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ABSTRACT

The consensus protocol is one of the core technologies in blockchain, which plays a crucial role in ensuring the
block generation rate, consistency, and safety of the blockchain system. Blockchain systems mainly adopt the
Byzantine Fault Tolerance (BFT) protocol, which often suffers from slow consensus speed and high communication
consumption to prevent Byzantine nodes from disrupting the consensus. In this paper, this paper proposes a
new dual-mode consensus protocol based on node identity authentication. It divides the consensus process into
two subprotocols: Check_BFT and Fast_BFT. In Check_BFT, the replicas authenticate the primary’s identity by
monitoring its behaviors. First, assume that the system is in a pessimistic environment, Check_BFT protocol detects
whether the current environment is safe and whether the primary is an honest node; Enter the fast consensus
stage after confirming the environmental safety, and implement Fast_BFT protocol. It is assumed that there are
3f + 1 nodes in total. If more than 2f + 1 nodes identify that the primary is honest, it will enter the Fast_BFT
process. In Fast_BFT, the primary is allowed to handle transactions alone, and the replicas can only receive the
messages sent by the primary. The experimental results show that the CF-BFT protocol significantly reduces the
communication overhead and improves the throughput and scalability of the consensus protocol. Compared with
the SAZyzz protocol, the throughput is increased by 3 times in the best case and 60% in the worst case.
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1 Introduction

Early consensus protocols focused on ensuring data and operation consistency in distributed
systems, resulting in mainly Crash Fault Tolerance (CFT) protocols [1]. However, the emergence of
cryptocurrencies such as Bitcoin [2] in 2008 brought attention to the decentralized and tamper-proof
features of blockchain technology, leading to its application in federated learning [3], data sharing
[4], and other various fields [5–13]. At the same time, Byzantine Fault Tolerance (BFT) protocol [14]
has gradually become the focus of consensus protocol research, which cannot only tolerate network
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delays, node failures, and crashes but also handle Byzantine nodes intentionally disrupting system
consistency.

Hence, BFT protocols make different “sacrifices” to prevent attacks, which can result in issues
such as low consensus performance and high resource overhead. Proof of Work (PoW) uses compu-
tational competition for ledger rights and rewards to prevent malicious behavior and blockchain fork
problems, but it results in excessive resource consumption. Proof of Stake (PoS) [15], on the other
hand, uses stake competition and “Coin Days” to measure node rights but sacrifices fair competition
and decentralization characteristics of the blockchain. Practical Byzantine Fault Tolerance (PBFT)
protocol [16] uses cryptographic technology and mutual voting to maintain consistency, but its
communication complexity and high demand have limited its scalability.

To solve these issues, this paper presents a dual-mode consensus protocol based on node identity
authentication. The protocol divides the consensus process into two subprotocols: Check_BFT and
Fast_BFT. By monitoring the behavior of the primary in Check_BFT to verify the primary’s identity,
the Fast_BFT protocol is initiated if appropriate to allow the primary node to handle transactions
alone. The protocol greatly improves consensus efficiency and reduces communication costs without
relying on extensive resource consumption, while ensuring consistency and security. The particular
contributions of this paper are:

• This paper introduces a node identity verification process and divides the protocol into
two modes: preparatory mode Check_BFT subprotocol and fast consensus mode Fast_BFT
subprotocol, which improves the performance and throughput of the protocol.

• In Check_BFT, this paper introduces an information verification process that allows all nodes
to monitor the behavior of the primary to determine if its identity is honest without requiring
client participation.

• Based on the authentication result of the primary, the Check_BFT determines whether to
enter the Fast_BFT. There is no need to perform the regular view change. Which reduces
communication consumption.

• In CF-BFT, this paper introduces two useful mechanisms. One is the node reputation mecha-
nism and the other is the fast mode consensus number random mechanism. Which ensures the
safety and decentralization of the blockchain effectively.

The rest sections of this paper are organized as follows: The related work is discussed in Section 2;
the overall design and implementation of CF-BFT are presented in detail in Section 3; the safety,
consistency, and communication complexity of CF-BFT are comprehensively analyzed in Section 4;
the performance evaluation and comparison results of CF-BFT are discussed in Section 5; the
conclusion and prospect are concluded in Section 6.

2 Related Work

Most BFT protocols [17,18] have high complexity because they need to maintain consistency
in the worst condition. However, the blockchain is not always in the worst condition. Because BFT
consensus is based on the primary, some scholars have proposed improved methods based on primary
selection and primary authentication. These protocols improve performance by avoiding selecting
Byzantine nodes as primary. For example, Algorand [19], IBFT [20], Prosecurtor [21], and other
protocols have added primary selection algorithms to select the honest node as primary by calculating
the reputation of nodes. Another type of improvement method, such as Thunderella [22], Trust [23],
and other protocols, improves protocol performance by monitoring primary behavior to identify
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whether nodes are honest or malicious. Thunderella monitors primary by the clients, and if there
are problems with transactions, the client will report errors to the blockchain system and send the
transaction information they sent. The blockchain system judges whether the primary is an honest
node by analyzing the messages sent by the client. Trust builds a blockchain data structure or third-
party that filters the malicious behavior of Byzantine nodes and improves protocol performance. The
characteristics of some representative protocols are summarized in Table 1.

Table 1: Comparison of BFT-based consensus protocols

Protocol Adversadry tolerate Throughput Latency

PBFT f < n/3 Low High
HotStuff f < n/3 Medium Low
BFT-SMaRt f < n/3 Low High
Algorand f < n/3 Medium Medium
IBFT f < n/3 N/A Low
Prosecutor f < n/3 Medium Low
TrustBlock f < n/3 High Low

One kind of method for improving consensus efficiency is to use dual-mode or multi-mode
protocols. These protocols have two subprotocols typically: a fast subprotocol for optimistic con-
ditions to increase performance and a backup subprotocol for extreme conditions to ensure safety
and consistency. The characteristics of dual-mode protocols are summarized in Table 2. CheapBFT
[24] consists of three subprotocols: the normal case protocol CheapTiny, the transition protocol
CheapSwitch, and the fallback protocol MinBFT. During optimistic conditions, CheapTiny only
requires f + 1 active replicas to participate. Thunderella selects a committee and a primary called
the Accelerator to quickly process messages if more than 3/4 nodes of the committee and primary are
honest. Zyzzyva [25] assumes an optimistic condition but requires all nodes to be honest, with clients
helping to converge to the total order of requests if nodes are faulty. AZyzzyva [26] separates the
“fast path” and “slow path” of Zyzzyva using PANIC messages sent to replicas instead of “commit-
certificate” messages sent to clients. SAZyzz [27] enhances scalability and reduces the communication
complexity of both modes to O(log n) through a tree-based communication model, and SBFT [28]
divides nodes into primary, commit collectors, and execution collectors, different sets can handle
different phases without mutual voting.

The aforementioned dual-mode protocols are proposed based on the number of honest nodes
in the system and the identity of nodes that assume certain roles. In contrast, protocols such as
Bolt-Dumbo [29], Jolteon-Ditto [30], and Flexico [31] are proposed based on synchronous and
asynchronous environments. When the designated nodes are in a synchronous or weakly synchronous
state, the fast protocol is used. When nodes are in an asynchronous environment, the backup protocol
takes over the blockchain system to ensure safety. The Flexico protocol divides nodes into active nodes
and passive nodes while setting a weakly synchronous network condition, where most active nodes can
communicate within a known upper bound.
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Table 2: Comparison of dual-mode consensus protocols

Protocol Fast-mode Backup-mode View change

Adversadry
tolerate

Communication
complexity

Adversadry
tolerate

Communication
complexity

CheapBFT f = 0 O(n2) f < n/3 O(n2)
√

Thuderella f < n/4 N/A f < n/3 O(n2)
√

Zyzzyva f = 0 O(n) f < n/3 O(n2)
√

Azyzzyva f = 0 O(n) f < n/3 O(n2)
√

SAZyzz f = 0 O(logn) f < n/3 O(logn)
√

SBFT f = 0 O(n) f < n/3 O(n)
√

Bolt-dumbo f < n/3 O(n) f < n/3 O(n2)
√

Jolten-ditto f < n/3 O(n2) f < n/3 O(n2)
√

Flexico f < n/3 O(n) f < n/3 O(n2) ×

In conclusion, most consensus protocols have two directions for improvement. One approach
is to enhance performance by increasing the selection algorithm for primary, which avoids selecting
Byzantine nodes as primary. The other approach is to invoke appropriate subprotocols under different
conditions, which ensures both security and consistency while improving protocol performance.

3 CF-BFT Protocol

This section introduces the CF-BFT protocol model, which is a dual-mode protocol based on node
identity authentication and describes in detail the execution methods of the protocol in optimistic and
pessimistic conditions.

3.1 CF-BFT Protocol Overview

CF-BFT protocol is divided into the Check_BFT subprotocol for the preparation and Fast_BFT
subprotocol for the fast consensus, as shown in Fig. 1. In Check_BFT, all nodes perform message
computation and processing through mutual voting. At the same time, replicas monitor the behavior
of the primary and detect whether the primary has any behavior that violates consistency or reduces
protocol efficiency. In Fast_BFT, only the primary needs to process messages, and replicas only
need to passively replicate messages transmitted by the primary. Thereby improving the protocol’s
performance and reducing communication overhead.

This paper assumes that CF-BFT consists of 3f +1 nodes, and the adversaries can control f nodes
at most. Each node has a key pair (including a public key and a private key) and a data structure to
record the address, reputation of nodes, and other local data. Adversaries can control and coordinate
malicious nodes to perform any destructive behavior that affects system consistency. As shown in
Fig. 2, consensus can be achieved using the Check_BFT or Fast_BFT protocol.

Firstly, after selecting the primary, the protocol initiates a round of message consensus which
is transmitted by the client and performs voting calculations in conjunction with the replicas. When
2f +1 nodes reach consensus, the message is considered to reply and enters the primary authentication
phase. In the consensus phase, all replicas monitor the behavior of the primary. Subsequently, the



CMC, 2023, vol.76, no.3 3117

primary initiates authentication voting. If the primary does not engage in malicious behavior that
violates system consistency, the replicas will provide support votes. Otherwise, the replicas will cast
opposing votes.

Figure 1: Consensus nodes for Fast_BFT and Check_BFT protocols

Figure 2: Overall operation of CF_BFT dual-mode protocol

When the primary receives support votes from 2f + 1 nodes, CF-BFT begins the fast consensus
phase and runs the Fast_BFT subprotocol. At this point, the protocol calculates a random number
r, to determine the number of times the current primary can receive messages from the client.
During fast consensus, only the primary needs to process messages, while other nodes passively
replicate the messages sent by the primary. Each time a fast consensus is carried out, the number of
consensuses, FastTime, increases, and when the FastTime reaches the specified upper limit, Fast_BFT
ends. Subsequently, all nodes calculate the hash value of all messages in Fast_BFT and vote mutually to
authenticate the result. If the result is consistent, the reputation value of the primary increases and the
protocol switches to Check_BFT. Else, the most recent r messages among honest nodes are converged.
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3.2 CF-BFT Protocol Overview

Check_BFT is a distributed consistency protocol based on Byzantine fault tolerance technology.
The notations used are summarized in Table 3. The total number of nodes is n = 3f + 1, and it can
tolerate f Byzantine nodes. Check_BFT is divided into four phases. The phases are Prepare, Test,
Commit, and Verify, as shown in Fig. 3. In this protocol, replicas determine whether the primary is an
honest node by monitoring its behavior.

Table 3: Notations of symbols

Symbol Description

c Client
n Number
m Message
i Number of nodes
< m >σi Message signed by node i
o Operation
v View
t Timestamp
s Result
p Primary
d Digest
r Random
FastTime Number of Fast_BFT messages replied

Figure 3: Check_BFT operation

Specifically, the protocol first selects a primary p = vmodn. The client c sends a
< REQUEST , o, t, c >σc to the current primary p. Which contains the message’s content and
operation. The primary response to the client with a < REPLY , v, t, c, i, s >σi

message. If the client
does not receive REPLY message, it will send the REQUEST message to all nodes. And the nodes
verify switching the primary or not.

In Prepare phase, the primary node p broadcasts the PREPARE message << PREPARE, v, n, d >σp

, m > to replicas after signing and encrypting the client message. If the primary fails to broadcast and
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reply to the message in the specified time, the replicas consider it a Byzantine node and switch to
electing a new primary.

In Test phase, the replicas receive and validate the PREPARE message sent by the primary. If the
validation is successful, they broadcast a TEST message < TEST , v, n, d, i >σi to other replicas, and
store the message in a temporary message pool. All nodes receive the TEST message and validate it. If
a replica receives the PREPARE conflict message transmitted by the primary or receives the conflict
message from f +1 or more replicas, it immediately packages it as evidence and sends it to other nodes.
When the replicas verify that the primary is a Byzantine node, the protocol switches to a new view. If
a replica receives 2f + 1 TEST messages with the same digest within the specified time, it enters the
Commit phase.

In Commit phase, the primary and all replicas participate in message submission and validation. If
nodes consider the message to have passed the Test validation, it sends a < COMMIT , v, n, D(m), i >σi

message to other nodes and receives COMMIT messages from others. When a node receives 2f + 1
COMMIT messages, it writes the message to the local log. In Verify phase, the replicas still judge the
behavior of the primary to determine whether it is an honest node, thus ensuring the consistency of
the protocol.

In addition, the protocol introduces a random timeout mechanism to prevent the failure of the
primary from disrupting the replication service. During the execution of each phase, the primary needs
to complete the operation within a specified time. Otherwise, the replicas will consider it a faulty node
and begin broadcasting to elect a new primary. This mechanism helps prevent such malicious behavior
of the primary as the coordinating of faulty nodes or delayed communication. Which can disrupt the
service’s safety and consistency.

3.3 Fast_BFT Protocol

Most consensus protocols are inefficient and require high communication costs because nodes
need to prevent malicious behavior in distributed protocols, therefore need to verify each other through
voting. However, if proving that the primary is an honest node, message validation and reply only need
to be completed through the primary. The other replicas no longer need to verify messages and vote
for each other. They only need to be responsible for receiving messages sent by the primary. Fast_BFT
can be divided into the preparation phase Fast_Prepare and the submission phase Fast_Commit, as
shown in Fig. 4.

Figure 4: Fast_BFT operation
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The specific process is as follows: a client sends a < REQUEST , o, t, c >σc message to the
primary p. In the Fast_Prepare phase, the primary verifies the message and sends the signed mes-
sage to all replicas in the format of << FAST_PREPARE, v, n, d, p, FastTime >σp , m > where
FastTime is the number of messages processed by the primary in the Fast_BFT protocol. Upon
receiving the FAST_PREPARE message, the replicas verify the signature and the consensus mes-
sage count, store the message in a temporary message pool, and send the primary with a mes-
sage < FAST_PREPARE, v, n, d, i, FastTime >σi . After the primary confirms that it has received
FAST_PREPARE messages from 2f + 1 nodes, it enters the Fast_Commit phase and replies message.
The primary also sends a < FAST_COMMIT , v, n, D(m), FastTime >σi to all replicas. Upon receiving
the FAST_COMMIT from the primary, the replicas store the current message in their local logs.

Algorithm 1: Fast_BFT protocol

3.4 Protocol Switching

Most dual-mode or multi-mode consensus protocols assume an optimistic environment, executing
fast consensus protocols. Once a fork or other disruption to consistency and performance occurs, the
protocol falls back to a backup protocol for error repair. In contrast, the CF-BFT protocol assumes
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a pessimistic environment by default, using the Check_BFT protocol to detect whether the current
environment is safe and whether the primary is an honest node. After confirming the security of the
current environment, Fast_BFT is switched for processing messages. Therefore, in CF-BFT, protocol
switching is simpler and faster than other multi-mode protocols.

CF-BFT protocol applies a mode-switching scheme. In which the modes are switched by triggering
SWITCHFAST and SWITCHCHECK messages. The following two conditions need to be met to
trigger the SWITCHFAST message:

• The primary successfully reply a message in the Check_BFT for this view;
• More than 2f replicas do not detect malicious behavior from the primary.

After replying to a message in Check_BFT, the primary initiates a protocol switching request,
enters the node Verify phase, and broadcasts a VERIFY message < VERIFY , v, p, r, d >σp , where r is
the number of times the primary processes messages in the fast protocol, consisting of the current repu-
tation value of p and a random number. If the replicas don’t detect any behavior from the primary that
violates the protocol consistency, such as sending inconsistent messages or intentionally delaying com-
munication, they consider the primary to be honest and broadcast a < SWITCHFAST , v, p, r, i >σi

message. When a node receives 2f + 1 SWITCHFAST messages, it considers the current primary
to be a trusted node, switches the consensus protocol, and runs the Fast_BFT protocol. After the
fast consensus ends, nodes broadcast a < SWITCHCHECK, v, p, i, r, h >σi message to switch to the
Check_BFT protocol, where h is the hash value of all FAST_COMMIT messages during Fast_BFT,
i.e., the hash value of the last r messages in the local log, used to re-verify whether the message contents
of each node are consistent.

Algorithm 2: Operation mode switching

3.5 Fast_BFT Protocol’s Verification

To further improve the safety of consensus and prevent adversary nodes from attacking the
primary when it processes transactions alone, a fast protocol re-verify mechanism is introduced. When
the number of FastTime reaches the upper limit r of Fast_BFT, all nodes consider the current term
of primary to be over and enter the Fast_Verify phase. The normal nodes calculate the hash value
h of the last r replied messages and broadcast a < SWITCHCHECK, v, p, i, r, h >σi message. The
node checks whether the hash value h in the message is consistent with the locally calculated value.
If 2f + 1 messages with consistent results are received, the messages are considered correct, and the
reputation of the current primary will increase. The more the primary that completes the Fast_Verify
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tasks multiple times will gradually increase its reputation, the more its reputation values have been
increased. Thereby its probability of processing events alone in Fast_BFT increases. If the number of
h is different, it will fall back to the Check-BFT protocol to re-verify the correctness and consistency
of the message to prevent forking. At the same time, the reputation of the primary is decreased, and
the probability of processing events alone in fast consensus is decreased. All information including
transactions and node information from the local message pool is stored in the current block and a
blockchain database is constructed. The encrypted hash value of the total transactions in the current
block and primary nodes information are stored in the block header. The hash value can be used to
verify the data integrity of the database.

Algorithm 3: Fast_verify

4 Theoretical Analysis of CF-BFT

In this section, the safety, consistency, and communication complexity of the CF-BFT protocol is
analyzed.

4.1 Safety

The Check_BFT and Fast_BFT subprotocols assume that there are 3f + 1 nodes in the worst
condition, where f is the number of Byzantine nodes. Safety is ensured through mutually voting and
keys between nodes.

Lemma 1. In the Check_BFT protocol, if the primary is a Byzantine node, it can’t pass authenti-
cation, and a view change is initiated to elect a new primary.

Proof. Assuming the primary is Byzantine, it signs and broadcasts verifiable messages, and the
replicas receive and verify the results. Since there are at most f Byzantine nodes, replicas can receive
at most f votes, which is not enough to enter the message submission phase. The message validation
fails and a view change is initiated to elect a new primary.

Lemma 2. In the Fast_BFT protocol, if the primary does not work properly, replicas elect a new
primary.

Proof. If the primary is attacked and becomes unresponsive, either by not responding to clients
or not forwarding messages, the client sends a request message to all nodes after the timeout period.
And the replicas initiate message validation and elect a new primary after detecting that the primary
is unresponsive. This does not affect the final consensus result.
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4.2 Consistency

Lemma 3. If the primary is a Byzantine node in the Check_BFT protocol and proposes different
messages, conflicting messages cannot be submitted.

Proof. Assuming the primary is a Byzantine node, it sends different messages to 3f replicas. It

sends message m to A = f +1 honest nodes, sends message m

‘

to A

‘

= f honest nodes, and coordinates

f Byzantine nodes to vote for message m to the A node cluster and votes for message m

‘

to the A

‘

node cluster. The A node cluster receives 2f + 1 votes for message m, and message m is successfully

submitted. However, the A

‘

node cluster receives at most 2f votes for message m

‘

, and message m

‘

cannot be submitted. The A

‘

node cluster cannot submit the message, and it will warn other replicas
that the primary is faulty. The A node cluster will receive the warning message and replicate message

m to the A

‘

node cluster to ensure consistency.

Lemma 4. In the Fast_BFT protocol, if the primary tries to destroy consistency, the Fast_BFT
validation phase ensures consistency.

Proof. If the primary is attacked and sends different messages under the Fast_BFT protocol, it
will temporarily cause different messages among the nodes. However, during the Fast_BFT validation
phase, inconsistent messages can be detected, and the inconsistent messages will be rolled back for re-
verification. And correct messages will be verified for completeness and consistency while conflicting
messages will be deleted to ensure consistency.

4.3 Communication Complexity

Here the communication costs of the protocols are calculated and compared. In the Check_BFT
protocol, this paper set the average communication cost to be Zcheck and the average communication
cost to be Zfast in the Fast_BFT.

The average communication cost of the protocol is defined as Z, where Zmin represents the
communication cost in the best condition and Zmax represents the communication cost in the worst
condition. A random variable μ represents the number of times the primary processes messages in the
Fast_BFT protocol. It is easy to prove that in the best condition:

Zmin = Zcheck + μZfast

1 + μ
(1)

In the worst condition:

Zmax = (4 + μ) Zcheck + 3μZfast

3 + 3μ
(2)

Compared to traditional BFT protocols which can tolerate up to 1/3 Byzantine nodes, in CF-BFT
protocol, the worst case is when all 1/3 of the nodes are attacked and turn from honest to malicious
during their terms. Therefore, the conditions for CF-BFT protocol to reach the worst case are more
stringent, and the requirements for the optimistic condition are lower, as long as the malicious nodes
do not attack during their extremely short terms.

5 Performance Evaluation

In this section, by comparing with traditional PBFT protocol, BFT-SmaRt, and other improved
BFT protocols, as well as SAZyzz dual-mode protocol, the throughput and latency will be analyzed.
One of the main objectives of test evaluation is to detect whether CF-BFT protocol still has an
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advantage over some traditional protocols in the worst condition of tolerating Byzantine nodes. The
tests were conducted using a 2.10 GHz Intel(R) Xeon(R) 5218R CPU and 8 GB RAM.

5.1 Performance Comparison with BFT Protocols

Consensus latency is one of the most critical metrics for evaluating consensus protocols. In the
experiment, this paper varied the block size and ran tests with 4, 8, 16, 32, and 64 nodes to measure
the throughput and latency, using 512, 1024, 2048, 4096, and 8192 transactions per block. The results
are shown in Fig. 5. As expected, the impact of increasing the number of nodes on protocol latency is
not high when the block size is moderate.

Figure 5: Performance analysis of CF-BFT protocol

Fig. 6 shows the impact of launching different numbers of nodes on the throughput and latency of
CF-BFT, PBFT, BFT-SMaRt, and Hotstuff under the Bitcoin benchmark (256 bytes per transaction,
1024 transactions per block). The experiment results show that the advantage of the CF-BFT protocol
increases as the number of nodes increases. Due to the use of full broadcast, PBFT and other protocols
are heavily influenced by the number of nodes, while CF-BFT protocol is less affected. Moreover, even
in the worst-case scenario, CF-BFT still has advantages.

The theoretical communication times of CF-BFT and PBFT are calculated as shown in Fig. 7.
Here, μ represents the number of transactions processed by the primary in the Fast_BFT. The impact
of μ = 10 and μ = 20 on the number of communication are compared. The data shows that the larger
number of nodes, the greater advantage of the CF-BFT protocol.

5.2 Performance Comparison with Dual Mode Protocol

This section compared CF-BFT in optimistic and worst conditions with the SAZyzz dual-mode
protocol by setting a block size to 100–400 KB under 4, 7, 10, 25, and 46 deployed nodes. Results are
shown in Fig. 8, CF-BFT protocol consistently outperformed SAZyzz, particularly with more nodes.
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CF-BFT has stricter worst condition requirements, where each malicious node must be flipped during
its term, leading to a high usage rate of the fast protocol in practical applications.

Figure 6: BFT protocols performance comparison

Figure 7: Number of communications

CF-BFT switches modes by triggering SWITCH messages, and the protocol switching time can
be ignored. Compared to traditional dual-mode protocols that require a lot of resources to switch
protocols, CF-BFT has a significant advantage in protocol switching speed.
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Figure 8: Dual-mode protocols performance comparison

6 Conclusion

This paper presents a node-authenticated CF-BFT dual-mode consensus protocol, consisting of
Check_BFT and Fast_BFT subprotocols. By authenticating nodes before entering the fast protocol
and implementing a simpler protocol switch, it outperforms previous BFT consensus protocols and
other dual-mode protocols in terms of throughput and consensus efficiency. Unlike traditional dual-
mode protocols, the CF-BFT protocol defaults to a pessimistic condition and switches to the optimistic
fast protocol only after node identity is verified. Therefore, even in the worst condition, CF-BFT
also can significantly improve throughput and consensus efficiency. The advantages of the protocol
become more pronounced as the number of nodes increases. In addition, to enhance the safety
of the protocol and prevent attacks from Byzantine nodes, the CF-BFT provides the replica alert
mechanism that can package evidence of the primary’s malfeasance and provide it to other nodes to
ensure the correctness of main node identity authentication. Furthermore, the protocol introduces
a node reputation mechanism, where nodes with higher reputation values are more likely to process
transactions alone in the Fast_BFT. Test results show that CF-BFT outperforms traditional BFT
protocols and other dual-mode protocols in all performance indicators. Under the premise of ensuring
consistency and safety, it dramatically reduces communication costs and improves performance,
providing more efficient and secure consensus services for blockchain systems.

Based on the feature of CF-BFT protocol that does not require client nodes to participate in
consensus and its high performance, it has potential application prospects in public chains, enterprise-
level chains, Internet of Things (IoT), financial services, and public services. It can be used in
distributed systems in IoT, such as sensor data collection and processing, and security control; in
distributed ledgers in financial services, such as insurance contract execution and securities trading
settlement; as well as in distributed systems in public services, such as election voting and supply chain
management.



CMC, 2023, vol.76, no.3 3127

Currently, CF-BFT has been tested with a maximum of 64 nodes. However, in the case of a large-
scale Internet of Things network composed of more nodes, further research is needed to improve the
performance of the CF-BFT. The next step is to improve the protocol in three aspects. Firstly, by using
a pipelined consensus approach, reducing the computational difficulty of each primary. Secondly, the
blockchain structure can be optimized by introducing a DAG graph-style structure [32] to improve
efficiency. Thirdly, we can optimize the structure of the nodes by changing the communication method
[33] to reduce consumption between nodes.
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