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ABSTRACT

Retinal vessel segmentation in fundus images plays an essential role in the screening, diagnosis, and treatment
of many diseases. The acquired fundus images generally have the following problems: uneven illumination, high
noise, and complex structure. It makes vessel segmentation very challenging. Previous methods of retinal vascular
segmentation mainly use convolutional neural networks on U Network (U-Net) models, and they have many
limitations and shortcomings, such as the loss of microvascular details at the end of the vessels. We address the
limitations of convolution by introducing the transformer into retinal vessel segmentation. Therefore, we propose
a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,
named DT-Net. Firstly, multi-scale image features are extracted by deformable convolution and multi-head self-
attention (MHSA). Secondly, image information is recovered, and vessel morphology is refined by the proposed
transformer decoder block. Finally, the local prediction results are obtained by the side output layer. The accuracy
of the vessel segmentation is improved by the hybrid loss function. Experimental results show that our method
obtains good segmentation performance on Specificity (SP), Sensitivity (SE), Accuracy (ACC), Curve (AUC), and
F1-score on three publicly available fundus datasets such as DRIVE, STARE, and CHASE_DB1.
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1 Introduction

The vessels in fundus images are currently the only microvascular system that can be directly
visualized non-invasively and painlessly. The pathological characteristics of related diseases can be
observed by the morphology and changing information of retinal vessels. For example, diabetic
patients are prone to retinopathy, macular degeneration, and blindness [1–3]. The retinal vessels of
hypertensive patients have higher curvature and narrowing, which can easily lead to retinal hemorrhage
[4]. Therefore, visualizing the distribution and details of retinal vessels can help doctors diagnose
diseases more efficiently [5]. However, retinal vessels have the following problems: complex and diverse
structures, tiny vessels, low contrast, and easy confusion with the background. A significant amount
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of time and effort is required to segment the vessels manually. Therefore, an automatic retinal vessel
segmentation method is essential to assist doctors in diagnosing diseases quickly.

Artificial intelligence technology shortens the distance between human life and computer, and the
method based on deep learning is applied to various tasks. For example, Sultan et al. used deep learning
to deal with the segmentation task of high-resolution aerial images [6,7]. Liu et al. [8] and Qin et al. [9]
applied deep learning to image fusion. Jin et al. [10] applied deep learning to classification tasks to
provide accurate ERM automatic grading for clinical practice. Deep learning is also widely used in
the task of medical image segmentation [11,12] and other fields [13,14]. Among them, convolutional
neural networks (CNN) have made great progress in location-sensitive tasks [15–17]. In recent years,
U-Net [18] based on the full convolution network (FCN) [19] has been widely used in medical image
segmentation [20–24]. However, U-Net is difficult to deal with irregular and tiny vessels. M-Net [25] is
an improved U-Net framework that uses the image pyramid mechanism to realize multi-level receptive
fields and can learn image features at different scales. However, the feature filtering is not realized in
the hopping connection in the M-Net model. ResU-Net [26] is derived from the U-Net architecture.
It uses residual blocks to replace convolutional layers and increases the depth of the model to get
more vessel features. But the contrast-limited adaptive histogram equalization (CLAHE) operation
increases the noise of the image. UNet++ [27] redesigns the skip connection part of U-Net, which
is the aggregation of features of different semantic scales in the decoder. But it consumes too much
memory and takes a lot of time on small datasets. IterNet [28] is an encoder-decoder model like U-Net,
which adopts U-Net as the basic module to improve the connectivity of vessel segmentation results by
expanding the depth of the model through multiple iterations.

Based on U-Net, Deformable U-Net (DUNet) [29] adds deformable convolution [30] to adaptively
adjust the receptive field according to the size and shape of vessels and improve segmentation accuracy
and noise immunity. MAU-Net [31] uses modulated deformable convolution [32] as an encoding
and decoding unit and uses position and channel attention block to realize vascular segmentation.
Recently, the transformer has been successfully applied to the field of computer vision. Inspired by
this, TransUNet uses a hybrid of CNN and transformer as an encoder and uses a skip connection and
decoder for medical image segmentation [33]. The encoder, bottleneck, and decoder of Swin-Unet [34]
use the Swin-transformer block [35] to realize medical image segmentation. FAT-Net [36] implements
a dual encoder, including both CNN and transformer branches, to achieve skin lesion segmentation.
Although it can get better performance, these models based on the transformer are both complicated
and time-consuming, which will influence the practicability to some extent.

These segmentation methods have the following problems: (1) The method used can only extract
the local information in the image and can not deal with the global features. (2) The accuracy of
segmentation is low. (3) The structural information in the vascular image can not be obtained well.
Given the above problems, we use deformable convolution to extract complex and variable structural
information, which has better learning ability than ordinary convolution. In addition, we use the
transformer to capture long-term dependencies through a self-attention mechanism and help CNN
overcome its inherent spatially induced biases [37]. Therefore, a segmentation network based on a
combination of deformable convolution [32] and transformer is proposed to solve the challenging task
of retinal vessel segmentation. The proposed network uses convolution to extract local features and
the transformer to construct long-term dependencies. And pre-training on large-scale datasets is not
required and achieves better results on small-scale datasets. Our main contributions are summarized
as follows:
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(1) We propose an end-to-end deep learning network named DT-Net, which is very effective for
retinal vessel segmentation. The network takes into account multi-scale input, structural information,
and long-term dependency, and provides more powerful technical support for clinical diagnosis and
processing.

(2) Combine deformable convolution with transformer. Deformable convolution can extract
structural information in retinal vessels. Transformer makes up for the defect that CNN can only
obtain local information and enhances the extraction ability of feature information to achieve a better
segmentation effect.

(3) A dual-input MHSA algorithm was proposed to extract multi-scale image information of
fundus vascular images with different resolutions. The output of multi-scale image information is fused
by skip connection to compensate for the information loss in feature extraction. A mixed loss function
was used to improve the accuracy of retinal vessel segmentation.

(4) We conducted experiments on DRIVE, STARE, and CHASE_DB1 with accuracy rates of
96.31%, 97.03%, and 97.37%, respectively. The experimental results showed that our segmentation
performance was superior to other methods.

The remainder of this paper is organized as follows: Section 2 describes our proposed approach in
detail. Section 3 presents the fundus dataset, preprocessing methods, and experimental results. Finally,
we conclude with a summary and outlook in Section 4.

2 Method
2.1 Network Architecture

The architecture of the proposed DT-Net is shown in Fig. 1. It consists of four main parts: encoder,
decoder, multi-scale input and side output. We improve on U-Net, one of the simplest and most
popular architectures in medical image segmentation. Firstly, because the information obtained by the
single-scale input of U-Net is limited, we use multi-scale layers to construct image pyramid input, and
average pooling is used on the retinal images of size H×W to obtain the multi-scale image information,
enhancing each layer’s feature information. Secondly, a hybrid block is used in the encoder to extract
vessel features with irregular shapes and sizes. The encoders are connected through max pooling, which
halves the size of the feature map and generates hierarchical features at different levels. Except for
the first layer, each layer is inputted by the maximum pool map of the upper layer and the feature
map of this layer. The high-level features can correctly identify the coarse vessel information, and the
low-level features can accurately obtain the tiny vessel information. Among them, the hybrid block
combines modulated deformable convolution and MHSA. The segmentation effect is improved by
using deformable convolution for local feature extraction and using MHSA to learn global features.
In self-attention, relative position encoding is used to learn the content-position relationship in images.

This paper uses a novel decoder structure to fuse the high-resolution and low-resolution informa-
tion. The decoder uses dual-input MHSA to obtain low-resolution and high-resolution information
and then passes through the residual block [38] to achieve feature reuse, alleviate the problem of
gradient disappearance, prevent the occurrence of overfitting, and improve segmentation capabilities.
The blue-shaded part at the bottom of Fig. 1 is the structure of the residual block. Finally, multi-scale
features are fused using image information at different scales. This structure of first down-sampling
and then up-sampling reduces the risk of overfitting to a certain extent. In the side output path,
the feature map is spatially up-sampling, and then 1 × 1 convolution is performed to compress the
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number of channels to 2, which is convenient for direct comparison with ground truth and outputs
the corresponding probability value of each pixel of the image.

Figure 1: DT-Net network architecture diagram

2.2 Deformable Convolution

Most of the original CNN extract feature information at a fixed position in an image based
on a fixed receptive field structure, and cannot adaptively generate deformable receptive fields and
convolution kernel shapes according to different image features [39]. However, the vessel structure is
irregular and complex, and the introduction of deformable convolution can enhance the construction
ability of retinal vessel geometric deformation. On the basis of the traditional convolution, the
deformable convolution increases the direction vector of the convolution kernel to make the shape
of the convolution kernel closer to the feature. A learnable offset is introduced into the deformable
convolution. Offset learning is the use of interpolation algorithm, through back propagation learning.
The effective receptive field can more accurately cover the actual shape of the vessel to learn more
features. Therefore, deformable convolution is used in this paper to enhance the generalization ability
of the adaptability to different position information of the image and the mapping ability during the
convolution process. The deformable convolution formula is as follows:

y (p) =
N∑

i=1

wi · x (p + pi + �pi) · �mi (1)

Let N denotes the sampling position of a given standard convolution kernel, and wi and pi denote
the weight of the i-th position and the preset offset, respectively. x(p) and y(p) denote the features at
position p on the input and output feature maps x and y, respectively. Where �pi and �mi are the
learnable offset and adjustment factor at the i-th position, and the adjustment factor �mi ∈ [0, 1] and
�pi is an arbitrary value. It can be found that the deformable convolution learns the offset and the
weight of the sampling points, which can effectively capture the structural details of tiny vessels and
thus achieve more accurate feature extraction.
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2.3 Multi-Head Self-Attention Mechanism

MHSA is an attention mechanism that pays more attention to the internal structure, inherently
has a global receptive field, and is good at capturing long-distance dependencies. The input feature
map can be expressed as X ∈ RH×W×C, where H, W , C are the height, width, and number of channels,
respectively. The self-attention calculation formula is as follows:

Attention (Q, K, V) = softmax
(

QKT

√
d

)
V = AV (2)

where three 1 × 1 convolutions are used to project X for query, key and value embedding: Q, K, V in
RH×W×d, where d is the dimension of the embedding for each head. The attention matrix A works well
for feature aggregation, where each row value corresponds to the similarity of a given element in Q
relative to all elements in K.

Because the image is highly structured data, in the local characteristics of high resolution, in
addition to the border area, most of the pixels with similar features. Therefore, computing the attention
among all pixels is very inefficient and redundant. So, we propose an efficient self-attention for the
task of vessel segmentation, as shown in Fig. 2. The proposed self-attention decoder architecture is
used to recover detailed information from the skip connections of the encoder, where x is the image
feature of the previous layer in the decoder, and then the 1 × 1 convolution is performed to obtain a
low-resolution image of size Hl × Wl × d characteristics, y is the image feature from the same layer in
the encoder, and then a high-resolution feature of size Hh × Wh × d is obtained by 1 × 1 convolution.
Then the dot product and soft-max are performed, and the pairwise attention matrix between the input
units. Finally, image features of size Hh ×Wh ×d are obtained. For positional encoding, standard self-
attention blocks lose their positional information and are ineffective for construction highly structured
image content [40]. The sinusoidal embedding in the convolution layer in the previous research does
not have the property of translation, so the 2-dimensional relative position coding is used by adding
the information of relative height Rh and width Rw. Relative position coding is used before soft-max
operation, and the attention logit is qkT × qrT.

Figure 2: MHSA decoder

2.4 Loss Function

Loss function has a significant influence on deep learning training tasks. Most existing methods
use only a single loss function to evaluate the network performance. Image segmentation tasks usually
use cross-entropy as a loss function, and the ratio of foreground and background pixels in the retinal
image is severely imbalanced, resulting in the features of retinal vessels cannot be effectively learned by
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the model. In the binary segmentation task, the Dice loss function can alleviate the above problems,
and its essence is to measure the degree of overlap between two samples However, adjusting the weight
of the network according to a single loss function can easily lead to the loss of the feature information
of the middle and lower layers of the network. Mixed loss can effectively help the model training and
enhance segmentation quality. Therefore, the network is trained using a hybrid loss function. Compare
the output with the ophthalmologist’s criteria and calculate the loss between them:

L(n) = ω · Lbce + (1 − ω) · Ldice (3)

where ω is the weighting factor for balancing different losses. The binary cross entropy (BCE) loss
encourages the segmentation model to independently predict the correct class label at each pixel
position. Dice loss can alleviate the imbalance of class to some extent. The BCE loss function and
Dice loss function are defined as follows:

Lbce = − 1
K

K∑
i=1

(
gilog

(
pi

) + (1 − gi) log (1 − pi)
)

(4)

Ldice = 1 − 2
∑K

i=1 pigi + ε∑K

i=1 p2
i + ∑K

i=1 g2
i + ε

(5)

where K represents the number of pixels in a given image, and pi ∈ [0, 1], gi ∈ [0, 1] represent the
predicted probability and label probability of the i-th pixel, respectively. The parameter ε is a Laplace
smoothing factor, which avoids numerical problems and speeds up the convergence of the training
process.

3 Experimental
3.1 Experimental Details

In this paper, we run all experiments based on Windows 10, Intel Core i5-10400F CPU, GeForce
GTX 1080ti GPU, Python 3.7 language, and PyTorch deep learning framework. The parameters in the
network are optimized using the Adam optimizer with an initial learning rate of 0.0005 and a weight
decay of 0.001. To dynamically adjust the training process, a cosine annealing strategy is utilized to
update the learning rate. The proposed DT-Net framework is trained for 200 epochs with a batch
size of 2. Fig. 3 shows the loss function curves of the proposed method for training and verifying
datasets relative to iteration on three datasets: DRIVE [41], STARE [42], and CHASE_DB1 [43].
The horizontal coordinate of the image is the iteration period “Epoch”, and the ordinate is the loss
value “Loss”. Legend “training” means training, and Legend “validation” means validation. When
the proposed method is trained on three datasets, the training and validation losses converge rapidly
within 50 epochs, flatten out within 150 epochs, and then reach a stable value.

Figure 3: Loss function curves vs. iterations for the training and validation datasets
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3.2 Data and Preprocessing

We use the public and widely used standard datasets DRIVE, STARE, and CHASE_DB1 as the
training and testing datasets of the proposed network. Sample images for the three datasets are shown
in Fig. 4, along with their ground truth vessel segmentation masks and field-of-view (FOV) masks.
The DRIVE dataset consists of 40 fundus images with an image resolution of 584 × 565, and it is
specified that the training set and the test set both contain 20 images. The STARE dataset consists of
20 fundus images with an image resolution of 700 × 605, including 10 retinal images with pathological
features. This dataset can evaluate the ability of the model to segment abnormal fundus images. The
CHASE_DB1 dataset consists of 28 retinal images of 14 children with an image resolution of 960 ×
999. Since the STARE and CHASE_DB1 datasets do not officially specify the training set and test set,
we use the first 10 images of the STARE dataset for model training according to DUNet [29], and the
remaining 10 images are used for model performance evaluation. For the CHASE_DB1 datasets, we
follow a common protocol [44], selecting the first 20 images for model training and the remaining
8 images for model performance evaluation. The three datasets contain the results of the manual
segmentation of retinal images by two experienced ophthalmologists. We used the segmentation results
of the first ophthalmologist as the ground truth for network training [45] and also as the standard
segmentation results for network model and algorithm evaluation.

Figure 4: Sample images from DRIVE, STARE, and CHASE_DB1. (A) Original image; (B) ground
truth; (C) field-of-view masks
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Retinal images often contain noise and uneven illumination, so all images from these three
datasets undergo four kinds of preprocessing for image enhancement before the training and testing
datasets of the network. The preprocessing process of the fundus images is shown in Fig. 5. Firstly, the
color images are converted into grayscale images, simplifying the subsequent preprocessing steps and
reducing the computation during training. Secondly, each pixel in the grayscale image is normalized
to reduce the data dimension and speed up the convergence. Then, the CLAHE method [46] is used
to suppress image noise and enhance the details of the vessel and the contrast between the vessel
and background. Finally, nonlinear transformation and gamma correction are performed to solve
the image quality problem caused by the brightness of the input images, enhance the contrast, make
the vessel in the darker area clearer, and improve the image quality. After the above processing,
it can be found that the distinction between the retinal vessel and the background is significantly
improved at this time, which is conducive to feature extraction in the training process and enhances
the segmentation quality of the retinal vessel.

Figure 5: Image preprocessing of fundus images, from left to right, are original image, image graying,
image normalization, gradient histogram equalization, gamma correction, original images patches,
and ground truth patches

Due to the limited number of images in the fundus datasets, patch processing is adopted to expand
the datasets to reduce the effect of overfitting. In the training process, each image of the pre-processed
datasets is first randomly cropped into a patch of size 64 × 64 for the training of the network. The
corresponding patches are also extracted from the ground truth to ensure the original images and the
ground truth. In the experiments, 90% of the extracted patches are used for training and the remaining
10% are used for validation. Fig. 5 shows some image patches and the corresponding ground truth of
the fundus images.

3.3 Evaluation Index

Similar to most methods of retinal image segmentation, we will compare the proposed DT-Net
method with other algorithms and evaluate it through the following indicators: Accuracy (ACC),
Specificity (SP), Sensitivity (SE), F1-score, and Area Under Receiver Operating Characteristic (ROC)
Curve (AUC). Acc is used to evaluate the overall segmentation performance of the model. The larger
the ACC, the more accurate the segmentation. The specific mathematical expression is as follows:

ACC = TP + TN
TP + FN + FP + TN

(6)

SP is an important metric of retinal vessel segmentation. It is the ratio of correct negative
predictions to the total number of negative predictions. It mainly evaluates the ability to recognize
background in retinal images. The better the SP value, the lower the false positive rate (FPR). The
specific mathematical expression is as follows:

SP = TN
TN + FP

(7)
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SE mainly evaluates the ability to recognize retinal vessels (positive) in retinal images. It is the ratio
of correct positive predictions to the total number of positive predictions in the predicted results. The
specific mathematical expression is as follows:

SE = TP
TP + FN

(8)

F1-score for evaluation of segmentation results and the similarity criteria of ophthalmology. The
larger the value is, the closer the algorithm segmentation result is to the gold standard, and the
segmentation effect. The specific mathematical expression is as follows:

F1 = 2TP
2TP + FP + FN

(9)

Among them, true positive (TP) means correctly identified vessel pixels, true negative (TN) means
correctly identified non-vessel pixels, false positive (FP) means non-vessel pixels identified as vessels,
and false negative (FN) means vessel pixels identified as non-vessel.

In addition, we also introduce AUC to evaluate the segmentation performance of the model.
AUC is a professional metric of retinal vessel segmentation. The closer its value is to 1, the better
the performance of the algorithm and the stronger the robustness. The ROC curve describes the
relationship between the true position rate and the false position rate under the different classification
thresholds. The closer the value of the area under the AUC is to 1, the better the algorithm performs
and the more robustness.

3.4 Ablation Experiment

To further verify the effectiveness of the proposed network for vessel segmentation, we conduct
ablation experiments on the DRIVE dataset. The prediction results of the network are compared
in terms of five performance metrics: ACC, SE, SP, AUC, and F1-score. To more clearly see the
improvement of the accuracy of retinal vessel segmentation by each module proposed in the model, the
segmentation performance of different methods is shown in Table 1. M0 uses a hybrid loss function
based on U-Net. M1 adds multiple inputs and side outputs based on M0. M2 adds the encoder hybrid
block based on M1. M3 adds the transformer decoder block based on M1. M4 adds the encoder hybrid
block and transformer decoder block based on M1.

Table 1: Ablation experimental results of vessel segmentation on DRIVE dataset

Method ACC SE SP AUC F1-score

M0 95.58% 74.68% 98.62% 96.70% 81.13%
M1 95.63% 81.24% 97.73% 97.89% 82.56%
M2 96.25% 83.75% 97.99% 98.40% 84.57%
M3 96.26% 85.49% 97.76% 98.19% 84.86%
M4 96.31% 86.36% 98.84% 98.43% 84.88%

As shown in Table 1, when multi-scale input and side output is added to M0, each index is
significantly improved, and the segmentation performance of the network is improved. After adding
the hybrid block to the network, AUC and F1-score in M2 are 0.51% and 2.01% higher than M1,
respectively, which verifies the effectiveness of the hybrid block. In M3, SE, AUC, and F1-score
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are 4.25%, 0.3%, and 2.3% higher than M1, respectively. It is shown that the proposed MHSA
decoder block is effective in retinal vessel segmentation and enhances the performance of retinal vessel
segmentation.

We can see from the last row of Table 1 that the values of SE, AUC, and F1-score of the proposed
network are increased from 74.68%, 96.70%, 81.13% of M0 to 86.36%, 98.43%, 84.88%, respectively.
Experiments show that using either the hybrid block of the encoder or the attention block of the
decoder can improve the segmentation performance of the network, which shows their rationality and
effectiveness. Therefore, the proposed method has advantages in retinal vessel segmentation.

Ablation experiments are performed by setting different loss functions to verify which loss func-
tion is more suitable for the proposed method. The effects of varying loss functions on performance
indexes are shown in Table 2. First, “DT+BCE” uses a BCE loss function to train the network.
“DT+Dice” uses the Dice loss function. “DT+BCE+Dice” combines the BCE loss function and the
Dice loss function. The results in Table 2 show that almost all the metrics are improved with the help of
the hybrid loss, which proves that the hybrid loss contributes to enhancing the accuracy of the model.

Table 2: Loss function ablation experiment

Method ACC SE SP AUC F1-score

DT+BCE 96.22% 85.88% 97.67% 98.18% 84.79%
DT+Dice 96.21% 86.28% 97.58% 96.62% 84.82%
DT+BCE+Dice 96.31% 86.36% 98.84% 98.43% 84.88%

The learning rate, as an essential parameter in the process of model training, controls the learning
progress of the network model. To explore the influence of different learning rates on segmented
images, Table 3 shows the segmentation results when the learning rate of this method is 0.0001, 0.0003,
0.0005, 0.0007, 0.0009, and 0.0011. When the learning rate is set to 0.0005, the best performance is
achieved for all metrics. When the learning rate increases or decreases, both F1-score and AUC will
decrease.

Table 3: Segmentation results with different learning rates

learning rate ACC SE SP AUC F1-score

0.0001 96.18% 85.14% 97.73% 98.19% 84.56%
0.0003 96.20% 86.39% 97.65% 98.11% 84.73%
0.0005 96.31% 86.36% 98.84% 98.43% 84.88%
0.0007 96.15% 85.58% 97.62% 98.09% 84.01%
0.0009 95.66% 85.88% 97.19% 98.21% 83.59%
0.0011 96.28% 87.74% 98.03% 98.08% 83.81%

3.5 Comparison with Other Methods

We chose five other retinal vessel segmentation methods to compare with our method to
prove the advantages of the proposed method. The five methods are U-Net [18], DUNet [24], GT
U-Net [47], Attention Residual U Network (AReN-UNet) [48], and Multistage Dual-Path Interactive
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Refinement Network (Multistage DPIRef-Net) [49]. For a better comparison with these methods, these
models are trained using the same experimental settings as in this paper. In addition, we compare the
performance with UNet++ [27], Li et al. proposed mothed [44], D-MNet [50], WA-Net [51], and
TUnet-LBF [52]. Among them, GT U-Net modifies both the encoder and decoder to achieve good
performance on tooth segmentation. The AReN-UNet proposes a novel cascaded network driven
by integrating attention and residual modules. It improves convergence and stability and reduces
vessel breakdown in the vessel map. Multistage DPIRef-Net uses multi-stage dual-path interaction
to refine the network, retain the vascular branch edges, suppress the false positive rate, and accurately
segment the arteriovenous vascular map of the retinal surface. The Multistage DPIRef-Net is a vessel
segmentation architecture with a single encoder and dual decoder. It requires annotated labels of
arteries and veins, while our network uses only one kind of annotated label. Therefore, to be fair,
we use the experimental data of this paper in the same experimental setting, i.e., using one kind of
annotated label. The modified network mainly consists of one backbone network and three single-path
stages. The D-MNet uses deformable convolution and attention modules to improve the accuracy and
connectivity of vessel segmentation.

Tables 4–6 evaluate the different vessel segmentation methods in the DRIVE, STARE, and
CHASE_DB1 datasets. Because there are more background pixels than vessel pixels in the fundus
images, AUC and F1-score metrics are more suitable for evaluating the vessel segmentation method.
In Table 4, compared with the maximum of existing methods, our proposed method performs better
on the DRIVE dataset. There is a 2.83% increase in SE, 0.2% in SP, 0.22% in AUC, and 1.22% in
F1-score, respectively. The highest SE and SP of the proposed model means that retinal vessels can
be identified more accurately, and noise information can be suppressed. This is because the MHSA
mechanism focuses on capturing global vessel details. We can observe from Table 5 that the proposed
method achieves the best performance for ACC, SP, AUC, and F1-score on STARE datasets compared
to other methods. The proposed method performs better, indicating that the framework is effective for
vessel segmentation. Since there are many lesion images in the STARE dataset, the SE is not optimal
all metrics of our method are highest on the CHASE_DB1 dataset except the SE and ACC metric.
On the whole, our method performs well. As seen from Tables 4–6, the proposed method has the
highest F1-score metrics on the three datasets compared to the maximum value of each metric of
the other methods, with an increase of 1.85%, 3.61%, and 0.26%, respectively. This indicates that the
proposed method can distinguish retinal vessel pixels and background pixels effectively and accurately.
In general, compared with these methods, the proposed method can segment retinal vessels more
accurately and has good prospects for application in clinical medical imaging diagnosis.

Table 4: Comparison of the proposed method with existing methods in the DRIVE dataset

Method Year ACC SE SP AUC F1-score

U-Net 2015 95.58% 74.91% 98.59% 96.83% 81.19%
DU-Net 2019 95.49% 75.84% 98.35% 97.59% 81.05%
UNet++ 2020 95.35% 74.73% 98.35% 97.13% 80.35%
GT U-Net 2021 96.22% 80.58% 98.64% 97.96% 83.66%
AReN-UNet 2021 96.60% 83.53% 98.12% 98.21% 82.87%
Li et al. 2021 95.68% 79.21% 98.10% 98.06% –
Multistage DPIRef-Net 2022 95.64% 80.53% 98.39% 97.62% 81.61%

(Continued)
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Table 4 (continued)

Method Year ACC SE SP AUC F1-score

D-MNet 2022 95.39% 73.68% 97.12% 97.93% 82.13%
WA-Net 2022 95.75% 79.66% 98.10% 97.84% 82.69%
TUnet_LBF 2023 96.50% 81.40% 98.09% 89.75% –
Proposed 2023 96.31% 86.36% 98.84% 98.43% 84.88%

Table 5: Comparison of the proposed method with existing methods in the STARE dataset

Method Year ACC SE SP AUC F1-score

U-Net 2015 95.81% 77.62% 97.90% 97.12% 79.28%
DU-Net 2019 96.15% 71.43% 99.04% 97.23% 76.55%
UNet++ 2020 96.05% 77.76% 98.32% 97.40% 81.32%
GT U-Net 2021 95.87% 70.49% 98.49% 97.03% 77.81%
AReN-UNet 2021 96.73% 81.15% 98.78% 98.59% 82.11%
Li et al. 2021 96.78% 83.52% 98.23% 98.75% –
Multistage DPIRef-Net 2022 96.59% 80.04% 98.55% 97.64% 80.66%
D-MNet 2022 96.43% 84.35% 97.79% 98.55% 82.74%
WA-Net 2022 96.55% 77.67% 98.77% 96.65% 81.76%
TUnet_LBF 2023 96.81% 80.04% 98.52% 89.28% –
Proposed 2023 97.03% 83.52% 99.37% 99.00% 86.37%

Table 6: Comparison of the proposed method with existing methods in the CHASE_DB1 dataset

Method Year ACC SE SP AUC F1-score

U-Net 2015 95.96% 73.38% 97.72% 96.54% 79.10%
DU-Net 2019 96.69% 81.53% 98.30% 98.40% 80.43%
UNet++ 2020 95.06% 63.61% 98.94% 97.04% 73.90%
GT U-Net 2021 95.96% 72.72% 99.05% 96.11% 80.27%
AReN-UNet 2021 97.51% 83.18% 98.41% 98.45% 81.95%
Li et al. 2021 96.35% 78.18% 98.19% 98.10% –
Multistage DPIRef-Net 2022 96.45% 81.18% 98.52% 97.79% 80.75%
D-MNet 2022 95.87% 85.43% 96.93% 98.06% 79.01%
WA-Net 2022 98.41% 80.42% 98.26% 96.53% 80.98%
TUnet_LBF 2023 97.08% 83.54% 98.06% 90.80% –
Proposed 2023 97.37% 84.87% 99.21% 98.48% 82.74%

To further observe the segmentation results of the models, partial segmentation results on the three
datasets are given for visual comparison, as shown in Figs. 6–8. It can be seen that the DT-Net model
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produces more details of the vessel segmentation. Compared with U-Net, DT-Net can detect more
vessels. Compared with DUNet and GT U-Net, DT-Net can detect some details of missing vessels and
thus complete segmentation more efficiently. Compared with AReN-UNet and Multistage DPIRef-
Net, DT-Net has better vessel continuity. We can observe that the DT-Net is superior to the other five
methods on three datasets. As can be seen in Figs. 6–8, the segmentation effect of the proposed method
is very close to the standard of ophthalmologist manual segmentation, obtaining more continuous
vessels. It can successfully segment the continuous tiny vessels and has good generalization ability
when segmenting different datasets. This proves the network can reduce background noise, enhance
contrast, and preserve irregular vessels well. Visualization further illustrates the importance of multi-
scale contextual information and capturing long-term dependencies in retinal vessel segmentation.
This suggests that the proposed method can segment retinal vessel images, help specialized physicians
in disease diagnosis, and reduce the workload of clinical medical specialists. In addition, we use the
ROC curve to evaluate the model, shown in Fig. 9. The closer the ROC curve is to the upper left
boundary, the more accurate the network is. Fig. 10 shows a locally enlarged view of the tiny vessel in
the segmentation result. This is because, in retinal images, tiny vessels are not significantly different
from the image background. Therefore, to help the network pay attention to essential features and
suppress unnecessary features, we use the MHSA mechanism in both the encoder and decoder. It
can be seen from Fig. 10 that the proposed algorithm has good robustness to the intersection of the
vessel and tiny vessel areas with low contrast and maintains the degree and connectivity of thick and
thin vessels, and the segmentation results of the lesion region are relatively close to the standard
segmentation. The reliability and robustness of this algorithm for retinal vessel segmentation are
verified. The above experimental results can prove that the performance of the proposed model is
generally better, it can more accurately identify vessels and backgrounds, and segment tiny vessels
better.

Figure 6: The segmentation results of different models on DRIVE datasets. (A) Original images;
(B) ground truth images; (C) U-Net; (D) DUNet; (E) GT U-Net; (F) AReN-UNet; (G) multistage
DPIRef-Net; (H) ours
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Figure 7: The segmentation results of different models on STARE datasets. (A) Original images;
(B) ground truth images; (C) U-Net; (D) DUNet; (E) GT U-Net; (F) AReN-UNet; (G) multistage
DPIRef-Net; (H) ours

Figure 8: The segmentation results of different models on CHASE_DB1 datasets. (A) Original images;
(B) ground truth images; (C) U-Net; (D) DUNet; (E) GT UNet; (F) AReN-UNet; (G) multistage
DPIRef-Net; (H) ours

Figure 9: The ROC curves of the DT-Net model on different datasets. (A) DRIVE dataset. (B) STARE
dataset. (C) CHASE DB1 dataset
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Figure 10: Partial increased view of different models on different datasets. From top to bottom are the
fundus images from the DRIVE, STARE, and CHASE DB1 datasets. From left to right: (A) original
images; (B) partial views; (C) ground truth; (D) U-Net; (E) DUNet; (F) GT U-Net; (G) AReN-UNet;
(H) multistage DPIRef-Net; (I) ours

4 Discussion

In our work, we propose a hybrid convolution and transformer network evolved from the classical
model U-Net, which aims to aggregate multi-scale feature information at different resolutions to
achieve accurate and efficient vessel segmentation. The fundus image is full of noise and low contrast.
Therefore, we first preprocess to improve image contrast and suppress the background noise of the
source image. To fully use multi-scale information, DT-Net uses multi-scale images as input, and then
we introduce deformable convolution to change the convolution kernel according to the actual shape
of blood vessels to obtain more accurate structural information. Meanwhile, the MHSA mechanism is
used to capture the distant relationship of fundus images, making up for the defect that CNN cannot
extract global features.

In addition, the proposed network is verified by ablative experiments. The ACC and AUC indexes
of the network improved significantly after the addition of a mixing block to the encoder, and the
SE and F1-scoring indexes of the network improved significantly after the addition of a transformer
decoder block. Of course, the current study of DT-Net proposed has the following shortcomings: (1)
Due to the similarity between the background and blood vessels in the datasets, our method cannot
achieve the best performance in each index; (2) They inevitably lose some container details due to
constant up-sampling. In the future, we will introduce more advanced methods, such as the encoding
pattern in Swin-Unet, to preserve more details in the original image and make our model perform
better on various metrics.



3408 CMC, 2023, vol.76, no.3

5 Conclusion

We propose a network named DT-Net for fundus blood vessel segmentation. The performance
of this method is mainly improved by the introduction of variable convolution and multiple self-
attention mechanisms, which not only extract the structural information easily ignored in fundus blood
vessel images but also effectively extract information at different scales. And the DT-Net presented
in the DRIVE, STARE, and CHASE_DB1 datasets is significantly improved. Experimental results
show that this method can better process different fundus data sets, has better generalization ability,
and provides more accurate segmentation results for medical diagnosis and treatment. In terms of
segmentation results, our model can segment more vascular details and has better connectivity.
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