
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.039489

ARTICLE

Siamese Dense Pixel-Level Fusion Network for Real-Time UAV Tracking

Zhenyu Huang1,2, Gun Li2, Xudong Sun1, Yong Chen1, Jie Sun1, Zhangsong Ni1,* and Yang Yang1,*

1Chengdu Fluid Dynamics Innovation Center, Chengdu, 610031, China
2School of Aeronautics and Astronautics, University of Electronic Science and Technology of China,
Chengdu, 611731, China

*Corresponding Authors: Zhangsong Ni. Email: nzscczx@163.com; Yang Yang. Email: yy_doc@163.com

Received: 01 February 2023 Accepted: 29 May 2023 Published: 08 October 2023

ABSTRACT

Onboard visual object tracking in unmanned aerial vehicles (UAVs) has attracted much interest due to its versatility.
Meanwhile, due to high precision, Siamese networks are becoming hot spots in visual object tracking. However,
most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational
resources of UAVs. To meet the tracking precision and real-time requirements, this paper proposes a Siamese
dense pixel-level network for UAV object tracking named SiamDPL. Specifically, the Siamese network extracts
features of the search region and the template region through a parameter-shared backbone network, then performs
correlation matching to obtain the candidate region with high similarity. To improve the matching effect of template
and search features, this paper designs a dense pixel-level feature fusion module to enhance the matching ability
by pixel-wise correlation and enrich the feature diversity by dense connection. An attention module composed of
self-attention and channel attention is introduced to learn global context information and selectively emphasize the
target feature region in the spatial and channel dimensions. In addition, a target localization module is designed to
improve target location accuracy. Compared with other advanced trackers, experiments on two public benchmarks,
which are UAV123@10fps and UAV20L from the unmanned air vehicle123 (UAV123) dataset, show that SiamDPL
can achieve superior performance and low complexity with a running speed of 100.1 fps on NVIDIA TITAN RTX.
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1 Introduction

UAVs can be effectively used to construct object-tracking applications because of their versatility,
small volume, and straightforward operation [1]. Generally speaking, object tracking in UAVs has long
been a great interest in computer vision [2]. Given an initial target region in the first frame, the object
tracker aims to continuously predict the target location and generate a bounding box to fit the target
in subsequent frames. Despite the considerable achievements in visual object tracking, various realistic
challenges still exist in UAV tracking.
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• Due to the limited onboard computational power of a UAV, the deployed models need to be
carefully designed to limit their computing consumption.

• Complex views in aerial photography make distinguishing the foreground and background
challenging.

Excellent tracking algorithms have increased in recent years, which are primarily divided into
two groups: discriminative correlation filter (DCF)-based methods [3] and deep learning (DL)-
based methods [4]. The DCF-based trackers were frequently used for aerial object tracking due
to their practical computation [1]. However, a key issue is that DCF-based trackers cannot satisfy
the demands of UAV tracking in complex dynamic environments due to their hand-crafted features
and sophisticated optimization strategies. The DL-based trackers have demonstrated outstanding
performance in UAV tracking with the representation of deep features. However, these trackers require
numerous calculations. As a result, the main challenge faced by many researchers is to keep a balance
between accuracy and efficiency.

With the gradual development of deep learning, Siamese-based trackers have performed excep-
tionally well in visual object tracking, such as Fully-Convolutional Siamese (SiamFC) [5], Siamese
Region Proposal Network (Siamese-RPN) [6] and SiamRPN++ [7]. The parameter-sharing Siamese
backbone is responsible for extracting deep features from both the template and search regions. Sub-
sequently, the cross-correlation operation obtains the response map containing similarities between
the two areas. Almost all Siamese trackers implement similarity matching with a simple convolution
operation. The main weakness of this operation is that the matching area is larger than the target area,
leading to massive noises from the background [8], especially in small object scenarios of UAV tracking.
Moreover, the matching area containing interference will blur the object boundary and produce an
inaccurate bounding box.

Siamese trackers aim to encode the local information in a sliding window without global context
information. In recent years, the attention mechanism has achieved significant improvements in DL
[9,10], allowing models to filter out meaningful features from the global context of the whole image. By
enhancing the representation power, the attention mechanism also helps improve tracking accuracy in
UAV tracking challenges, such as fast motion and small objects.

This paper proposes a dense pixel-level feature fusion module by adopting pixel-wise correlation to
enhance the matching ability and then resist background interference. The attention module, including
self-attention and channel attention, is introduced to enrich the target representation with solid
robustness to distractors and complex backgrounds. Moreover, referring to the structure of LightTrack
[11], the target localization module is carefully designed to strengthen the target discriminability.

The main contributions of this work are summarized as follows:

• A dense pixel-level feature fusion module is designed to improve the correlation matching
between template features and search features, which helps alleviate background interference.

• An attention module is introduced to aggregate and recalibrate the single feature in spatial and
channel dimensions. It refines features effectively and boosts the representation power.

• A target localization module composed of classification and regression branches is designed to
produce a more precise position.

• The proposed SiamDPL tracker has been evaluated on two challenging UAV tracking bench-
marks, demonstrating its effectiveness and efficiency in precision and time consumption.
Moreover, SiamDPL performs well in partial occlusion, viewpoint variation, and fast motion.
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The rest of this article is organized as follows. Section 2 briefly introduces the related work on the
DCF-based tracker, Siamese tracker, and UAV object tracking. In Section 3, this paper describes the
designed modules, including the dense pixel-level feature fusion network, the attention module, and
the target localization module. The performance analysis is carried out in Section 4, and the conclusion
is presented in Section 5.

2 Related Work

This section briefly reviews the DCF-based trackers and details the Siamese trackers and the
object tracking algorithms based on UAVs.

2.1 DCF-Based Tracker

The DCF-based trackers, such as Kernelized Correlation Filter (KCF) [12], Efficient Convolution
Operators (ECO) [13], and Aberrance Repressed Correlation Filter (ARCF) [14], aim to classify and
score the search samples by minimizing the loss between the labels and the cyclic correlation between
instances and filters [15]. Most DCF-based trackers have been deployed widely on UAVs due to their
expansibility and efficiency [16]. However, the hand-crafted features limit the representation ability of
such trackers, while introducing the deep learning network reduces the speed of inference.

2.2 Siamese Tracker

By training offline, Siamese trackers are more prominent and stable in performance. SiamFC
[5] used a fully-convolutional Siamese architecture to calculate the similarities between the template
and search regions. Applying Region Proposal Network (RPN), SiamRPN (short for Siamese-RPN)
[6] formulated the tracking problem as a local one-shot detection challenge, furthermore enriching
the structure of trackers for UAV tracking. Distractor-aware Siamese Region Proposal Networks
(DaSiamRPN) [17] enlarged the training dataset and customized multiple data augmentations to
introduce negative semantic pairings. Furthermore, it designed a distractor-aware module to counter
semantic distractors. However, the tracking algorithms used shallow networks to extract features from
limited semantic information. SiamDW [18] developed four strategies to design deeper backbone
networks to obtain richer semantic information. Apart from SiamDW, SiamRPN++ [7] proposed
a spatial aware sampling strategy to relieve the restriction of translation invariance. In addition, the
depth-wise correlation was employed to decrease computational costs for a stable training process.
SiamMask [19] combined tracking and segmentation to locate the target with a rotative mask. Some
trackers adopted the anchor-free methods to avoid false positive samples in the anchor-based methods
[20–23]. Fully Convolutional Siamese tracker++ (SiamFC++) [21] directly predicted the confidence
score of target existence without predefined anchor boxes. At the same time, SiamFC++ applied the
quality evaluation branch independently in classification. Siamese Box Adaptive Network (SiamBAN)
[22] adopted the box adaptive head for classification and regression with more minor output variables.
Object-aware Anchor-free Networks (Ocean) [23] proposed the anchor-free method and the feature
alignment module to correct the inaccurate bounding box. Although most of the above trackers are
highly robust, they must be simplified to meet the real-time demand in UAV tracking. LightTrack [11]
adopted neural architecture search (NAS) to design a lighter yet more efficient tracker considering
limited computational resources. Compared with hand-crafted architectures, the network structure
trained by the NAS method was superior, with a unique network design. Therefore, this paper designed
a target localization module based on the configuration of LightTrack to get a more vital discriminative
ability.
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A large and growing body of literature has investigated the attention mechanism, which dynami-
cally conducts recalibration by allocating each input a separate weight. Residual Attentional Siamese
Network (RASNet) [24] adopted general attention, residual attention, and channel attention to
recalibrate the features of the template branch, while it was a restricted sample strategy. Deformable
Siamese Attention Networks (SiamAttn) [25] employed a deformable Siamese attention module (DSA)
to enhance the spatial and channel information of the template and search features and implicitly
update the template features. Despite the excellent performance, SiamAttn used the attention module
for feature extraction, which increased the computational consumption and reduced the speed. This
paper used the attention module for the single feature after feature fusion, improving efficiency.

2.3 UAV Object Tracking

Many previous types of research on UAV tracking have focused on DCF-based trackers.
AutoTrack [26] proposed an automatic and adaptive learning method to adjust the spatiotemporal
regularization online, which was robust to complex and varied UAV scenarios. Bidirectional
Incongruity-aware Correlation Filter (BiCF) [27] effectively learned object appearance variation by
integrating the bidirectional inconsistency error during the UAV tracking process.

Real-time performance is an essential requirement for UAV object tracking. Recent papers
have discussed the impact of real-time performance on systems and algorithms [28–31]. With the
emergence of lightweight onboard Graphic Processing Units (GPU), such as NVIDIA Jetson AGX
Xavier, it is becoming increasingly more work to ignore the existence of Siamese trackers. Siamese
Anchor Proposal Network (SiamAPN) [32] proposed an anchor proposal network to display excellent
performance with high speed, satisfying the real-time needs of UAV tracking, avoiding numerous
predefined anchors, and acquiring better accuracy through refinement. Based on the attentional
aggregation network (AAN), SiamAPN++ [33] utilized self-AAN and cross-AAN to enrich feature
representation. In addition, the anchor proposal network based on dual features (APN-DF) was
introduced to increase the robustness of proposing anchors [1]. However, the correlation matching
used by these trackers introduced much noise. This work realized the dense pixel-level feature fusion
through pixel-wise correlation to achieve precise matching.

The Transformer algorithms have also developed rapidly in recent years and have been used in
UAV object tracking [34]. Hierarchical Feature Transformer (HiFT) [35] used a feature transformer
to aggregate multi-layer information to raise the global contextual information. It captured the space
information of the object with an encoder and the semantic information with a decoder. Siamese
Transformer Pyramid Network (SiamTPN) [36] used a transformer pyramid network (TPN) to
integrate multi-layer features. In addition, a pooling attention (PA) layer was used to reduce memory
and time complexity while improving robustness. Although they achieved excellent performance, they
required a large amount of data for training and had many parameters, which affected the speed. This
paper designed the dense pixel-level feature fusion module and combined it with the attention module
and the target localization module to perform a high-speed and excellent tracker in UAV tracking with
low computational complexity and parameters.

3 Proposed Method

The structure of the proposed Siamese dense pixel-level fusion network is shown in Fig. 1. The
template and search images are inputted, and the Siamese architecture is adopted to extract features
from both inputs with the same backbone. The dense pixel-level feature fusion module performs cross-
correlation between template features and search features to obtain the response map. After that,
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the attention module is embedded to emphasize key features of the response map in both spatial
and channel dimensions, enhancing the self-semantic interdependencies of the response map. The
target localization module learned from LightTrack [11] is designed to locate the object’s position
and determine the predicted boundary, including classification and regression branches.

Figure 1: The structure of the proposed tracker. The tracker is composed of the feature extraction net-
work (backbone), the dense pixel-level feature fusion, the attention module, and the target localization

3.1 Dense Pixel-Level Feature Fusion

The Siamese network treats visual tracking as a similarity-matching problem. As shown in Fig. 2a,
several original Siamese trackers adopt naive correlation [5] for aggregation. The Siamese backbone
(denoted as f (·)) extracts the template image (marked as x) provided by the initial frame to obtain the
template features f (x) ∈ R

C×Hx×Wx . The search image (drawn as z) cropped from the current frame is
extracted as the search features f (z) ∈ R

C×Hz×Wz . The naive correlation uses the template features as a
sliding window to perform cross-correlation calculation with the search features, as shown in Eq. (1):

f (x, z) = f (x) � f (z) (1)

where � refers to the cross-correlation operation. The response map f (x, z) ∈ R
1×Ho×Wo has the height

Ho = Hz−Hx+1 and the width Wo = Wz−Wx+1. Considering the requirement for multi-dimensional
output channels, the number of template feature channels needs to be increased. This operation is
called up-channel cross-correlation (UP-Xcorr), used by SiamRPN [6], which brings the difficulty of
training optimization and parameter imbalance between the template and search features.

As shown in Fig. 2b, SiamRPN++ [7] adopts a lightweight cross-correlation layer called depth-
wise correlation. The template and search features perform the cross-correlation operation channel by
channel, which is shown in Eq. (2):

fi(x, z) = fi(x) � fi(z), i ∈ [1, 2, . . . , C] (2)

where fi(x, z) ∈ R
1×Ho×Wo , fi(x) ∈ R

1×Hx×Wx and fi(z) ∈ R
1×Hz×Wz . The final response map f (x, z) ∈

R
C×Ho×Wo is obtained. The computational cost and memory consumption are significantly reduced

by using depth-wise correlation. However, features in each channel are independent, resulting in the
background noise.
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Figure 2: Three different cross-correlation methods. (a) naive correlation, (b) depth-wise correlation,
(c) pixel-wise correlation

Pixel-wise correlation is introduced from Alpha-Refine [37] method to preserve more boundary
information. As shown in Fig. 2c, f (x) ∈ R

C×Hx×Wx is decomposed into several small kernels fj(x) ∈
R

C×1×1,j ∈ [1, 2, . . . , HxWx]. The cross-correlation between fj(x) ∈ R
C×1×1 and f (z) ∈ R

C×Hz×Wz is
performed in Eq. (3), and the response map f (x, z) ∈ R

HxWx×Hz×Wz is obtained.

fj(x, z) = fj(x) � f (z), j ∈ [1, 2, . . . , HxWx] (3)

The template features can be directly mapped to the search region to obtain an ideal matching
area. Still, most trackers need to obtain the response map through cross-correlation and then map it
to the search image to get the corresponding matching area [8]. Both naive and depth-wise correlations
use the template features as a sliding window to calculate with the search features, which causes the
receptive field to expand. It blurs spatial information and forms a larger corresponding matching
area than the ideal one. In contrast, pixel-wise correlation divides the template features spatially into
1 × 1 small kernels. The response map is calculated by cross-correlation between kernels and the search
features, which encodes the local region information to avoid a large correlation window from blurring
the feature. Compared with naive correlation and depth-wise correlation, the response map of pixel-
wise correlation has a larger size. A feature point in this response map corresponds to a smaller
receptive field of the search region so that the corresponding matching area will be closer to the ideal
matching area, resulting in less background information and avoiding spatial distortion.

In Fig. 3, the response maps of the three correlation methods are visualized. It can be seen
from Fig. 3c that the naive correlation roughly represents the center location of the object without
distinct shapes and scales, while the response map only has a single channel. In Fig. 3d, the depth-
wise correlation encodes erroneous matching information in some channels of the response map. The
pixel-wise correlation response map in Fig. 3e shows more boundary information of the object with
better correlation matching ability.
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Figure 3: The visualization of response maps for naive correlation (c), depth-wise correlation (d), and
pixel-wise correlation (e). Two inputs are 127 × 127 template image (a), and 287 × 287 search image (b)

Given the small size of the template features, the pixel-wise correlation response map needs to
be expanded in the channel dimension. Therefore, as shown in Fig. 4, a dense pixel-level feature
fusion module is designed by referring to Dense Convolutional Network (DenseNet) [38]. This module
strengthens feature propagation and encourages feature reuse by applying the dense connectivity
pattern. The pixel-wise correlation between the template and search features obtains the first response
map. After concatenating with the search features, it is aggregated through a 1 × 1 convolution kernel
to get the feature map, which must have the same channel number as the template features. The first
feature map is then calculated with the template features by pixel-wise correlation to obtain the new
response map with richer semantic information. The latest response map gets the last feature map
through another 1 × 1 convolution kernel. Compared with the first feature map, the last feature map
has fewer channels to reduce the computational cost. Only two dense connections are applied in this
module to avoid excessive computational consumption caused by the dense connectivity pattern. With
pixel-wise correlation, the fused feature map has the same size and receptive field as the search features.
Its matching area is closer to the ideal matching area, avoiding spatial distortion.

Figure 4: The dense pixel-level feature fusion module

3.2 Attention Module

Prior studies [24,25] have noted the importance of attention modules. The introduced attention
module aims to strengthen the target features’ representation power and enhance the feature map’s
self-semantic information. Compared with SiamAttn [25], the attention module employed for a single
feature map consumes fewer computational resources.
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Self-attention: Inspired by Dual Attention Network (DANet) [39], the self-attention module
attends to spatial encoding. Limited by its intrinsic narrow receptive fields, a feature point can only be
mapped to a small patch with the local context. Therefore, learning the global semantic connections
from the entire feature map makes sense.

As shown in Fig. 5a, the feature map F ∈ R
C×H×W is utilized as the input to generate query features

Q, key features K, and value features V respectively through three different 1 × 1 convolution kernels.
Channels of Q, K ∈ R

C/4×H×W are compressed to decrease computational complexity, while V ∈ R
C×H×W

preserves the number of channels. The three features are reshaped as Q̂T ∈ R
HW×C/4, K̂ ∈ R

C/4×HW ,
V̂ ∈ R

C×HW . Via matrix multiplication between Q̂T and K̂, the spatial self-attention map M̂s is generated
in Eq. (4) through a softmax operation on each row, which builds the relationship between pixel points
and global context. V̂ are multiplied with M̂s to obtain the refined feature map Ôp, as follows in Eq. (5):

M̂s = Softmax
(

Q̂TK̂
)

∈ R
HW×HW (4)

Ôp = V̂ ⊗ M̂s ∈ R
C×HW (5)

where ⊗ represents matrix multiplication. After reshaping Ôp back to Op ∈ R
C×H×W , Op is weighted by

a 1 × 1 convolution kernel with a residual connection in Eq. (6):

On = αOp + F ∈ R
C×H×W (6)

where α is the weight factor given by the 1 × 1 convolution kernel. On is the output.

Channel attention: Unlike the detection or classification task, visual object tracking is independent
of category recognition. The object class remains unchanged throughout the track. Each channel of
features typically represents a specific object class, which can be adaptively enhanced. By introducing
the channel attention inspired by Convolutional Block Attention Module (CBAM) [40], the intercon-
nection can be applied between channels to improve the expression ability of specific semantics.

In Fig. 5b, the output On ∈ R
C×H×W of the self-attention module is taken as the input. To aggregate

spatial information, global max pooling (GMP) and global average pooling (GAP) are employed to
obtain two different spatial context descriptors, GMP(On) ∈ R

C×1×1 and GAP(On) ∈ R
C×1×1. The

channel attention map Mc is produced by forwarding both descriptors to a shared network N, which
consists of a 1 × 1 convolution kernel W C/4 for adjusting the channel number to C/4, the activation
function ReLU, and a 1 × 1 convolution kernel W C for restoring the channel number to C, as shown
in Eq. (7):

N = W C(ReLU(W C/4(GMP(On); GAP(On)))) (7)

After applying the shared network to the descriptors, Mc is merged in Eq. (8) using element-wise
summation between NMax ∈ R

C×1×1 and NAvg ∈ R
C×1×1, and passing through a sigmoid function:

Mc = Sigmoid(NMax + NAvg) ∈ R
C×1×1 (8)

Mc is channel-wise multiplicated with On, and adopts a residual connection, as follows in Eq. (9):

X = β · On � Mc + On ∈ R
C×H×W (9)

where � represents channel-wise multiplication. β is a scalar parameter, and X is the final refined
output.
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Figure 5: Attention modules include self-attention (a) and channel attention (b)

3.3 Target Localization

Divided into classification and regression branches, the RPN-style box head is still adopted in the
target localization module. To design a sophisticated structure, the head of LightTrack [11] is referred
to in the method.

From the LightTrack architecture searched by the one-shot NAS method, there are fewer layers
in the classification branch compared with the layers in the regression branch. A possible explanation
might be that the task of coarse target localization for the classification branch is more accessible than
the task of precise bounding box prediction for the regression branch. Besides, the number of output
channels for each layer in the classification branch is more significant than that in the regression branch
because the classification of foreground and background requires more semantic information in the
channel dimension. Following the same spirit, the target localization module is designed as shown in
Fig. 6. Considering the speed of depthwise separable convolutions [41] employed in LightTrack on
the GPU, regular convolutions are finally adopted. 1 × 1 convolution kernels adjust the channels at
the end of the two branches, where k is the number of anchors. The classification branch outputs the
confidence score of foreground and background. Thereby the number of output channels is 2k. The
regression branch outputs the distances dx, dy, dw and dh to refine the location and scale of each
anchor, so the number of output channels is 4k.

Figure 6: The target localization module is divided into the classification branch and the regression
branch
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4 Experiments

SiamDPL has been comprehensively validated through extensive experiments on two authoritative
UAV tracking benchmarks, UAV20L [42] and UAV123@10fps [42]. In addition, 12 well-known
trackers, including 6 DCF-based trackers (KCF [12], DSST [43], AutoTrack [26], Background-
Aware Correlation Filters (BACF) [44], ECO_HC [13], and ARCF_H [14]) and 6 Siamese trackers
(DaSiamRPN [17], Ocean [23], UpdateNet [45], SiamMask [19], SiamRPN++ [7], and SiamFC++
[21]), are also evaluated.

4.1 Experimental Details

The first five convolutional layers of AlexNet, which were pre-trained on ImageNet [46], are
applied as the backbone. The entire tracker is fine-tuned on the training sets of COCO [47] and
Youtube-Bounding Boxes [48] using several data augmentation strategies, such as translation, scale
variations, illumination, and motion blur. The two datasets contain diverse categories of positive
pairs to promote generalization and semantic negative pairs to improve discriminative ability [17].
The stochastic gradient descent (SGD) is applied with a momentum of 0.9 and a minibatch of 128.
The size of the template image is 127 × 127, and the size of the search image is 287 × 287 in both the
training and testing phases.

Following SiamRPN++ [7], a warm-up learning rate of 0.01 is used for the first five epochs, and
the learning rate is increased to 0.03 in the 6th epoch. After that, the learning rate decays from 0.03 to
0.0005 in a proportional sequence. The backbone parameters are frozen for the first ten epochs, while
the last three backbone layers are unfrozen and trained after ten epochs. The entire network is trained
end-to-end, and each epoch has 100,000 sample pairs. This paper achieves optimal test performance
in the 55th epoch after training for 60 epochs. Following SiamRPN [6], anchors are set with five aspect
ratios, [0.33, 0.5, 1, 2, 3], and the anchor stride is 8. During the inference phase, cosine window penalty,
aspect ratio penalty, and scale change penalty are applied in SiamDPL.

The method is implemented using Pytorch and SiamDPL, which is trained and tested on a
personal computer (PC) with an Intel i9-9920X Central Processing Unit (CPU), 32 GB Random
Access Memory (RAM), and NVIDIA TITAN RTX GPU.

4.2 Datasets and Evaluation Metrics

UAV20L: UAV20L is a sub-dataset of UAV123 [42] containing 20 long-term sequences taken by
low-altitude UAVs, with a maximum of 5527 frames and an average of 2934 frames per sequence.
Therefore, it serves as a verification of UAV long-term tracking scenes.

UAV123@10fps: UAV123@10fps is also a sub-dataset of UAV123 [42], consisting of 123 short-
term sequences with a frame interval of 10 frames. Video sequences with a gap of more significant
than 30 frames present challenging situations, such as fast movement and drastic object variation. The
tracker evaluated on UAV123@10fps can be simulated in the UAV tracking scene with a low frame
rate and extreme variation, which measures the effect of tracking speed on performance. Therefore,
UAV123@10fps is adopted as a UAV low-speed tracking scene verification.

Evaluation metrics: The one-pass evaluation (OPE) metrics are adopted to evaluate the success
rate and precision, using overlap score (OS) and center location error (CLE). OS is the intersection
over union (IOU) score between the predicted bounding box and the ground-truth box. The success
rate is measured by the percentage of frames whose OS surpasses a certain threshold. The success plot
reflects the change in success rate with different thresholds, ranking all trackers by calculating the area
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under the curve (AUC). CLE is the Euclidean distance between the center point of the ground-truth
box and that of the predicted bounding box, while the precision plot shows the percentage of frames
whose CLE is smaller than the threshold. Note that the precision at a threshold of 20 pixels is utilized
for ranking in the relevant experiments.

4.3 Comparisons with Advanced Trackers

Compared with other advanced trackers on two benchmarks, SiamDPL has achieved good results.
Although SiamRPN++ [7], SiamMask [19], and SiamFC++ [21] have higher precision and AUC
scores, the enormous costs of computational resources and running speed are regrettable, which is
verified in Section 4.5. Achieving accuracy and efficiency is only possible by carefully considering the
real UAV tracking scene.

On UAV123@10fps: Fig. 7 shows the quantitative results of all trackers on the UAV123@10fps
dataset. Specifically, SiamDPL achieves a precision of 0.697 and an AUC score of 0.497, surpassing
DaSiamRPN [17] in both metrics. Although gaps still exist with the scores of SiamRPN++ [7],
SiamFC++ [21], and SiamMask [19], they adopt deeper backbone networks such as ResNet50 and
GoogleNet. Although these trackers have achieved a desirable level of tracking accuracy, they still
need to be more computationally expensive. In Section 4.5, the speed and complexity of these Siamese
trackers are compared with each other. SiamDPL has achieved the fastest speed and the lowest
computational complexity, making it more suitable for UAV tracking.

Figure 7: Precision plot (a) and success plot (b) on the UAV123@10fps

Table 1 shows the attribute-based evaluation results on the UAV123@10fps dataset to analyze
performance in various challenges. There are four common attributes in UAV tracking challenges,
including Similar Object (SO), Fast Motion (FM), Partial Occlusion (PO), and Scale Variation (SV).
Although SiamDPL ranks fourth in these attributes, it outperforms other trackers regarding speed, as
shown in Section 4.5.

On UAV20L: As shown in Fig. 8, SiamDPL outperforms most trackers on the UAV20L dataset
with a precision of 0.723 and an AUC score of 0.521. Considering that the speed of SiamDPL is fast
enough to meet the real-time requirements of UAV tracking, the evaluated results of UAV20L are
more convincing than those of UAV123@10fps. Compared with DaSiamRPN [17], SiamDPL has a
significant improvement of 9.2% on the precision and 7.9% on the AUC score, ranking third only to
SiamRPN++ [7] and SiamFC++ [21].
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Table 1: Evaluate SiamDPL and other 12 advanced trackers on the UAV123@10fps dataset about four
challenge attributes, and the best four performances are responsively highlighted that ranked first in
red, second in green, third in blue, and fourth in orange

SO FM PO SV
Tracker Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

KCF 0.453 0.279 0.217 0.145 0.344 0.223 0.374 0.238
DSST 0.509 0.368 0.277 0.187 0.384 0.276 0.424 0.313
ECO_HC 0.655 0.478 0.483 0.330 0.572 0.404 0.594 0.430
ARCF_H 0.657 0.445 0.384 0.256 0.531 0.361 0.570 0.399
AutoTrack 0.664 0.462 0.525 0.349 0.584 0.405 0.629 0.443
BACF 0.605 0.424 0.407 0.275 0.467 0.327 0.525 0.374
UpdateNet 0.677 0.447 0.533 0.379 0.602 0.406 0.644 0.451
Ocean 0.682 0.480 0.405 0.253 0.586 0.406 0.631 0.437
DaSiamRPN 0.710 0.471 0.537 0.380 0.618 0.419 0.655 0.460
SiamRPN++ 0.760 0.563 0.646 0.480 0.717 0.520 0.757 0.571
SiamFC++ 0.727 0.544 0.694 0.527 0.680 0.502 0.737 0.571
SiamMask 0.731 0.544 0.682 0.498 0.708 0.507 0.761 0.569
Ours 0.720 0.486 0.607 0.401 0.619 0.422 0.664 0.468

Figure 8: Precision plot (a) and success plot (b) on the UAV20L

To analyze the robustness of trackers in long-term tracking challenges, Table 2 shows the perfor-
mances of each tracker in five challenging attributes of the UAV20L dataset, including Background
Clutter (BC), Full Occlusion (FO), Fast Motion (FM), Scale Variation (SV) and Viewpoint Change
(VC). SiamDPL performs exceptionally well in the precision of FM and VC and ranks third in BC, FO,
and SV. The top two trackers (SiamFC++ [21] and SiamRPN++ [7]) consume more computational
power, as shown in Section 4.5, while SiamDPL maintains robustness and real-time performance in
long-term UAV tracking.
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Table 2: Experiments are conducted with SiamDPL and 12 other advanced trackers on the UAV20L
dataset about five challenge attributes. The best four performances are responsively highlighted that
ranked first in red, second in green, third in blue, and fourth in orange

BC FO FM SV VC

Tracker Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

KCF 0.251 0.148 0.264 0.115 0.188 0.064 0.275 0.175 0.189 0.148
DSST 0.333 0.218 0.354 0.189 0.280 0.147 0.430 0.320 0.346 0.271
ECO_HC 0.235 0.133 0.339 0.163 0.359 0.219 0.471 0.360 0.423 0.353
ARCF_H 0.329 0.210 0.378 0.199 0.354 0.201 0.534 0.368 0.465 0.334
AutoTrack 0.374 0.219 0.403 0.198 0.419 0.234 0.487 0.330 0.420 0.303
BACF 0.329 0.209 0.378 0.200 0.408 0.234 0.562 0.399 0.500 0.373
UpdateNet 0.387 0.206 0.411 0.207 0.615 0.370 0.615 0.432 0.533 0.421
Ocean 0.407 0.268 0.484 0.278 0.616 0.395 0.611 0.430 0.577 0.418
DaSiamRPN 0.387 0.208 0.411 0.209 0.615 0.371 0.611 0.432 0.527 0.418
SiamRPN++ 0.562 0.365 0.553 0.342 0.726 0.514 0.745 0.572 0.687 0.554
SiamFC++ 0.571 0.384 0.574 0.370 0.665 0.483 0.729 0.569 0.656 0.550
SiamMask 0.319 0.182 0.363 0.200 0.678 0.459 0.662 0.503 0.656 0.519
Ours 0.495 0.296 0.539 0.299 0.706 0.449 0.709 0.510 0.667 0.500

4.4 Ablation Study

To demonstrate the effectiveness of the proposed dense pixel-level feature fusion module, the
attention module, and the target localization module, ablation studies are conducted on the UAV20L
dataset. As shown in Fig. 9, the baseline tracker is designed as an anchor-based tracker whose
backbone is AlexNet. It adopts depth-wise correlation for feature fusion. The number of output
channels in the classification branch is 10, while the number of output channels in the regression
branch is 20.

Figure 9: The network of the baseline tracker. It composes of the classification and regression, the
feature extraction network (backbone), and depth-wise correlation

As shown in Table 3, CR stands for the designed classification and regression branches of the
target localization module, AM represents the attention module, and the dense pixel-level feature
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fusion module is referred to as DPFF. The baseline tracker achieves a precision of 0.594 and an AUC
score of 0.388. Firstly adding the target localization module increases the precision from 0.594 to 0.626
and the AUC score from 0.388 to 0.431, showing that the classification and regression branches can
predict a more accurate bounding box. Adding the attention module increases the precision from 0.626
to 0.647, bringing more precise predictions for the object center. With the dense pixel-level feature
fusion contribution, SiamDPL achieves the best results. The dense pixel-level feature fusion enhances
the matching ability and reduces the introduction of noise.

Table 3: Comparison of precision and AUC score of trackers using different components on the
UAV20L dataset

Structure Precision AUC score

Baseline 0.594 0.388
Baseline + CR 0.626 0.431
Baseline + CR + AM 0.647 0.428
Baseline + CR + AM + DPFF (Ours) 0.724 0.521

Taken together, these results suggest that the proposed feature fusion, the attention module, and
the target localization module can improve tracking performance in long-term tracking scenarios, and
their cooperation has brought a positive promotion.

4.5 Speed and Complexity

All trackers are tested on NVIDIA TITAN RTX to evaluate their speed and complexity. Params
represent the model’s parameters to measure the space complexity of trackers. Frame Per Second (FPS)
indicates the number of images that can be processed per second, which is adopted to evaluate the speed
of trackers. Multiply–Accumulate Operations (MACs) are common steps that compute the product of
two numbers and add that product to an accumulator. They can be used to measure the computational
complexity of trackers because the convolutional neural network (CNN)-based trackers are dominated
by convolution operations, which include multiplication and addition operations, and much hardware
treats multiplication and addition operations as a single instruction.

Table 4 summarizes the runtime speed and complexity of Siamese trackers. It can be observed
that SiamDPL has a minimum of MACs of 9.521 G and Params of 9.386 M, computing much
more efficiently than other Siamese trackers. SiamRPN++ [7], SiamMask [19], and SiamFC++ [21]
cannot run at real-time speed despite their high precision and superior AUC scores. With the closest
speed to SiamDPL, DaSiamRPN [17] has lower precision and AUC score than SiamDPL. The data
reported here support SiamDPL to be deployed and applied in resource-constrained applications so
that SiamDPL can satisfy the real-time requirements of UAV tracking.

To analyze the consumption of computational resources for each module, the components of
SiamDPL are compared in terms of computational complexity and parameters. It is apparent from
Table 5 that the backbone incurs the most MACs, despite being one of the most miniature modules
for the backbone structure. Numerous parameters are employed for classification and regression for
more precise target localization. The template features constitute a small part of the parameters in the
feature fusion. The objects that participate in calculating the attention module come from the feature
map itself, so there are very few parameters in the attention module.
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Table 4: Comparison of the speed, MACs and Params of all Siamese trackers

Trackers Speed MACs Params

SiamRPN++ 40 fps 62.324 G 53.951 M
SiamMask 45.3 fps 21.341 G 18.817 M
SiamFC++ 41.9 fps 17.521 G 12.706 M
UpdateNet 61 fps 24.225 G 20.036 M
Ocean 49.8 fps 26.087 G 25.869 M
DaSiamRPN 87 fps 24.210 G 19.642 M
Ours 100.1 fps 9.597 G 9.498 M

Table 5: Comparison of MACs and Params of each employed module

Module MACs Params

Backbone 5.715 G 3.750 M
Feature Fusion 79.173 M 117.12 K
Self-Attention 212.686 M 98.7 K
Channel Attention 238.592 K 32.8 K
Target localization 3.784 G 5.598 M

Table 6 illustrates the computation of the three cross-correlation methods. The MACs of the pixel-
wise correlation are the highest because it establishes relationships between each pixel of the template
and search features. The naive correlation and the depth-wise correlation are applied by taking the
template features as a sliding window to calculate with the search features. Several pixels at the center
of the template features are not involved in the calculation with pixels of the search feature edges,
reducing the computational complexity. However, due to the larger matching area, more background
noise is introduced to weaken the correlation-matching ability.

Table 6: MACs and output sizes of three cross-correlation operations

Feature fusion MACs Output size (channel × width × height)

Naive correlation 4.064 M 1 × 21 × 21
Depth-wise correlation 4.064 M 256 × 21 × 21
Pixel-wise correlation 6.230 M 36 × 26 × 26

To compare the speed and performance of each tracker more intuitively, the PAS, which is the
mean of precision and AUC score, is introduced to measure the tracking performance. As shown in
Table 7, compared with the top three trackers on UAV123@10fps, SiamDPL has at least 7.7% lower
PAS but is 54.8 fps faster. The performance gap between SiamDPL and the top two trackers becomes
smaller on UAV20L, as shown in Table 7. The PAS of SiamDPL is only 4.56% lower than that of
SiamRPN++ [7] and 3.65% lower than that of SiamFC++ [21]. Therefore, SiamDPL can achieve
outstanding tracking results while maintaining the fastest speed.



3234 CMC, 2023, vol.76, no.3

Table 7: PAS and speed of trackers on the UAV123@10fps and UAV20L datasets

Trackers Speed PAS

UAV123@10fps UAV20L

SiamRPN++ 40 fps 0.689 0.6685
SiamMask 45.3 fps 0.689 0.5965
SiamFC++ 41.9 fps 0.674 0.6585
UpdateNet 61 fps 0.5785 0.538
Ocean 49.8 fps 0.5595 0.537
DaSiamRPN 87 fps 0.588 0.5365
Ours 100.1 fps 0.597 0.622

4.6 Qualitative Evaluation

Some qualitative comparisons among UpdateNet [45], DaSiamRPN [17], Ocean [23], and
SiamDPL are shown in Fig. 10. SiamDPL can maintain stable tracking on sequences group1, group2
of UAV20L and person7_2, person19_2 of UAV123@10fps during similar object, occlusion, and fast
motion. Owing to the contributions of the dense pixel-level feature fusion, the attention module, and
the target localization module, as seen in Fig. 10, SiamDPL eventually achieves significant results in
UAV tracking.

Figure 10: Screenshots of group1, group2 from UAV20L, person7_2 and person19_2 from
UAV123@10fps
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5 Conclusion

This paper proposed a Siamese dense pixel-level fusion network to fulfill the performance and
efficiency requirements of real-time UAV tracking. The dense pixel-level feature fusion was proposed
to filter out the background noise with the help of pixel-wise correlation and to enrich features through
the dense connection. The attention module, consisting of self-attention and channel attention, was
introduced to aggregate global information from the feature map and enhance the representation
power, improving the robustness against complex backgrounds and distractors. The target localization
module was designed to obtain more accurate bounding boxes. Finally, compared with several
advanced trackers, SiamDPL was evaluated on two common benchmarks, demonstrating excellent
performance with the lowest complexity and fastest speed for real-time UAV tracking.
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