, where y (x + �x) is the approximate

solution to a differential equation. k1 is the slope at the start of the time step, k2 and k3 are the slopes at
the midpoint, and k4 is the slope at the endpoint. RUN begins the procedure with a selection of random
solutions. For a population of size N, N positions are generated randomly in the first phase, and each
individual in the population xn(1 . . . N) is a solution. To add, the population is a set of solutions. The
RK approach changes the positions of the solutions every time. The RK approach produces both a
search mechanism and a solution. To choose between the exploitation (local) and exploration (global)
stages, RUN uses the rand <0.5 rule, where a rand is a random value in [0,1]. RUN employs a local
search to develop convergence speed and concentrate on superior solutions, while a global search is
used to explore potential areas in space.
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Additionally, to enhance the convergence rate and prevent local optimum solutions, the enhanced
solution quality (ESQ) technique is utilized. ESQ guarantees that every individual advances to a better
location and improves the quality of the solution. Two randomized variables are used by the search
mechanism and ESQ to highlight the relevance of the optimal solution and move to the optimal global
solution, which may successfully balance the exploitation and exploration phases. If the generated
solution is not in a superior location to the present one, the RUN optimizer can find a new location in
the search space to achieve a superior location. This process could potentially improve both the quality
and rate of convergence. When RUN was compared to other modern optimizers, it was discovered
that RUN outperformed other optimization algorithms in tackling complex real-world optimization
problems [13].

In high-dimensional and difficult optimization problems, the RUN optimizer can struggle to avoid
trapping in local minima. As a result, Devi et al. [11] proposed the improved Runge Kutta optimizer
(IRKO), which is a better version of the RUN optimization algorithm. To improve the exploitation and
exploration abilities, IRKO utilizes the local escaping operator (LEO) and the basics of RUN. LEO
is used to improve the efficiency of a gradient-based optimizer, and it ensures the solution’s quality
while improving convergence by preventing local minimum traps. The IRKO algorithm’s initialization
process is equivalent to the RUN optimizer. In the search process, the RUN optimizer updated the
population in three diverse stages. However, in the IRKO optimizer, the solutions are also examined
during every iteration to investigate the offered solutions and enhance the new recommended solutions
in the upcoming iteration. When every new population is generated at random, each population is
evaluated, allowing the new fitness to be improved using either global or local search. The LEO process
will then be used to enhance the new population. The results of IRKO were either better than or
comparable to other algorithms, but IRKO’s runtime values are greater than the original RUN [11].

The RUN algorithm yields promising results, but it has limitations, especially when dealing with
high-dimensional multimodal problems. As a consequence, Cengiz et al. [25] proposed the Fitness-
Distance Balance (FDB) approach, which is used to produce solution candidates that control the RUN
algorithm’s search operation. According to the reported experimental results, ten cases of FDB based
on the RUN optimizer were created, tested, and verified one by one using experimental studies to
locate the optimal solution in the RUN optimizer. The results show that the FDB-RUN approach
[25] significantly improves the search process life cycle in the RUN optimizer and is considered more
effective in solving high-dimensional problems by properly balancing the exploration and exploitation
stages [25].

The population size plays a key role in both runtime efficiency and optimization effectiveness of
metaheuristic algorithms [5]. Population size adaptation techniques automatically adjust population
size during the search process and decide which members of the current population will proceed to
the next iteration to achieve a good balance between exploration and exploitation characteristics.
Although, population size adaptation has been widely studied in particle swarm intelligence [26],
artificial bee colony optimization [27], differential evolution [28,29], sine cosine algorithm [5], and
slime mould algorithm [30] among others. However, to the best of the author’s knowledge, no such
work has been reported for the RUN. This work aims at filling this gap by examining two different
population size adaptation methods applied previously [5] in the proposed Adaptive-RUN algorithm.
In addition, we employed the concept of adaptive step size from the seeker optimization algorithm
(SOA) proposed by Dai et al. [31]. The adaptive step size in the proposed study is a kind of a look-
ahead technique to determine a search direction and search step size for each individual whenever the
population size changes for fast convergence of the algorithm.
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3 Methodology
3.1 Runge Kutta Optimizer (RUN)

The RUN depends on mathematical structures and lacks metaphors. The RUN optimizer utilizes
the Runge Kutta method (RK) [14] as a search mechanism to productively accomplish the search
process by balancing the exploitation and exploration phases. To tackle ordinary differential equations
(ODEs) by applying a distinctive formula, the RK method is utilized. Also, the enhanced solution
quality (ESQ) structure is utilized in RUN to enhance the solutions’ quality and the convergence rate
and avoid local optimum. In addition, each region in the solution space is supplied with random
solutions. Then, a balance between the exploitation and exploration phases is accomplished by
inserting a set of search solutions into the different regions. Moreover, the population is updated in
three different phases in the life cycle of the RUN optimizer. As a result, the population xi is improved
as xnew , xnew2, and xnew3 [13]. Only the major mathematical formulation for RUN will be addressed in
the following subsections.

3.1.1 Search Mechanism

In RUN, the RK4 approach was used to define the search strategy, which depends on the weighted
average of the four slopes as shown in Fig. 1. Eq. (1) represents the search mechanism (SM) in RUN.

SM = 1
6

(xRK) × �x (1)

xRK = k1 + 2 × k2 + 2 × k3 + k4 (2)

Figure 1: Slopes in the RK4 method

3.1.2 Updating Solutions

The RK4 method SM is utilized to develop the solutions in order to provide exploration and
exploitation searches.

if rand < 0.5 (3)
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Exploration

xnew = (xC + g × r × xC × SF) + SM × SF + randn × μ × (xm − xC)

else

Exploitation

xnew = (xm + g × r × xm × SF) + SM × SF + randn × μ × (xr1 − xr2)

end

Note: xC and xm are defined in Eq. (4). SF stands for adaptable factor and is defined in Eq. (5). μ
represents a random value in [0, 1]. randn produces a random scalar. r is a random value in [1, −1]. g
is a random value in [0, 2]. xr1 and xr2 are two random solutions.

xC = xi × φ + xr1 × (1 − φ) (4)

xm = xbest × φ + xlbest × (1 − φ)

Note: φ is a random value in [0, 1]. xi represents the individuals. xbest is the optimal solution. xlbest

is the optimal current solution.

SF = 2 × f × (0.5 − rand) (5)

f = exp
(

−b ×
(

IT
MaxIT

)
× rand

)
× a (6)

Note: SF is an adaptive factor to provide a suitable balance between exploration and exploitation.
f is a real number computed by using Eq. (6). The numbers a and b are constants, where a is initialized
to 20 and b to 12. IT is the present iteration. The max number of iterations is known as MaxIT.

3.1.3 Enhanced Solution Quality (ESQ)

In order to optimize solution quality over the iterations while preventing local optimum, the RUN
algorithm utilizes ESQ. The ESQ is used to produce the solution (xnew2).

xavg = xr3 + xr2 + xr1

3
(7)

xnew1 = xavg × β + xbest × (1 − β) (8)

w = exp
(

−c
(

IT
MaxIT

))
× rand (0, 2) (9)

if rand < 0.5 (10)

if w < 1

xnew2 = xnew1 + w × r × ∣∣randn + (
xnew1 − xavg

)∣∣
else

xnew2 = (
xnew1 − xavg

) + w × r × ∣∣randn + (
xnew1 × u − xavg

)∣∣
end

end
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Note: r is an integer value equal to −1, 0, or 1. c is a random value equal to 5 × rand. β is a random
value in [0, 1]. xr1, xr2, xr3 are three random solutions.

if rand < w (11)

xnew3 = (xnew2 − xnew2 × rand) + ((xb × v − xnew2) + SM) × SF

end

Note: v is a random value that equals 2 × rand. xb is the best solution.

3.1.4 Optimization Process in RUN

Fig. 2 shows that RUN starts with the RK search mechanism to update the solution position,
then employs ESQ to explore the promising regions in the search space. Then the selection of the best
solution will be done. The position xnew will be generated from position xi using the RK method, and
xnew2 will be generated using ESQ. If fitness of xnew2 is less than fitness of xnew, xnew2 is the best solution;
otherwise, xnew3 position will be generated, and if fitness of xnew3 is less than fitness of xnew, xnew3 is the
best solution; otherwise, xnewis the best solution.

Figure 2: Optimization process in RUN

3.2 Adaptive-RUN

The RUN algorithm depends on the outcomes of the preceding iteration to generate new solutions.
This can increase the runtime of the algorithm and slow its convergence speed. In this work, RUN is
enhanced to balance the exploitation and exploration capabilities and improve the search capability
using adaptive population size (PS) and adaptive search step size. The adaptive PS strategy will be
applied before updating the solution (Eq. (3)). The adaptive PS strategy can decrease the runtime,
increase the convergence speed, and improve fitness by moving members from the present population
to the upcoming iteration, and the value of the population size will be changed. If the population size
doesn’t equal the initial population size, the adaptive search step size strategy will be applied after
updating the solution (Eq. (3)). The adaptive search step size strategy focuses on determining and
developing a better alternative solution to quickly find the best solution by discovering the search step
size and search direction and then updating the positions of the next individuals. The Adaptive-RUN
optimizer provides a high convergence speed, a short runtime, and better fitness. In addition, two
adaptive population strategies will be studied, where the first one will apply linear staircase reduction
with adaptive search step size (LSRUN), and the second one will apply iterative halving with adaptive
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search step size (HRUN). This section will address the adaptive population size strategies (linear
staircase reduction and iterative halving), and the adaptive search step size strategy.

3.2.1 Population Size Adaptation

The population size (PS) is a critical aspect that impacts how easy it is to locate the best solution in
the search space. As a result, in metaheuristic algorithms, controlling the population size is considered
important [5]. PS is a variable controlled by a user, and no research has investigated the impact of
population size adaptation on RUN efficiency. So, the adaptive technique in which population size
will change among iterations according to the requirements of the search process will be considered in
this study. Two distinct adaptation techniques, linear staircase reduction RUN (LSRUN) and iterative
halving RUN (HRUN), were chosen for study. The mathematical formulation will be addressed for
linear staircase reduction and iterative halving in this section.

a) Linear Staircase Reduction

The linear staircase reduction decreases the runtime by moving random candidates to the next
iteration [5,32]. Fig. 3a shows how the population size decreased over the iterations. If the current
iteration (IT) happens to equal the reduction step (ITR), the population size (nP) will be reduced by
the step factor (Step) using Eq. (12.2).

NOR = (MaxPS − MinPS)/Step (12)

ITR = MaxIT/(NOR + 1) (12.1)

if ITR == IT

nP = nP/Step (12.2)

end

Note: MaxPS is the max population size equal to 100 × nP. MinPS is the min population size equal
to 100. NOR is the number of reductions. Step is the scaling factor equal to 2. ITR is the iteration when
the reduction appears. nP is the population size and is initially set to 100.

Figure 3: (a) Linear staircase reduction, (b) Iterative halving
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b) Iterative Halving

Iterative halving moves the best candidates to the next iteration [5,33]. If the population size
reaches the minimal population size (MinPS), the number of reductions (NOR) will be evaluated
using Eq. (13.1); otherwise, Eq. (13.2). The fitness of the members from the first half of the present
population will be compared to the fitness of the corresponding members from the second half using
Eq. (13.5). Fig. 3b shows how iterative halving impacts the population size over the iterations by
reducing the population size to half. If the fitness of the members from the second half is less than
the fitness of the members from the first half, and the current iteration (IT) equals the reduction step
(ITR), the members of the current population will be equal to the members from the second half
(Eq. (13.6)), and the population size (nP) is halved (Eq. (13.7)).

if nP== MinPS

NOR = (log(MaxPS) − log(MinPS)) (13)

else

NOR = (MaxPS − MinPS)/Step (13.1)

end

ITR = MaxIT/(NOR + 1) (13.2)

index = (nP/2) + i (13.3)

ITR = MaxIT/(NOR + 1) (13.4)

if Fobj (xindex) < Fobj (xi) and IT == ITR (13.5)

xi = xindex (13.6)

nP = (nP + 1)/2 (13.7)

end

3.2.2 Adaptive Search Step Size

If the optimal solution is not discovered in the early phases of evaluation, it might be easy to get
stuck in the local optimum. So, it is considered essential to identify the search direction and search
step size to update the next individuals’ positions. As a result, the local search ability will be enhanced,
and if the lookahead better solution is determined and developed in the early stages of evaluation, the
algorithm can locate the optimal solution rapidly. The idea of the adaptive search step size strategy
is obtained from the seeker optimization algorithm (SOA) [31]. The adaptive search step size process
in Adaptive-RUN includes three steps, which are: discover the search step size, discover the search
direction, and update the solution [34]. To add, those steps are adopted from SOA. At each iteration
in SOA, a search step size α and search direction d are independently evaluated for each individual. The
search step size and search direction are defined by the SOA by mimicking the ambiguous reasoning of
human search and the experience gradient. In RUN, we will use similar concepts to define the search
step size and search direction.

Discover the Search Step Size: In the LSRUN and HRUN algorithms, after updating the solution
xnew using the Runge Kutta (RK) method (Eq. (3)), if the size of the population (nP) is reduced to half,
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the search step size α will be determined for the individuals to update the location of the solution xnew .
α is the search step size, which is an array of real numbers of size set to the dimension size (α > 0). The
parameters u, w, xmin, and xmax are utilized to express the search step size. Fitness includes the costs of
each set of individuals sorted in descending order, the index includes the locations of the sorted costs,
index(i) is the location of the cost at location i which is the location of the current individuals, u is a set
of uniformly distributed random values in [0, 1], Umax is a constant value set to 0.9, Umin is a constant
value set to 0.0111, w is a real number, w2max is a constant value set to 0.7, w2min is a constant value set
to 0.2, xmin is the individuals with minimum cost, and xmax is the individuals with maximum cost. The
optimal position of the individuals has Umax = 0.9, but the worst position has Umin = 0.0111. Umax is
selected to be 0.9 to have a higher convergence rate and let the best individuals have an uncertain step
size. The u function is selected as the fuzzy variable for the search step size α. The convergence behavior
of the Adaptive-RUN is controlled by the deciding factor w. Low w will lead to local trapping, whereas
high w will delay the algorithm’s convergence. As a result, for better searching, the w is determined
as shown in Eq. (14.3). Furthermore, if the evolution algebra increases, w is decreased from w2max to
w2min.

[fitness, index] = sort(Costs) (14)

u = Umax − index(i)/nP × (Umax − Umin) (14.1)

u = u × rand(1, dim) (14.2)

w = w2max − i/nP × (w2max − w2min) (14.3)

α = w × |xmin − xmax| × √−log(u) (14.4)

Discover the Search Direction: In the LSRUN and HRUN algorithms, after updating the solution
xnew using the Runge Kutta (RK) method (Eq. (3)), if the size of the population (nP) is reduced to half,
the search direction d will be determined for the individuals to update the location of the solution
xnew . The search direction is determined by applying the weighted geometric in the manners described
below (Eq. (14.5) to Eq. (14.8)) after determining the self-interest dego, the altruistic direction dalt, and
the direction of action dproof any individual. d is the search direction, which is an array of 1 and −1
numbers of size equal to dimension size. d = 1 means that the individuals go toward the positive
side of the coordinate axis, and d = −1 means the individuals go toward the negative side. gbest is the
population x which includes the sets of individuals/solutions, and it will be updated while determining
the best solution, zbest is the optimal solution that is found so far, xi is the individuals at the current
location i, xit1 is the individuals at the location i from the previous iteration which can be written also
as xi(IT−1) where IT is the current iteration, sign is a sign function, and φ1 and φ2 are constant values in
[0,1].

dego = gbest − xi (14.5)

dalt = zbest − xi (14.6)

dpro = xit1 − xi (14.7)

d = sign(w × dpro + φ1 × dego + φ2 × dalt) (14.8)
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Update the Solution: After giving the search step α, search direction d, and search mechanism
SM, the solution xnew transfers to a new location from the current location (individuals) xi as shown
in Eq. (14.9). SM is the search mechanism that is determined using Eq. (1).

xnew = xi + d × α × SM (14.9)

Fig. 4 shows how xnew is updated on the search space based on the search step size, search direction,
and SM values. Also, xi can update its position in different directions based on search step size, search
direction, and SM. Search step size α and SM are arrays of real numbers, and they are used to search the
feature space and design an appropriate global and local search; however, d is considered a direction
controller as it is an array of 1 and −1. d also alters the search direction and expands diversity.

Figure 4: Solution update based on adaptive search step size mechanism

The Process of Adaptive Search Step Size: Fig. 5 shows the process of adaptive search step size
in the Adaptive-RUN algorithm. Before applying the ESQ strategy, if the population size is changed,
the process of adaptive search step size will start; otherwise, ESQ will start. The costs will be sorted,
and xmin, xmax, gbest, zbest, SM, search step size, and search direction will be calculated before updating
the solution xnew. Then the solution xnew will be updated using Eq. (14.9). After that, the index i will
be incremented (move to the second solution), and the cost of xnew will be compared to the cost of xi

(second solution). If the cost of xnew is less than the cost of xi, xi will be updated to xnew, and the cost of
xi will be updated to the cost of xnew. As a result, the second solution will be determined and updated
in the early stages of evaluation, and the algorithm will find the best solution quickly. In addition, the
above values of the parameters Umin, Umax, w2max, w2min, φ1, and φ2 are selected after several trials of
obtaining the best result. The best result means better fitness, convergence speed, and runtime.

3.3 Pseudocode of Adaptive-RUN Algorithm

Algorithm 1: Pseudocode of Adaptive-RUN Algorithm
Stage 1: Initialization
Produce the population xi (i = 1, . . . , nP) which is a set of solutions, evaluate the fitness of each set of
population and evaluate xb, xw, gbest, xbest and zbest

for it = 1:MaxIT
for i = 1:nP

Stage 2: Adaptive Population Size
Apply adaptive population size via Eqs. (12) to (12.2) or Eqs. (13) to (13.7)
Stage 3: Updating Solutions using RK Method

(Continued)
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Algorithm 1 (continued)
if rand < 0.5

Determine the new solution xnew based on Runge Kutta Method via Eq. (3)
end if
Stage 4: Adaptive Search Step Size
if nP! = nPInit

Determine the real number w via Eq. (14.3)
Develop the new solution xnew using adaptive search step size via Eq. (14.9)
i=i+1

end if
Stage 5: Enhanced Solution Quality (ESQ)
if rand < 0.5

Determine the solution xnew2 via Eq. (10)
if f(xi) < f(xnew2)

if rand < w
Determine solution xnew3 via Eq. (11)

end if
end if

end if
Stage 6: Develop Solutions xb and xw

end for
Stage 7: Develop xbest and gbest

end for
Stage 8: Return xbest

Figure 5: Process of adaptive search step size

3.4 Complexity Analysis

The max number of iterations is called MaxIT, and the population size is called nP. nP is the
number of solutions in the population. In RUN, the population size is fixed. However, in the Adaptive-
RUN, the size of the population (nP) is dynamic. Initially, the size of nP in Adaptive-RUN is 100.
After a number of iterations, nP will be 50. This means the number of computations and runtime
will decrease. The Adaptive-RUN algorithm starts with population and cost initializations and a
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minimum fitness evaluation (xbest ). After that, the adaptive population strategy either linear staircase
reduction or iterative halving will be applied. Then, minimum fitness, xw , xb will be calculated
followed by determining the new solution (xnew ) based on Runge Kutta (RK) method. Also, xnew

will be updated using the adaptive search step size strategy when the population size changes. In
addition, the cost will be sorted during the adaptive search step size strategy. Then, xnew2 and xnew3

will be determined using an enhanced solution quality (ESQ). Finally, xbest and gbest will be updated.
Let us assume nP is N. The computation cost (complexity) of population initialization (x) is O(N),
cost initialization is O(N), minimum fitness evaluation (xbest ) is O(N), exploration of search space
(evaluate xnew , xnew2 or xnew3 ) is O(1), parameter update (xb , xw , xbest , or gbest ) is O(1), and cost
sorting is O(NlogN). Furthermore, the complexity of Adaptive-RUN cases (LSRUN and HRUN)
is O (3N + MaxIT × N (7 + N + NlogN)) .

3.5 Flowchart of Adaptive-RUN

The flowchart of the Adaptive-RUN algorithm is shown in Fig. 6. The initialization process in
Adaptive-RUN is similar to the original RUN. After calculating the fitness and the best solutions,
one of the PS adaptive techniques (linear staircase reduction or iterative halving) will be applied.
Then, xnew will be calculated via the search mechanism (SM) strategy. After that, if the population
size is reduced to half, xnew will be updated via the adaptive search step size strategy. Finally, new
solutions (xnew2 and xnew3) will be determined via an enhanced quality solution (EQS) strategy. So, the
population is developed by search mechanism, adaptive search step size, and enhanced quality solution
strategies. Adding the adaptive PS and adaptive search step size processes to RUN enhances the search
capabilities, the quality of the solution, and the convergence rate of RUN.

Figure 6: Flowchart of adaptive-RUN
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3.6 Key Features of Adaptive-RUN Compared to RUN

The search capabilities of RUN are decreased in high-dimensional problems. It is noticed that if
the dimension size (search space size) of the problem in RUN is increased, the runtime of RUN will
increase and the convergence speed will decrease, as shown in Fig. 7. Also, from Fig. 7, the value of the
fitness increases which means the quality of the solutions is affected while increasing the dimensions.
Most of the time, difficult real-world problems may have large dimension sizes, so the algorithm’s
convergence rate will be slow, and to locate the best fitness, the max number of iterations may need to be
increased. The Adaptive-RUN is used to improve the search capabilities (balance the exploitation and
exploration phases), increase the convergence speed, and decrease the runtime by applying adaptive PS
(linear staircase reduction or iterative halving) with an adaptive search step size. Adaptive PS decreases
the runtime by moving random solutions to the next iteration, so the algorithm will focus on enhancing
the quality of those solutions in the upcoming iterations. The adaptive search step size enhances the
solutions’ quality, fitness value, convergence speed, and search capabilities by discovering the best
solution in the early phases of evaluation. Fig. 8 shows that Adaptive-RUN runtimes outperform RUN
runtimes with an increase in the number of iterations or dimension sizes.

Figure 7: In RUN, the relationship between dimension size and; (a) Runtime, (b) Fitness value

Figure 8: In RUN, the relationship between runtime and; (a) Dimension size, (b) Number of iterations

3.7 Optimization Process in Adaptive-RUN

Fig. 9 shows that the first process in Adaptive-RUN is population size adaptation, followed by
the RK search mechanism. The population size adaptation method either linear staircase reduction
or iterative halving will be applied to reduce the population size. Then a new solution xnew will be
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evaluated using RK. After that, if the population size is not equal to the initial population size, a new
solution xnew will be evaluated using adaptive search step size then new solutions ( xnew2 and xnew3) will
be evaluated using Enhanced Solution Quality (ESQ). Otherwise, if the population size is equal to the
initial population size, we will not have the adaptive search step size process.

Figure 9: Optimization process in adaptive-RUN

4 Results and Discussion

The efficiency and performance of Adaptive-RUN cases (LSRUN and HRUN) are assessed using
the IEEE CEC-2017 benchmark problems in a search space of dimension 30 [13,35]. The group
of benchmark problems used in this study includes unimodal functions (F1–F7), basic multimodal
functions (F8–F17), and fixed-dimension multimodal functions (F18–F23). The exploitative nature
of various optimization algorithms can be tested using unimodal test functions (F1–F7). Multimodal
functions (F8–F17) can test the optimization algorithms’ exploration and local optimum avoidance
skills, and functions (F18–F23) show the capability of the algorithms to examine and explore the search
spaces of low dimensions. The population size (nP) is set to 100, and the max number of iterations is set
to 500. All results are reported after 20 independent runs. The experimental studies are implemented
on MATLAB@ R2019b and 4 GB RAM and x64-based processor.

A comparison of the results of Adaptive-RUN cases with Slime Mould Algorithm (SMA)
[36], Equilibrium Optimizer (EO) [37], Hunger Game Search (HGS) [38] and RUN [13] concerning
performance metrics are reported in Table 1. As evident from Table 1 Adaptive-RUN cases have
superior performance in all metrics as compared with RUN. Specifically, Adaptive-RUN cases obtain
the best results in terms of runtime values for all the benchmark functions. This is due to the population
size (PS) adaptation during the iterations using either the linear staircase reduction (LSRUN) or
iterative halving (HRUN) strategy, and the adaptive search step size strategy, so the algorithm’s
runtime and computation cost are reduced. In terms of average fitness, Adaptive-RUN exhibits better
performance on 10 functions and equal performance on 13 benchmark functions (F2, F8, F9, F12,
F13, F15, F17, F18, F19, F20, F21, F22, F23), which means Adaptive-RUN cases can produce high-
quality solutions and better fitness values with lower runtime values than RUN. As compared with
recent optimizers, Adaptive-RUN showed competitive performance.
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Table 1: Comparison of average fitness and runtime (second) values

Function Metric SMA [36] EO [37] HGS [38] RUN [13] LSRUN HRUN

F1 Fitness 5.22E − 102 8.70E − 54 1.75E − 302 6.30E − 225 0.00E + 00 0.00E + 00
Runtime 6.0 4.0 1.0 4.4 2.3 2.4

F2 Fitness 0.00E + 00 0.00E + 00 4.25E − 122 0.00E + 00 0.00E + 00 0.00E + 00
Runtime 7.0 4.0 3.0 6.9 2.7 3.3

F3 Fitness 0.00E + 00 2.10E − 52 3.62E − 269 9.63E − 230 0.00E + 00 0.00E + 00
Runtime 6.5 4.0 1.0 4.5 2.1 2.4

F4 Fitness 3.61E − 173 2.02E − 16 5.90E − 154 1.24E − 112 7.44E − 269 4.44E − 261
Runtime 6.5 3.0 2.0 4.2 3.2 3.4

F5 Fitness 0.00E + 00 4.19E − 58 6.02E − 102 1.48E − 232 0.00E + 00 0.00E + 00
Runtime 6.0 3.0 2.0 4.4 2.2 2.2

F6 Fitness 6.52E − 175 2.08E − 56 0.00E + 00 1.44E − 228 0.00E + 00 0.00E + 00
Runtime 7.0 3.0 4.0 7.1 3.6 4.4

F7 Fitness 8.55E − 05 4.24E − 04 9.67E − 04 1.12E − 04 7.17E − 05 9.03E − 05
Runtime 6.0 3.0 4.0 5.2 3.8 4.5

F8 Fitness 0.00E + 00 7.32E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Runtime 7.0 5.0 5.0 6.0 2.0 2.4

F9 Fitness 8.88E − 16 20.00E + 00 8.88E − 16 8.88E − 16 8.88E − 16 8.88E − 16
Runtime 6.0 4.0 4.0 4.5 3.2 3.3

F10 Fitness 3.35E − 01 2.06E − 13 0.00E + 00 4.35E − 14 0.00E + 00 0.00E + 00
Runtime 20.0 7.0 18.0 31.0 17.3 17.8

F11 Fitness 5.94E − 01 3.69E − 01 1.19E − 01 1.20E + 00 2.20E − 01 2.20E − 01
Runtime 6.0 4.0 2.0 4.3 3.2 3.2

F12 Fitness 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Runtime 6.0 4.0 5.0 4.6 0.9 0.9

F13 Fitness 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Runtime 6.0 4.0 5.0 3.5 0.7 0.8

F14 Fitness 4.03E − 03 1.80E − 01 2.58E − 09 1.11E − 01 1.79E − 02 4.48E − 02
Runtime 7.0 3.0 5.0 8.5 6.5 7.7

F15 Fitness 3.82E − 04 3.82E − 04 3.82E − 04 3.82E − 04 3.82E − 04 3.82E − 04
Runtime 7.0 7.0 3.0 6.5 5.2 5.8

F16 Fitness 4.70E − 01 4.53E − 01 5.00E − 01 2.42E − 01 2.06E − 01 1.93E − 01
Runtime 6.0 4.0 4.0 4.2 3.3 3.4

(Continued)
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Table 1 (continued)
Function Metric SMA [36] EO [37] HGS [38] RUN [13] LSRUN HRUN

F17 Fitness 5.97E − 03 8.61E − 11 9.17E − 09 5.49E − 04 5.49E − 04 5.49E − 04
Runtime 7.0 7.0 6.0 7.1 5.6 6.5

F18 Fitness 9.88E − 01 9.88E − 01 9.88E − 01 9.88E − 01 9.88E − 01 9.88E − 01
Runtime 5.0 5.0 7.0 8.5 7.0 8.0

F19 Fitness 7.50E − 04 3.07E − 04 6.00E − 04 5.36E − 04 5.36E − 04 5.36E − 04
Runtime 2.0 3.0 3.0 4.0 2.8 2.8

F20 Fitness −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00 −1.03E + 00
Runtime 2.5 2.0 3.0 4.0 2.8 2.8

F21 Fitness 3.98E − 01 3.98E − 01 3.97E − 01 3.98E − 01 3.98E − 01 3.98E − 01
Runtime 2.5 3.0 1.0 4.0 3.0 3.0

F22 Fitness 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00
Runtime 2.0 3.0 3.0 3.5 3.0 3.0

F23 Fitness −3.26E + 00 −3.26E + 00 −3.26E + 00 −3.26E + 00 −3.26E + 00 −3.26E + 00
Runtime 3.0 2.0 1.0 4.0 2.8 2.8

To determine the average ranks of algorithms and show the differences between them, the
Friedman test is applied to the average fitness and runtime values of all the optimizers. Table 2 shows
the mean ranks of Adaptive-RUN and other algorithms for all the performance metrics on all the
benchmark problems. From Table 2, LSRUN achieves the best rank in terms of all performance
metrics, e.g., a mean rank of 2.76 in terms of average fitness values and a mean rank of 2.22 in terms
of runtime. As a result, LSRUN has the best efficiency and performance as compared with the other
algorithms. Furthermore, Table 2 shows the p-values of Friedman tests for all benchmark problems
where considerable differences can be seen between Adaptive-RUN cases and other optimizers in terms
of performance metrics values. Table 3 shows the Wilcoxon test for the runtime and average fitness
values from the algorithms. From Table 3, it is noticed that Adaptive-RUN cases perform the best in
terms of runtime and perform equal or better in terms of fitness (10 better and 13 equal) than the RUN
optimizer, and there is no worse fitness in comparison with the RUN optimizer. To promote green
optimization algorithms, the carbon footprint of the optimization algorithms [39] is computed. As a
result, during the runtime of each algorithm, Microsoft Joulemeter [40] is used to measure the mean
power consumption (P) of the MATLAB application. Then the application’s energy consumption
is calculated for each algorithm using the equation E = Pt where t is the algorithm’s runtime.
Depending on the emission factor for power consumption, for each algorithm, the carbon footprint is
determined by transforming the application’s energy consumption (kWh) into CO2 emissions (0.25319
kgCO2ekWh). LSRUN achieved the best mean rank of 1.37 in terms of carbon footprint. We are not
reporting the results of carbon footprints because of space limitations.

Convergence graphs are essential for assessing how well algorithms perform or which algorithms
perform the best, and a good optimization algorithm is typically demonstrated by a smoothly decreas-
ing convergence graph. Moreover, the convergence graph can be used to evaluate the performance
of the optimization algorithm and can assist in determining if the algorithm has arrived at a good
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solution. As a result, the convergence graphs of Adaptive-RUN cases and RUN are displayed in
Fig. 10 for some of the representative benchmark functions. Because of the appropriate balancing
of the exploration and exploitation phases, the convergence graphs show that Adaptive-RUN cases,
specifically LSRUN, have a faster convergence curve than RUN on unimodal and multimodal
benchmark problems since the Adaptive-RUN cases can locate the optimal (best) solution in the early
phases of evaluation. As a result, Adaptive-RUN cases provide a better and more proper convergence
rate to improve and optimize the benchmark problems than RUN.

Table 2: Friedman ranks for the three algorithms (RUN, LSRUN, HRUN, SMA, EO, HGS)

Mean rank based on RUN [13] LSRUN HRUN SMA
[36]

EO [37] HGS [38]

Fitness 3.85 2.76 2.98 3.76 4.33 3.41
p-value 8.00E – 04
Runtime 5.26 2.22 3.11 4.72 3.04 2.65
p-value 1.56E – 9

Table 3: Wilcoxon test for the average fitness and runtime values on all test functions

Fitness Runtime

vs.
RUN [13]

Better
(+)

Equal
(=)

Worse
(-)

Better
(+)

Equal
(=)

Worse
(-)

LSRUN 10 13 0 23 0 0
HRUN 10 13 0 23 0 0
SMA [38] 9 6 8 10 0 13
EO [39] 6 4 13 21 0 2
HGS [40] 11 5 7 21 0 2

Figure 10: (Continued)
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Figure 10: Convergence graph of adaptive-RUN (LSRUN and HRUN) and RUN

5 Conclusion

The Runge Kutta optimizer (RUN) is a recently developed population-based algorithm to solve a
wide range of optimization problems [13]. However, in high-dimensional problems, the search capabil-
ities, convergence speed, and runtime of RUN have deteriorated. To overcome these weaknesses, this
study proposed the Adaptive-RUN algorithm, which employed adaptive population size and adaptive
step size to enhance the performance of the RUN algorithm. Two cases of Adaptive-RUN were
investigated where the first one applied linear staircase reduction in population with adaptive search
step size (LSRUN), and the second one applied iterative halving in population with adaptive search
step size (HRUN). The performance of the LSRUN and HRUN algorithms against the original RUN
method was assessed using the unimodal, basic multimodal, and fixed-dimension multimodal test
functions from the IEEE CEC-2017 benchmark problems. LSRUN and HRUN algorithms showed
superior results in terms of solution quality, run time, and carbon footprint as compared to the original
RUN algorithm as revealed by box plots, and the Wilcoxon and Friedman (ranking test) tests. Future
work will investigate the impact of other population size adaptation approaches and parallelization of
Adaptive-RUN in distributed computing platforms to further enhance its efficiency and scalability. In
addition, the proposed work can be improved further by exploiting the problem-specific information
based on the landscape of the search space.
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