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ABSTRACT

Sequential recommendation based on a multi-interest framework aims to analyze different aspects of interest based
on historical interactions and generate predictions of a user’s potential interest in a list of items. Most existing
methods only focus on what are the multiple interests behind interactions but neglect the evolution of user interests
over time. To explore the impact of temporal dynamics on interest extraction, this paper explicitly models the
timestamp with a multi-interest network and proposes a time-highlighted network to learn user preferences, which
considers not only the interests at different moments but also the possible trends of interest over time. More
specifically, the time intervals between historical interactions and prediction moments are first mapped to vectors.
Meanwhile, a time-attentive aggregation layer is designed to capture the trends of items in the sequence over time,
where the time intervals are seen as additional information to distinguish the importance of different neighbors.
Then, the learned items’ transition trends are aggregated with the items themselves by a gated unit. Finally, a
self-attention network is deployed to capture multiple interests with the obtained temporal information vectors.
Extensive experiments are carried out based on three real-world datasets and the results convincingly establish the
superiority of the proposed method over other state-of-the-art baselines in terms of model performance.
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1 Introduction

Recommender systems explore users’ potential interests based on historical interactions and
then analyze the correlation between interests and items to provide personalized recommendations.
Collaborative filtering [1] is a classic algorithm of recommender systems, and it works based on the
fact that similar users may share similar preferences and similar items may be liked by users. Many
traditional methods [2–4] are designed based on it to alleviate the problem of data sparsity. With
the advent of deep learning, neural network-based approaches [5] are proposed for their capacity for
representation. For example, Guo et al. [6] combined deep learning and factorization machines to
learn both high-order and low-order feature interactions. Wang et al. [7] captured richer embedding
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representations based on high-order connectivity in the user-item graph. However, the above methods
learn fixed user embeddings, which cannot capture dynamic demands as user preferences always
change over time.

Sequential recommendation treats historical interactions as a chronological sequence that con-
tains the evolution of user preferences to guarantee more accurate, customized, and dynamic recom-
mendations. The early research on the sequential recommendation predominantly relied on Markov
Chains (MC) [8], which made the assumption that the dependency of each interaction lies in its
preceding sequence. Recent methods [9,10] have achieved satisfactory performance by converting
information into low-dimensional embeddings and using neural networks to learn user representa-
tions. For more effective and interpretable recommendations, some methods [11–13] utilized auxiliary
relations in knowledge graph to capture more connections between items to enrich item embedding,
rather than being limited to a sequence. In addition, the idea of self-supervised [14] which adaptively
adjusts parameters by the difference between the current optimal solution and the global optimal
solution has been introduced into recommendation systems, several models [15,16] extracted user
embeddings from multiple perspectives and make the distance between them closer to obtain more
accurate representation of users and improve model performance.

To better match the real-world recommendation scenarios, multi-interest-based models [17,18]
have been proposed to extract multiple interests that represent different aspects of user preferences.
Following the idea, Tan et al. [19] constructed intent prototypes and assign different weights to obtain
various interests. Chen et al. [20] explored the periodicity and interactivity of user behavior sequences
to enrich item embedding and utilized an attention network to extract multiple interests. Nevertheless,
these methods have the following two problems: (1) they only answer the question “What are the
interests of users” without distinguishing the importance of different interests in predicted time; (2)
the transition trends of items in sequences that can simulate the potential interest of users over time
are not fully mined. This work argues that temporal information is a key factor in extracting user
interests, and transition trends can reflect possible points of interest. As shown in Fig. 1, the user
interacted with three categories of products in the last week: laptops, clothes, and desks. Previous
models tend to treat each interest equally, resulting in content that users are not interested in still
being recommended. By contrast, this work considers timestamps when extracting interests, pays more
attention to recent interests, and recommends items that the user may be like based on the trends.
Besides, Fig. 2a shows the distribution of time intervals between two adjacent items on Amazon Books,
it can be seen that the timespan in the historical sequences might be large. Traditional approaches treat
user interests (items marked with black, blue, and green series) equally, but the time gap between the
interactions related to the black series and the last interaction exceeds 100 days, the user (whose most
recent interests are blue and green series) is unlikely to be interested in it, suggesting the possibility of
utilizing temporal information. Fig. 2b plots the behavior analysis of a user’s last thirty interactions,
revealing that interactions tend to be grouped within a short period of time, while the items that are
interacted within a short period of time often have correlations. So, the transformation of items in the
sequence can reflect the dynamic changes of points of interest to a certain extent.
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Figure 1: An example of sequential recommendation using temporal information. Two more recent
interests “clothes & desks” and possible trends of them are mainly considered when predicting the top
four items

Figure 2: Analysis of temporal information about user interactions on Amazon Books. (a) Is the
distribution of time intervals between two consecutive interactions (the long tail of the distribution
is not included). (b) Is the behavior analysis of a user’s last thirty interactions. The X-axis denotes the
time since the first interaction, while the Y-axis denotes the interaction count. Items with different
categories are represented by circles of different colors

Aiming at the problems that the existing multi-interest methods cannot capture the temporal
dynamics of user preferences, and do not make full use of interaction history to simulate the
changing trends of user interests. This paper proposes a novel method called time highlighted multi-
interest network for sequential recommendation (TimiRec), which assigns different weights to multiple
interests based on the prediction moment, and aggregates the updated neighbor item representations
as the transition trends of the current item. The main contributions of this work are summarized as
follows:

• Based on the prediction moment, a linear time interval function is designed to generate time
interval information as the key factor to extract multiple interests from the user’s behavior
sequence.

• A time-attentive aggregation layer is introduced to aggregate neighbor items, in which an
attention network is used to update the representations of neighbor items by considering the
time intervals between the item and its neighbors, thereby capturing the changing trends of
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points of interest. And a gated unit is deployed to adaptively fuse the initial items embeddings
and the captured trends.

• The effectiveness of the proposed algorithm is evaluated by comparing it with various baseline
methods on three real-world datasets, and the results convincingly establish the superior
performance of the proposed model over state-of-the-art baselines.

2 Related Work
2.1 Sequential Recommendation

Sequential recommender systems treat users’ historical behaviors in chronological order and
model the dependencies between items to provide more accurate recommendations. The model based
on Markov Chains [8,21] is one of the most classical models. Nevertheless, a significant shortcoming
of MC-based methods is their limited consideration of long-term dependencies, since they only
rely on the most recent interactions. The field of sequential recommendation has embraced the
advancements in deep learning, incorporating Recurrent Neural Network (RNN) and its variants,
such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). Zhou et al. [22] used
GRU to increase the accuracy of prediction by supervising the hidden state. However, RNN-based
methods that utilize the current state and previous state as input still have several problems, such as
difficulty in parallelization and learning long-term dependencies. To tackle these problems, inspired
by Transformer [23], Kang et al. [10] stacked self-attention layers to capture item relevance. Moreover,
recent studies focused on incorporating interaction timestamps into the sequential modeling process.
For instance, Li et al. [24] added relative time interval and position information into item embeddings.
Following a normal distribution, Wang et al. [11] introduced two distinct temporal kernel functions to
explicitly model the evolution of user preferences over time in terms of “complement” and “substitute”
relations. Jiang et al. [25] designed a time weighting function to enhance the influence of the time effect
of evaluation.

2.2 Attention Mechanism

Attention mechanism is a technique that considers the importance of each item in the input
sequence to the output, recognizing that not all items in the sequence are equally important.
Chen et al. [26] introduced attention mechanism into recommender systems as an additional com-
ponent earlier. Xiao et al. [27] combined attention networks and Factorization Machine (FM) to
improve the performance and interpretability of the model. Wang et al. [28] learned an attentive
transactional context embedding which paid more attention to relevant items. And Cai et al. [29]
measured the importance of different friends in social networks based on attention mechanism.
More Recently, Vaswani et al. [23] proposed a sequence-to-sequence method named Transformer with
a pure attention mechanism, which surpasses Convolutional Neural Network (CNN)/RNN-based
approaches and achieves state-of-the-art performance. Unlike sequentially propagating sequence
information, Transformer introduces the concept of query, key, and value to capture the relationship
between items in the sequence, and then updates each item based on the similarity. This enables the
model to simultaneously focus on all relevant parts of the sequence, which allows for better long-term
dependencies modeling and improving the overall performance of the model.
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3 Methodology

In this section, we begin by formulating the task of sequential recommendation and subsequently
present the approach to map time intervals to corresponding vectors and construct the neighbor-aware
graph, as well as the details of the proposed framework.

3.1 Problem Formulation

Let U and V denote the set of users and items respectively. X u =
[
xu

1, xu
2, . . . , xu|Xu|

]
is the

interaction sequence of user u ∈ U , and Tu =
[
tu

1, tu
2, . . . , tu|Tu|

]
is the corresponding timestamp

sequence, where |X u| (or |Tu|) is the length of the sequence. Given user u, historical interaction sequence
X u, and corresponding timestamp sequence Tu, the sequential recommendation task is to generate
predictions of the next items that u is likely to interact with from V at a given time tr.

3.2 Linear Time Interval

To capture temporal dynamics, a simple way is to use a time decay function [11,30], but its
disadvantages are that the fitting capacity is limited and the importance weights are not normalized.
Another way [24,31] is to map timestamps to vectors, although it can improve model performance, its
calculation of relative time intervals is overly dependent on the minimum value.

Besides, note that in Fig. 2b, interactions tend to be grouped in a short time, indicating the
importance of ensuring the small range of time intervals are treated equally. Taking advantage of the
above two approaches, this paper designs a linear time interval function to model the effect of temporal
information. Specifically, for a given anonymous time sequence T = [t1, t2, . . . , t|T |], the linear time
interval between interaction at time t and recommendation moment is defined as follows:

it = �α ∗ (tr − tt)� (1)

where tr represents the timestamp of the target item, and α is the coefficient of the linear function.
By adjusting the value of α, ensure that the time interval is the same within the range of α. And then
the linear time interval sequence is transformed into I = [i1, i2, . . . , i|T |] with a clip operation to avoid
sparse relation encoding:

it = clip (it) = min (it, m) (2)

where m is the threshold.

3.3 Neighbor-Aware Graph Construction

Generally, adjacent interactions in sequence are often related to similar interests. To capture
the changing trends of items and enrich the representation of item xi, we attentively aggregate the
embedding of its neighbors Nδ(xi) (i.e., δ-neighbor set) in graph G, which is generated based on the
pairwise item transitions in interaction records of all users. Since the time interval between paired
items can indicate their correlation, utilizing it to distinguish the importance of different neighbors is
necessary. Note that the same pairwise item transition may occur at multiple different time intervals, so
choose the largest one to cover all possible situations and ensure the comprehensiveness of the model.

Specifically, for any item xu
i in a user’s interaction sequence X u, the δ-neighbor set of xu

i

contains items with a distance no more than δ in the sequence, which is defined as Nδ(xu
i )

={
xu

j |xu
i ∈ X u, j ∈ (i, i + δ)

}
. The definition of graph G formed by neighbor items is G = (V , E), where
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V =
{

vi ∪ vj|vi ∈ V , vj ∈ Nδ(vi)

}
denotes the node set, and E = max

{
ĩij

∣∣(vi, vj

)∣∣ vi ∈ V , vj ∈ Nδ(vi)

}

represents the set of edges, the process of ĩij is consistent with Section 3.2. To keep efficiency and save
resources, top-H neighbor items with the highest frequency are selected for any item vi.

3.4 TimiRec Framework

Fig. 3 provides an overview of our proposed framework, TimiRec. Each part of the model will be
described in detail next.

Figure 3: The architecture of TimiRec. The linear function is applied to time interval information.
A neighbor-aware construct and a time-attentive aggregation layer are deployed to sample top-H
collaborative neighbors and model the trends of items over time, respectively. Finally, the multi-interest
extraction layer is introduced to generate diverse preferences from the output of the gated fusion unit

3.4.1 Embedding Layer

The interaction sequence [x1, x2, . . . , x|X |] is converted into a fixed-length sequence X =
[x1, x2, . . . , xL], where L represents the maximum length. If the sequence is longer than L, only the
most recent L items are kept, and zero pad the sequence with zero on the left of the sequence if it is
shorter than L. The time interval sequence [i1, i2, . . . , i|T |] is also transformed into I = [i1, i2, . . . , iL] to
maintain the corresponding time interval of each interaction.

EX ∈ R|V |∗d is the learnable embedding matrix for all items, where d represents the latent dimension.
Then, the embedding of the behavior sequence X ∈ RL∗d is obtained by a lookup operation. Similar to
the behavior sequence, another embedding matrix EI ∈ Rm∗d is created for linear time interval sequence
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I , where m represents the maximum number of time intervals. After retrieval, the time interval sequence
embedding I ∈ RL∗d is obtained.

3.4.2 Time-Attentive Neighbor Relation Aggregation

As shown in Fig. 4, based on the graph obtained by item transitions from all sequences, the time
interval Ĩ ∈ RH∗d between an item and its top-H collaborative neighbors are generated following the
idea mentioned in the previous section. The only difference is the threshold of Ĩ is n. Then, for each
item, mean pooling is used to gather information about neighbors.

eNvi
= 1∣∣∣Nδ(vi)

∣∣∣
∑

vj∈N
δ(vi)

e∗
vj

(3)

where e∗
vj

∈ Rd denotes the embedding of item vj obtained by the time-attentive aggregation layer, and
d is the dimension. To differentiate the significance of various neighbors to vi, neighbor embeddings
are extended by time interval vectors Ĩ , and the normalized score π(vi, vj) is then generated with an
attention network as follows:

π
(
vi, vj

) = exp
(
evi

T
(
evj + ĩij

))
∑

vk∈N
δ(vi)

exp
(
evi

T
(
evk

+ ĩik

)) (4)

e∗
vj

= π
(
vi, vj

)
evj (5)

where ĩij ∈ Rd is the time interval between item vi and one of its top-H neighbor vj, evi , evj ∈ Rd are the
embedding of item vi and vj, respectively.

Inspired by GRU which uses gating signals to update states, a gated unit is designed to dynamically
balance the contributions of the item itself and its neighbors. For item vi, the representation evi and the
aggregation representation eNvi

of its neighbors are combined as follows:

gi = σ
(
W 1evi + W 2eNvi

)
(6)

ci = gi ∗ evi + (1 − gi) ∗ eNvi
(7)

where W 1, W 2 ∈ Rd∗d are learnable transformation parameters, and σ is the sigmoid function. The
gating signal gi ∈ Rd is employed to regulate the impact of the initial item and the aggregated neighbors.
Finally, the fused result C u = [

cu
1, cu

2, . . . , cu
L

]
is obtained.

3.4.3 Multi-Interest Extraction Layer

Considering the impact of temporal dynamics, the temporal embedding I ∈ RL∗d is used as the
query of attention mechanism to selectively aggregate behavior sequences:

S = ATC (8)

A = softmax (tanh (IW 3) W 4) (9)

where W 3 ∈ Rd∗4d and W 4 ∈ R4d∗K are learnable parameters. A ∈ RL∗K estimates the contribution of
each item in the sequence to the multiple interests, S ∈ RK∗d indicates multiple interests and K is the
number of interests.
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Figure 4: Illustration of the time-attentive aggregation layer, which aggregates the representation of
neighbor items by considering time interval information

3.4.4 Model Training

After obtaining the interest embeddings from the multi-interest extraction layer, for the target item
v, the argmax operator is used to select the corresponding interest vector from K candidate interest
representations as user embedding:

s = S [ : , argmax (Sev)] (10)

When provided with a training sample (u, v) containing the user embedding s and item embedding
ev, the probability of user u will interact with item v is calculated as follows:

Pθ (v|u) = exp
(
sTev

)
∑

k∈V exp (sTek)
(11)

Since the sum operator in Eq. (11) is computationally time-consuming, a sampled softmax method
is introduced to minimize the following objective function:

loss =
∑

u∈U

∑
v∈Xu

−logPθ (v|u) (12)

3.4.5 Model Testing

Different from the training phase, different interests representing different aspects of user prefer-
ences can independently provide top-N items in the testing phase. To get the final top-N prediction
results from K ∗N candidate items, a straightforward approach is to select those items with the greatest
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similarity as the final prediction based on the inner product of candidate items and user interests, and
it’s defined as:

f (u, v) = max
1≤k≤K

(
ev

Tsk
)

(13)

where ev is the embedding of a candidate item, and sk indicates the k-th interest.

4 Experiments

In this section, to validate the effectiveness of the proposed framework, extensive experiments with
other state-of-the-art baseline methods are carried out on three real-world datasets.

4.1 Experimental Settings

4.1.1 Datasets

TimiRec is evaluated on three public datasets of diverse domains and sizes, Table 1 presents the
statistics information of these datasets.

Table 1: The dataset statistics

Dataset Users Items Interactions Sparsity (%)

Books 603,667 367,982 8,898,041 0.004
MMTD 28,946 29,528 681,741 0.080
Beauty 22,363 12,101 198,502 0.073

• Amazon1: A commonly used review dataset that comprises various sub-datasets, and the
following two specific sub-datasets are used: Books and Beauty.

• MMTD2: Million Musical Tweets Dataset (MMTD) [32] is a dataset of listening events collected
from Twitter.

To ensure data quality, interactions involving users and items with less than 5 occurrences are
filtered out, and all users are split into training/validation/test sets in a ratio of 8:1:1. For model
training, the complete sequences of interactions from the training users are utilized. More specifically,

for a user sequence X u =
[
xu

1, xu
2, . . . , xu|Xu|

]
, each training sample

([
xu

1, xu
2, . . . , xu

t

]
, xu

t+1

)
uses the first t

behaviors to predict the (t + 1)−th interaction, where t = 4, 5, . . . , |X u | − 1. The number of neighbors
H is 20, and the distance δ between the item and neighbors is set to 2. Each training sample is truncated
to 20. For model testing, the first 80% of interactions of the user sequence from validation and test
users are used as input of the trained model to infer user embeddings, and metrics are calculated by
predicting the remaining 20% of interactions.

4.1.2 Evaluation Metrics

To evaluate the performance of the proposed TimiRec, three widely adopted evaluation criteria for
top-N recommendation are used in our experiments, i.e., Recall, Normalized Discounted Cumulative
Gain (NDCG), and Hit Ratio (HR). Among them, Recall@N represents the proportion of ground
truth items included in the recommended N candidates, NDCG@N is a position-aware metric that

1 http://jmcauley.ucsd.edu/data/amazon/.
2 http://www.cp.jku.at/datasets/MMTD/.

http://jmcauley.ucsd.edu/data/amazon/
http://www.cp.jku.at/datasets/MMTD/
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assigns higher scores to ground truth items appearing at higher positions in the recommendation list,
and HR@N focuses on determining whether the ground-truth item is present among the recommended
items. N is set to 20 and 50 in our experiments.

4.1.3 Baselines

Comparative evaluations are conducted with TimiRec and the following methods:

• YouTube DNN [33]: it is a deep learning model designed for an industrial recommendation that
applies deep neural networks to YouTube video recommendation (YouTube DNN).

• GRU4Rec [9]: it first applies GRU for the sequential recommendation.
• MIND [17]: it is a multi-interest model that incorporates a capsule network to extract multiple

user interests.
• ComiRec-DR [18]: it follows MIND that extracts multiple interests using dynamic routing, and

considers both diversity and accuracy of recommendation with a controllable factor.
• ComiRec-SA [18]: another variant of ComiRec that utilizes self-attention to extract diverse

interests.
• PIMI [20]: a state-of-the-art model based on ComiRec-SA, periodicity and interactivity of user

behavior sequence are explored to collect features before extracting multiple interests.

4.1.4 Details

TimiRec is implemented with TensorFlow. The embedding dimension is set to 64. For Books,
MMTD, and Beauty, the reciprocal of the coefficient 1/α are set to 1 day, 1 min, and 1 day, the number
of time interval thresholds m/n are set to 32/8, 128/16, and 64/16, respectively, and the number of
interest embedding is 4. The number of samples for sampled softmax loss is set to 10. The maximum
number of training iterations is set to 1 million. A widely used optimizer Adam [34] is adopted for
optimization with a learning rate lr = 0.001.

4.2 Overall Performance

Table 2 shows a comprehensive summary of the performance of various methods across different
datasets. Compared with GRU4Rec and YouTube DNN, which represent users as a single vector,
multi-interest methods MIND, ComiRec, and PIMI achieve significant improvement, which implies
that extracting multiple interests is more consistent with real-world scenarios. By incorporating the
concepts of periodicity and interactivity in user behavior sequence, PIMI obtains notable enhance-
ments compared to ComiRec. Our proposed method, TimiRec, consistently outperforms other
baseline methods by effectively capturing the temporal dynamics of user interests.

4.3 Ablation Study

Table 3 presents the comparison results under the evaluation metrics of Recall@20, NDCG@20,
and HR@20, where TimiRec-time and TimiRec-neigh denote TimiRec without temporal information
and neighbor aggregate unit respectively. It can be found that removing any part harms results, sug-
gesting that both of them are important to capture sequential information. Besides, lacking temporal
information will lead to bigger performance loss. This is because the time interval information directly
affects the weight of the current item when extracting interests, while neighbors are aggregated into
items to enrich the item representation.
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Table 2: Performance comparison of TimiRec and other baselines (%). In each row, the best perfor-
mance is bolded, and the second best is underlined

Dataset Metric YouTube DNN GRU4Rec MIND ComiRec-DR ComiRec-SA PIMI TimiRec Improv.

Books

Recall@20 4.456 4.057 4.862 5.311 5.489 6.996 7.786 11.29%
NDCG@20 7.670 6.803 7.933 9.185 8.991 11.221 12.603 12.32%
HR@20 10.285 8.945 10.618 12.005 11.402 14.377 15.931 10.81%
Recall@50 7.312 6.501 7.638 8.106 8.467 10.934 11.715 7.14%
NDCG@50 12.075 10.369 12.230 13.520 13.563 17.094 18.448 7.92%
HR@50 15.894 13.666 16.145 17.583 17.202 21.619 23.114 6.92%

MMTD

Recall@20 4.237 4.563 7.034 4.949 9.466 10.404 11.158 7.25%
NDCG@20 7.928 8.478 12.053 8.829 15.907 17.123 18.450 7.25%
HR@20 11.330 12.263 16.097 12.540 20.760 22.073 23.454 6.26%
Recall@50 7.970 8.870 12.019 9.100 14.194 15.720 16.983 8.03%
NDCG@50 13.803 15.215 19.356 14.985 22.677 24.741 26.543 7.28%
HR@50 18.998 20.760 24.905 20.484 28.981 31.364 33.541 6.94%

Beauty

Recall@20 6.320 5.663 6.882 5.077 7.082 6.664 8.837 24.78%
NDCG@20 9.595 8.444 10.998 7.761 10.384 9.897 12.999 15.39%
HR@20 11.757 10.371 13.098 9.790 12.204 12.070 15.199 16.04%
Recall@50 10.327 9.874 11.051 8.129 11.739 12.016 14.350 19.42%
NDCG@50 15.359 13.867 16.340 11.921 16.376 17.057 19.961 17.02%
HR@50 18.194 16.182 19.088 14.752 18.775 19.893 22.843 14.83%

Table 3: The performance of contrast models (%)

Metric@20 Books MMTD Beauty

Recall NDCG HR Recall NDCG HR Recall NDCG HR

TimiRec 7.786 12.603 15.931 11.158 18.450 23.454 8.837 12.999 15.199
TimiRec-time 5.459 8.754 11.279 7.936 13.469 17.997 7.018 10.756 12.606
TimiRec-neigh 7.558 12.254 15.472 10.764 17.552 22.556 8.215 12.597 14.573

4.4 Time Interval Function

To verify the effectiveness of the designed linear time interval function, we removed the neighbor-
aggregation layer (i.e., TimiRec-neigh in Section 4.3), and modify the Eq. (1) as:

it = �β ∗ log ((tr − tt)) + 1� (14)

it = �(tr − tt)/min (iu)� (15)

Eq. (14) represents the logarithmic function, β is a coefficient, which assumes the effect of time on
user interests gradually slows down as the time interval increases. Eq. (15) is the processing method in
the paper proposed by Li et al. [24], min (iu) means the minimum time interval of user u. Because each
training sample relies on the first t behaviors to predict the (t + 1)-th interaction, leading to the value of
min (iu) may change, so the relation between items will also change. Table 4 illustrates the performance
when the time function changes. Experimental results demonstrate the great improvement brought by
the proposed method.
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Table 4: The performance of the time interval function (%)

Function Books (Metrics@20)

Recall NDCG HR

it = �α ∗ (tr − tt)� 7.558 12.254 15.472
it = �β ∗ log ((tr − tt)) + 1� 7.297 11.768 14.970
it = �(tr − tt)/min (iu)� 6.832 11.000 13.628

4.5 Study on Hyper-Parameters

In order to gain a deeper understanding of how different hyper-parameters impact the perfor-
mance of the model, the effect of time interval threshold m and n, the coefficient of time interval
function α, and the number of interests K are studied.

As shown in Tables 5 and 6, the values of time interval thresholds m and n are varied to investigate
the effect of modeling temporal dynamics. The parameter m controls the maximum time scope that
directly affects user interests, and n ensures the quality of aggregated neighbor items. The values of m
and n are selected from {16, 32, 64, 128} and {2, 4, 8, 16}, respectively. Experimental results on Amazon
Books show that model achieves the best performance when m/n is set to 32/8. An excessively large
time interval threshold may result in sparse encoding, conversely, setting a time interval threshold that
is too small may lead to insufficient learning.

Table 5: Effect of threshold m (%)

Metric@20 Books

Recall NDCG HR

m = 16 7.557 12.196 15.480
m = 32 7.786 12.603 15.931
m = 64 7.356 11.921 14.922
m = 128 7.015 11.246 13.956

Table 6: Effect of threshold n (%)

Metric@20 Books

Recall NDCG HR

n = 2 7.574 12.233 15.253
n = 4 7.737 12.557 15.827
n = 8 7.786 12.603 15.931
n = 16 7.718 12.575 15.838

Fig. 5 illustrates the comparison of model performance on Amazon Books across different values
of the coefficients α. The X-axis indicates 1/α, which is chosen from {0.25 day, 0.5 days, 1 day, 1.5 days,
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2 days}. As is observed, TimiRec has the best performance when 1/α is 1 day. Combined with the best
setting of 32 for m, it can be further inferred that a person reads a book in about one month.

Figure 5: Performance comparison for the number of coefficients α on Amazon Books

Fig. 6 presents the Metrics@20 and Metrics@50 results, demonstrating the effect of the interest
number K on Amazon Books. TimiRec obtains the best performance when K is 4. Increasing the
number of interests does not always improve the model effect, which is in line with real-world
recommendation scenarios, where users usually do not have too many or too few interests.

Figure 6: Effect of the number of interest K on Amazon Books

4.6 Training Efficiency

As shown in Fig. 7, the metrics of Recall@20 are tested on Amazon Books during the training
process for the proposed model and two other state-of-the-art methods to show training efficiency
compared to the proposed model. It can be observed that the evaluation metric of Recall@20 has
roughly the same trend with iteration on three models. In terms of the average time per iteration,
TimiRec takes an average of 0.050 s, which is 1.79 times larger than ComiRec-SA, which attributes
to the aggregation of neighbor information and the preprocessing of time interval information. But
compared with PIMI with an average iteration time of 0.100 s, the training efficiency of our model
has been greatly improved, this is because the computation of the stacked three-layer self-attention
network in the interactivity module is very time-consuming.



3582 CMC, 2023, vol.76, no.3

Figure 7: Training efficiency on Amazon Books

4.7 Case Study

The attention weights among multiple interests and items in the input sequence are visualized,
which demonstrates the advantage of the proposed method by comparison with ComiRec-SA. Fig. 8
illustrates the heatmap of the attention weights (corresponding to the value of A in Eq. (9)) associated
with a user randomly selected from Amazon Books. Compared with ComiRec-SA which is not aware
of time, it can be seen that for items under the same interest, TimiRec will assign higher weights to the
more recently interacted items. And for items of the same category with smaller timespans, TimiRec
will assign similar weights (Interest 2).

Figure 8: Heatmap of attention weights among multiple interests and input items. I represents the
linear time interval sequence corresponding to the input sequence of a user from Amazon Books
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5 Conclusion

This work proposes a novel framework named TimiRec, which utilizes temporal information to
extract multiple user interests. Specifically, multiple interests of users are generated by highlighting
the time intervals in the multi-interest extraction layer, and combined with the neighbor-aware
aggregation unit to capture possible trends of points of interest. The effectiveness and efficiency of the
proposed model have been empirically verified through experiments conducted on three real-world
datasets. In future work, we will combine temporal information and knowledge graph to build bridges
between items and further explore their relationships to capture the possible trend of interests more
comprehensively.

Acknowledgement: The resources and computing environment are provided by Chongqing University,
Chongqing, China. We are thankful for their support.

Funding Statement: This work is supported in part by the National Natural Science Foundation of
China under Grant 61702060.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design, analysis and interpretation of result: Jiayi Ma; draft manuscript preparation: Jiayi Ma,
Tianhao Sun; data collection: Jiayi Ma, Xiaodong Zhang; All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The authors have shared the link to the data in the paper.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] D. Goldberg, D. Nichols, B. M. Oki and D. Terry, “Using collaborative filtering to weave an information

tapestry,” Communications of the ACM, vol. 35, no. 12, pp. 61–70, 1992.
[2] Y. Hu, Y. Koren and C. Volinsky, “Collaborative filtering for implicit feedback datasets,” in Eighth IEEE

Int. Conf. on Data Mining, Pisa, Italy, pp. 263–272, 2009.
[3] S. Rendle, “Factorization machines,” in IEEE Int. Conf. on Data Mining, Sydney, NSW, Australia, pp.

995–1000, 2010.
[4] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Item-based collaborative filtering recommendation

algorithms,” in Proc. of WWW , New York, NY, USA, pp. 285–295, 2001.
[5] J. Tang and K. Wang, “Personalized top-n sequential recommendation via convolutional sequence embed-

ding,” in Proc. of WSDM, New York, NY, USA, pp. 565–573, 2018.
[6] H. Guo, R. Tang, Y. Ye, Z. Li and X. He, “DeepFM: A factorization-machine based neural network for

CTR prediction,” in Proc. of IJCAI , Melbourne, Australia, pp. 1725–1731, 2017.
[7] X. Wang, X. He, M. Wang, F. Feng and T. S. Chua, “Neural graph collaborative filtering,” in Proc. of

SIGIR, New York, NY, USA, pp. 165–174, 2019.
[8] S. Rendle, C. Freudenthaler and L. Schmidt-Thieme, “Factorizing personalized Markov chains for next-

basket recommendation,” in Proc. of WWW , New York, NY, USA, pp. 811–820, 2010.
[9] B. Hidasi, A. Karatzoglou, L. Baltrunas and D. Tikk, “Session-based recommendations with recurrent

neural networks,” arXiv:1511.06939, 2016.
[10] W. C. Kang and J. McAuley, “Self-attentive sequential recommendation,” in IEEE Int. Conf. on Data

Mining, Singapore, pp. 197–206, 2018.



3584 CMC, 2023, vol.76, no.3

[11] C. Wang, M. Zhang, W. Ma, Y. Liu and S. Ma, “Make it a chorus: Knowledge- and time-aware item
modeling for sequential recommendation,” in Proc. of SIGIR, New York, NY, USA, pp. 109–118, 2020.

[12] P. Wang, Y. Fan, L. Xia, W. X. Zhao, S. Niu et al., “KERL: A knowledge-guided reinforcement learning
model for sequential recommendation,” in Proc. of SIGIR, New York, NY, USA, pp. 209–218, 2020.

[13] J. Yao, K. Cheng, M. Ge, X. Li and Y. Wang, “KGSR-GG: A noval scheme for dynamic recommendation,”
Computers, Materials & Continua, vol. 73, no. 3, pp. 5509–5524, 2022.

[14] A. Bhatt, P. Dimri and A. Aggarwal, “Self-adaptive brainstorming for jobshop scheduling in multicloud
environment,” Software: Practice and Experience, vol. 50, no. 8, pp. 1381–1398, 2020.

[15] Z. Lin, C. Tian, Y. Hou and W. X. Zhao, “Improving graph collaborative filtering with neighborhood-
enriched contrastive learning,” in Proc. of WWW , New York, NY, USA, pp. 2320–2329, 2022.

[16] Z. Wang, H. Liu, W. Wei, Y. Hu, X. L. He et al., “Multi-level contrastive learning framework for sequential
recommendation,” in Proc. of CIKM, New York, NY, USA, pp. 2098–2107, 2022.

[17] C. Li, Z. Liu, M. Wu, Y. Xu, H. Zhao et al., “Multi-interest network with dynamic routing for recommen-
dation at tmall,” in Proc. of CIKM, New York, NY, USA, pp. 2615–2623, 2019.

[18] Y. Cen, J. Zhang, X. Zou, C. Zhou, H. Yang et al., “Controllable multi-interest framework for recommen-
dation,” in Proc. of KDD, New York, NY, USA, pp. 2942–2951, 2020.

[19] Q. Tan, J. Zhang, J. Yao, N. Liu, J. Zhou et al., “Sparse-interest network for sequential recommendation,”
in Proc. of WSDM, New York, NY, USA, pp. 598–606, 2021.

[20] G. Chen, X. Zhang, Y. Zhao, C. Xue and J. Xiang, “Exploring periodicity and interactivity in multi-interest
framework for sequential recommendation,” in Proc. of IJCAI , Montreal, Canada, pp. 1426–1433, 2021.

[21] R. He and J. McAuley, “Fusing similarity models with Markov chains for sparse sequential recommenda-
tion,” in IEEE 16th Int. Conf. on Data Mining, Barcelona, Spain, pp. 191–200, 2016.

[22] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian et al., “Deep interest evolution network for click-through rate
prediction,” in The Thirty-Third AAAI Conf. on Artificial Intelligence, Honolulu, Hawaii, USA, pp. 5941–
5948, 2019.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., “Attention is all you need,” in Proc. of
NIPS, Red Hook, NY, USA, pp. 6000–6010, 2017.

[24] J. Li, Y. Wang and J. McAuley, “Time interval aware self-attention for sequential recommendation,” in
Proc. of WSDM, New York, NY, USA, pp. 322–330, 2020.

[25] W. Jiang, J. Chen, Y. Jiang, Y. Xu, Y. Wang et al., “A new time-aware collaborative filtering intelligent
recommendation system,” Computers, Materials & Continua, vol. 61, no. 2, pp. 849–859, 2019.

[26] J. Chen, H. Zhang, X. He, L. Nie, W. Liu et al., “Attentive collaborative filtering: Multimedia recommen-
dation with item- and component-level attention,” in Proc. of SIGIR, New York, NY, USA, pp. 335–344,
2017.

[27] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu et al., “Attentional factorization machines: Learning the weight
of feature interactions via attention networks,” in Proc. of IJCAI , Melbourne, Australia, pp. 3119–3125,
2017.

[28] S. Wang, L. Cao and L. Hu, “Attention-based transactional context embedding for next-item recommen-
dation,” in Proc. of AAAI , New Orleans, Louisiana, USA, pp. 2532–2539, 2018.

[29] C. Cai, H. Xu, J. Wan, B. Zhou and X. Xie, “An attention-based friend recommendation model in social
network,” Computers, Materials & Continua, vol. 65, no. 3, pp. 2475–2488, 2020.

[30] J. Wu, R. Cai and H. Wang, “Déjà vu: A contextualized temporal attention mechanism for sequential
recommendation,” in Proc. of WWW , New York, NY, USA, pp. 2199–2209, 2020.

[31] W. Ye, S. Wang, X. Chen, X. Wang, Z. Qin et al., “Time matters: Sequential recommendation with complex
temporal information,” in Proc. of SIGIR, New York, NY, USA, pp. 1459–1468, 2020.

[32] D. Hauger, M. Schedl, A. Kosir and M. Tkalvcivc, “The million musical tweet dataset: What we can learn
from microblogs,” in Proc. of ISMIR, Curitiba, Brazil, pp. 189–194, 2013.

[33] P. Covington, J. Adams and E. Sargin, “Deep neural networks for youtube recommendations,” in Proc. of
RecSys, New York, NY, USA, pp. 191–198, 2016.

[34] D. Kingma and J. Ba, “ADAM: A method for stochastic optimization,” arXiv:1412.6980, 2014.


	Time Highlighted Multi-Interest Network for Sequential Recommendation
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Conclusion
	References


