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ABSTRACT

Centralized training of deep learning models poses privacy risks that hinder their deployment. Federated learning
(FL) has emerged as a solution to address these risks, allowing multiple clients to train deep learning models
collaboratively without sharing raw data. However, FL is vulnerable to the impact of heterogeneous distributed data,
which weakens convergence stability and suboptimal performance of the trained model on local data. This is due to
the discarding of the old local model at each round of training, which results in the loss of personalized information
in the model critical for maintaining model accuracy and ensuring robustness. In this paper, we propose FedTC,
a personalized federated learning method with two classifiers that can retain personalized information in the local
model and improve the model’s performance on local data. FedTC divides the model into two parts, namely, the
extractor and the classifier, where the classifier is the last layer of the model, and the extractor consists of other
layers. The classifier in the local model is always retained to ensure that the personalized information is not lost.
After receiving the global model, the local extractor is overwritten by the global model’s extractor, and the classifier
of the global model serves as an additional classifier of the local model to guide local training. The FedTC introduces
a two-classifier training strategy to coordinate the two classifiers for local model updates. Experimental results on
Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,
such as FedAvg, FedPer, and local training, achieving a maximum improvement of 27.95% in model classification
test accuracy compared to FedAvg.
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1 Introduction

Machine learning mines experience and knowledge from large amounts of data, allowing com-
puters to think more innovatively. However, data is often distributed across different devices or
departments, which causes training of machine learning models prone to overfitting due to insufficient
local data. Therefore, collecting data from multiple parties to the computing center is often necessary
for centralized model training. However, people have become increasingly concerned about personal
data privacy in recent years. Relevant regulations have also been issued in some countries and regions
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to protect personal data, such as the General Data Protection Regulation (GDPR) [1] in Europe
and the Personal Information Protection Law [2] in China. Due to privacy and security concerns
and regulatory prohibitions, data owners are no longer willing to share their source data with the
computing center.

Federated learning (FL) [3] has been proposed to solve the privacy issue in centralized model
training. FL allows multiple clients to train a deep learning model collaboratively by exchanging model
parameters with the server and avoiding the direct sharing of raw data. Currently, federated learning is
a crucial privacy computing technology widely used in finance [4], healthcare [5], telecommunications
[6], and other fields [7–10]. However, since the data are usually generated locally, the distribution is non-
independently and homogeneously distributed (Non-IID) across clients, also known as heterogeneous
data. For example, the data held by different hospitals are often distributed differently due to their
areas of expertise and geographical location. The study [11] has demonstrated that conventional
federated learning algorithms struggle to achieve stable convergence when dealing with Non-IID data,
resulting in a substantial decrease in model quality.

Traditional federated learning algorithms train only one global model. However, the study in [12]
showed that the local optimal point for individual client data and the global optimal point for all
data are inconsistent, especially when the data are Non-IID. Therefore, some personalized federated
learning algorithms have recently been proposed to train a personalized model for each client rather
than a single global model. For example, studies such as Per-FedAvg [13], Ditto [14], and FedAMP
[15] introduced a local regularization term to allow clients to focus more on local objectives and
train personalized local models. However, introducing the regularization term has brought a lot of
additional computational load. To achieve personalization in a more lightweight manner, the approach
of partial layer sharing has been proposed in studies such as FedPer [16], FedRep [17], FedBABU [18],
and LG-FedAvg [19]. These studies divide the neural network layers of the model into two parts: the
shared and personalized layers. In their methods, only the shared layers are uploaded to the server
for aggregation in each training round, while the personalized layers are always trained locally. In this
way, the personalized information of the classifier is retained, and thus the model performs better on
local data. However, in these approaches, the shared model loses the information of the personalized
layers that might benefit most clients [20].

Through our observations, we have found another reason for the loss of client personalization
information: the client discarded old local models from each client in every federated training round.
Specifically, within each training round in the traditional federated learning algorithm, the client
performs the following steps after receiving the global model from the server. The client first discards
the old local model and uses the received global model as the initialized model for local training. The
client then independently updates the model in several steps on the local data and uploads the updated
local model to the server for aggregation. However, it is important to note that the old local model
contains valuable personalized information specific to the client’s data distribution. Discarding this
information can negatively impact the test performance of the model on the client’s data, particularly at
the classifier layer, which plays a crucial role in making final predictions based on the learned features
from the input data.

Based on the aforementioned observations, we propose FeTC, a federated learning algorithm
method with two classifiers. Unlike traditional federated learning algorithms, FeTC does not introduce
regularization terms, which significantly reduces computational loads. Additionally, FeTC allows
all layers to be shared, ensuring that no layer information is lost in the shared model. To achieve
personalization, we employ a two-classifier training strategy in FeTC. Specifically, we define the last
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layer of the neural network as the classifier and the other neural network layers as the extractor. FedTC
requires the client to upload the entire local model (extractor and classifier) to the server in each
training round, as with FedAvg, to ensure that no information is left out. To ensure personalization,
FedTC allows the local classifier to remain instead of discarded when obtaining the initial model for
local training. To effectively use the global classifier, FedTC designs a two-classifier training strategy,
where the global classifier acts as a second classifier to guide the update of the local model. Empirically,
in the Non-IID setting, we demonstrate that FedTC performs better than FedAvg, FedPer, and Local.

Our paper makes the following contributions:

(1) We analyzed the training process of federated learning. We discovered that personalized
information in the model is lost due to the discarding of old local models in each round of
training.

(2) We propose a novel federated learning method called FedTC. FedTC does not use any regular-
ization terms, thereby avoiding excessive computational overhead. Furthermore, FedTC allows
all layers of the local model to be shared, ensuring that valuable information is not lost in the
shared model. We also introduce a dual classifier training strategy into FedTC, which ensures
personalization in federated learning and enhances its ability to handle heterogeneous data.

(3) Our experiments on the Cifar10 and Cifar100 datasets demonstrate that FedTC can improve
model accuracy on Non-IID data. In three Non-IID settings, FedTC outperforms FedAvg,
FedPer, and local training. Notably, in extremely Non-IID cases, FedTC achieves a classifica-
tion accuracy of 27.95% higher than that of FedAvg.

The structure of this paper is as follows. In Section 2, we review relevant literature on federated
learning. Section 3 formally describes of classical federated learning algorithms and highlights their
limitations. In Section 4, we propose the FedTC algorithm and describe it in detail, emphasizing the
local training strategy that utilizes two classifiers. We evaluate our approach using the widely used
Cifar10 and Cifar100 datasets in Section 5. Finally, in Section 6, we conclude and discuss future work.

2 Related Work

The first federated learning algorithm is FedAvg [3], proposed by Google, which is used to train
word prediction models without collecting data on the user. In FedAvg, the client uploads model
parameters instead of original data to the server in each training round. FedAvg can achieve the same
effect as the centralized model training when the participants’ data are independent and identically
distributed (IID). However, when the data is Non-IID, FedAvg is challenging to converge stably, and
the trained global model performs poorly on the local data. Thus, many studies have made efforts to
improve the performance of FedAvg on Non-IID data. Li et al. [21] introduced an L2 regularization
term into the local objective function to limit the distance between the local and global models, making
the model convergence more stable. According to the study [22], “client drift” is a significant factor
contributing to the deterioration of joint learning performance. To address this problem, they propose
SCAFFOLD, which utilizes control variables to correct client drift and improve federated learning
performance. They also prove the effectiveness and convergence of SCAFFOLD through rigorous
mathematical proof and experimental analysis. Zhao et al. [11] used Earth’s Mover’s Distance (EMD)
to measure the difference in data distribution among clients. They found that the model accuracy
would drop sharply when EMD reached a certain threshold. Therefore, they reduce EMD by sending
clients a subset of global data. Experiments on the Cifar10 dataset show that only 5% of globally
shared data can improve accuracy by about 30%. Also, to make clients’ data more IID, Jeong et al. [23]
proposed a data enhancement strategy FAug based on Generative Adversarial Network (GAN). In
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this method, each client uploads seed data of the labels lacking samples to the server. The server then
oversamples these seed data and uses them to train a GAN model. Finally, the client downloads the
GAN model from the server and generates the missing data locally. Overall, although these studies
improved FedAvg, only one global model was trained in their approach during the entire training
process, which resulted in every client getting the same model at the end of the training. However, in
the case of Non-IID local data distributions among clients, training a single global model may not
meet the diversified local data [24].

To address the issue of Non-IID local data distributions among clients, personalized federated
learning has been proposed as an alternative approach. Specifically, custom models are trained for
each client instead of using the same model for all clients. This approach allows for greater flexibility
and can better accommodate the diverse local data distributions. Researchers in [25] clustered clients
according to the channel sparse vector uploaded by clients. Through clustering, the local data
distribution of the same cluster client is more IID. In addition, Fallah et al. [13] introduced meta-
learning into federated learning, where all clients work together to train a good initialization model.
The client then fine-tunes the model on the local data to get a personalized model suitable for its
local data. Li et al. [26] used model distillation in federated learning and assume that there was a
large common dataset. During each training round, each client calculates the class scores on the
common dataset and sends the class scores to the server for average aggregation to get the global
average class score. Each client then downloads the global average class scores and performs model
distillation to make the local class scores fit the global class scores. After receiving the trained model,
the client continues training on their local dataset for several steps to obtain the final personalized
model. However, these methods come with additional computational costs. In contrast, researchers
in [16–19] proposed personalized federated learning methods based on partial layer sharing. In their
methods, only a part of the neural network layers are uploaded to the server for aggregation, and the
other parts only perform local updates. Although these methods are more lightweight, they lead to
the information of some layers not being shared. Our method, FedTC, is also a personalized federated
learning algorithm because the client ultimately obtains a personalized local model. However, it is
worth noting that our method does not introduce additional computational load and ensures that all
neural network layers are shared.

3 Preliminaries
3.1 Notations

In this paper, we consider a simple federated learning setup. Suppose there are N clients whose
local training data are D1, D2, . . . , DN, respectively. In each training round, fN clients will be selected
to participate in federated learning, where f is the client sampling rate.

3.2 Classical Federated Learning

In classic federated learning algorithms such as FedAvg [3], a single shared model with parameters
w is trained by all clients in coordination with the server. In each training round t, The training process
of the classic federated learning algorithm can be divided into the following four stages:

(1) Client selection stage: The server selects fN clients to participate in the training round;

(2) Model distribution stage: The server distributes the latest global model wt to the selected clients;

(3) Local training stage: First, each client i initializes the local model after receiving the global
model. The local model is initialized with the parameters of the global model, that is, wt

i = wt. Then,



CMC, 2023, vol.76, no.3 3017

the client i performs several local updates to the model on local training data. Suppose a batch of mini-
batch data ξ ⊆ Di is fed into the local model of client i, and then the following parameter updates are
performed as Eq. (1):

wt
i = wt

i − ηΔwt
i
Li(wt

i; ξ) (1)

where wt
i is the model parameter of the client i in training round t, L(.) is the loss function, Li(wt

i; ξ) is
local empirical loss on mini-batch data ξ , and η(η > 0) is the learning rate.

(4) Model aggregation stage: After all clients complete local training, they upload the local model
to the server. The server collects these models and averages them to get the global model of the next
round as Eq. (2):

wt+1 =
fN∑

i=1

ni

n
wt

i (2)

where wt+1 is the model parameter of the client i in training round t.

The goal of classic federated learning algorithms is to get a global model w∗ training over the
global dataset D = ∪i∈[N]Di that solves the objective as Eq. (3):

w∗ = argminwL(w; D) = argminw

N∑

i=1

|Di|
|D| Li(wi; Di) (3)

where L(w; D) is global empirical loss on global training data D, Li(wi; Di) is local empirical loss on
local training data Di. |Di| is the number of samples on Di, |D| is the number of samples on D, wi is
the model parameter of the client i.

However, when the local data is Non-IID, the above equation is not valid. That is, the optimal
model on the global data may not be optimal on the local data. The study [11] indicates that the
convergence of federated learning is unstable, and the accuracy decreases significantly when training
on heterogeneous data.

4 Method

Classical federated learning aims to train an optimal model on global data. However, when data is
heterogeneous, global data distribution cannot represent local data distribution. Therefore, the global
model may perform poorly on local data. Observing the whole training process of classical federated
learning in the previous section, it can be found that after receiving the global model, the client will
discard the entire local model and adopt the parameter of the latest global model. However, the local
model retains personalized information that reflects the distribution of client data. Especially when the
local data distribution is Non-IID, personalized information often determines whether the model can
perform well on the local dataset. Recently, some personalized federated learning (PFL) algorithms
have been proposed. The goal of PFL is to collaboratively learn individual local models w∗

1, w∗
2, . . . , w∗

N

using D1, D2, . . . , DN for each client. As shown in Eq. (4), PFL is trained to minimize the following
objective:

w∗
1, w∗

2, . . . , w∗
N = argminw1,w2,...,wN

L (w; D) = argminw1,w2,...,wN

N∑

i=1

|Di|
|D| Li (wi; Di) (4)

where w∗
1, w∗

2, . . . , w∗
N are the optimal models on local training data and are trained simultaneously.
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In particular, researchers in [16] realized personalization through partial layer sharing. Unlike
classic federated learning, each client finally obtains a customized model due to the presence of the
personalized layer in their methods. However, these approaches also result in the shared model lacking
information about the personalized layers. To ensure the personalization of the local model while
effectively sharing information from all layers, we propose FedTC, a personalized federated learning
method with two classifiers.

Similar to the personalized federated learning method based on partial layer sharing, we consider
the deep neural network to consist of two components: the extractor and the classifier. In our work,
the last linear layer of the deep learning model acts as the classifier, while the other layers make
up the extractor. In our proposed approach, the local model’s classifier is always updated locally. To
efficiently utilize the information of the classifier, the parameters of the classifier and extractor will
be uploaded to the server for aggregation in the model aggregation stage. Then the server aggregates
the local models uploaded by the client to get the latest global model. The entire global model is
distributed to the clients during the model distribution stage. The study [27] indicated that the extractor
usually contains more beneficial information, so the global extractor will replace the local extractor
before local training in FedTC. The global model classifier serves as the client’s second classifier to
guide the local model’s training. Fig. 1 shows the basic training steps of FedTC, the classical federated
learning algorithm FedAvg and a partial layer sharing-based federated learning algorithm FedPer. For
FedAvg, FedPer, and FedTC, each training round is divided into four steps: 1© The server distributes
the global model to selected K clients. 2© The client initializes the local model (FedAvg replaces all
local model parameters with global model parameters, FedPer replaces the parameters of shared layers
with global model parameters, and FedTC replaces the parameters of the local extractor with the
parameters of the global extractor). 3© Local training (FedAvg and FedPer use one-classifier mode
for local update training, FedTC uses two-classifier mode for local update training). 4© Central server
aggregates models (FedAvg and FedTC aggregate the parameters of the entire model, while FedPer
aggregates only the parameters of the personalized layers).

Algorithm 1 provides the pseudo code for FedTC. First, before the federated learning starts, the
server selects a portion of the clients (in this paper, the portion is set to 100% by default), and then
the initialized global model is distributed to the selected clients. Then, client and server updates are
executed alternately in the following manner.

Algorithm 1: FedTC
Input: Dataset {D1, D2, . . . , DN}, learning rate of extractor ηe, learning rate of classifier ηc, Total
communication rounds T , the client sampling rate f , the number of selected clients K, and K = fN.
Output: Trained personalized models (θ t

1, φ
t
1), (θ

t
2, φ

t
2), . . . , (θ t

N, φt
N)

1: procedure ServerExecutes
2: for each communication round t ∈ {1, . . . , T} do
3: Server select K clients and sends current global extractor θ

t
and global classifier φ

t
to them.

4: for each selected client i in parallel do
5: θ t

i , φt
i ←ClientUpdates (θ

t
, φ

t
)

(Continued)
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Algorithm 1 (Continued)
6: end for
7: Server computes the new global representation θ

t+1
and global classifier φ

t+1
as:

8: θ
t+1 = ∑K

i=1

ni

n
θ t

i

9: φ
t+1 = ∑K

i=1

ni

n
φt

i

10: end for
11: end procedure
12: procedure ClientUpdates (θ

t
, φ

t
)

13: Client i receives global extractor θ
t
and global classifier φ

t
and set θ t

i = θ
t
, φt

i = φt−1
i .

14: for each local epoch do
15: for each mini-batch ξ ⊆ Di do
16: φt

i = φt
i − ηcΔφt

i
Li(θ

t
i , φ

t
i ; ξ)

17: θ t
i = θ t

i − ηeΔθ t
i
Li(θ

t
i , φ

t
; ξ)

18: end for
19: end for
20: return φt

i , θ t
i

21: end procedure

Figure 1: The overview of the training process for each round of FedAvg, FedPer, and FedTC
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Client updates. In the tth round of federated training, client i receives the global model from the
server with the global extractor parameters θ

t
and the global classifier parameters φ

t
. As shown in

Fig. 2, before starting local training, the local extractor of the local model will be replaced with the
latest global extractor. The local model contains three parts: (1) shared extractor: the shared extractor
is the local extractor replaced by the latest global extractor with parameters θ t

i = θ
t
. (2) local classifier:

the local classifier is always kept local and its parameters are obtained after the last round of local
training, i.e., φt

i = φt−1
i . (3) shared classifier: the shared classifier is the classifier in the latest global

model, which has the parameters φ
t
. Based on these initialized model parameters, the client performs

local updates on the local data. Suppose that the client samples the mini-batch data for a particular
time as ξ , and we note that L(θ , φ; ξ) is the loss function. The client will perform the following
operations to update the local feature extractor parameters θ t

i and the local classifier parameters φt
i ,

respectively.

Figure 2: The local model consists of three parts: shared extractor, shared classifier, and local classifier

The local classifier parameters φt
i are first updated. The local extractor parameters θ t

i will be
fixed before forward propagation is performed. The sampled data ξ is fed to the local extractor and
the shared classifier successively to obtain the predicted values. Then the loss function Li(θ

t
i , φ

t
i ; ξ) is

calculated, and backpropagation is performed to update the local classifier parameters φt
i as Eq. (5):

φt
i = φt

i − ηcΔφt
i
Li

(
θ t

i , φ
t
i ; ξ

)
(5)

where ηc is the learning rate for the local classifier.

Then, the local extractor parameters θ t
i are updated. At this point, the shared classifier parameters

φt
i will be fixed before forward propagation is performed. The sampled data ξ is fed to the local

extractor and the shared classifier successively to obtain the predicted values. Then, the loss function
Li(θ

t
i , φ

t
; ξ) is calculated, and backpropagation is performed to update the local extractor parameters

θ t
i as Eq. (6):

θ t
i = θ t

i − ηeΔθ t
i
Li(θ

t
i , φ

t
; ξ) (6)

where ηe is the learning rate for the shared extractor.

As mentioned above, the local extractor parameters do not change when the shared classifier is
updated, so the local extractor only needs to be forward propagated once. When updating the local
extractor, the output of the local extractor obtained when updating the local classifier can be fed
directly into the shared classifier without the need to compute it again.

Server executes. After all the clients have completed the local updates, they will upload their local
model parameters (θ t

i , φ
t
i ) to the server. Assume that there are K clients participating in the tth round

of training, where K = fN. The number of local samples for each client is nk, and the total number
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of local samples is n. After receiving the model parameters uploaded by the client, the server will
aggregate these parameters to get the global model of the next round as Eqs. (7) and (8):

θ
t+1 =

K∑

i=1

ni

n
θ t

i (7)

φ
t+1 =

K∑

i=1

ni

n
Φt

i (8)

where θ
t+1

is the global extractor for the next training round, and φ
t+1

is the global classifier for the
next training round.

After computing the global model for the next round, the server will select a portion of the clients
to perform the next round of federated training.

5 Test Experimental Results and Discussion
5.1 Datasets and Settings

Federated Datasets. To validate the effectiveness of the method proposed in this paper, we perform
simulated federated learning experiments on Cifar10 and Cifar100, which are two popular public
datasets for the image classification task. To better simulate the Non-IID distribution of client datasets,
we use the popular data partitioning method based on Dirichlet distribution to allocate data for
each client [28–30]. We use Dir(α) to denote such a partitioning strategy for convenience. Here α

is a hyperparameter used to control the Non-IID degree of data distribution. When α is larger, the
local data distribution tends to be IID, while when α is smaller, the local data distribution tends to be
Non-IID. We randomly divide the data on each local device into 75% of the training set and 25% of
the test set.

Implementation. All our algorithms are implemented based on the open-source project PFL-Non-
IID from Zhang et al. [31]. We used Pytorch to perform our experiments on NVIDIA GeForce RTX
3090 GPUs. For the Cifar10 dataset, we used the same convolutional neural network (CNN) model
setup as the study [3], while for the Cifar100 dataset, we used the ResNet18 network [32]. In all
experiments, We set the client sampling rate to 1.0 for each round of federated learning, similar to
recent works [33–35], i.e., all clients are involved in each round of federated learning. In all experiments,
the number of local training iterations is set to 5, and the local batch size is set to 64 by default. We
used stochastic gradient descent (SGD) to optimize the neural network parameters, with the weight
decay set to 1e-5 and the momentum parameter set to 0.9. In FedTC, the learning rate of the extractor
is set to 0.01, and the learning rate of the classifier is set to 1e-4. The learning rate of FedAvg, FedPer,
and Local is set to 0.01 for fairness. Li et al. [36] proved that the learning rate decay is necessary, so we
set the learning rate decay to 0.9 in all experiments. We set the number of clients for all datasets to 10
in all experiments [37].

Evaluation Metrics. As we are conducting an image classification experiment, we have chosen
image classification accuracy as our evaluation metric. In each round of training, when a client receives
the global model and initializes its local model, the client will test the initialized local model on its local
test dataset. Then, for each of the selected clients in a round, client i will calculate the total number
of test samples Tsi and the number of correctly classified samples Tci. The local test accuracy Acci is
calculated using Eq. (9). For the global test accuracy, we count the sum of correctly classified samples



3022 CMC, 2023, vol.76, no.3

for all clients
∑K

i=1 Tci, as well as the total number of test samples for all clients
∑K

i=1 Tsi, and then
calculate the overall test accuracy ACC using Eq. (10):

Acci = Tsi

Tci

(9)

Acc =
∑K

i=1 Tsi∑K

i=1 Tci

(10)

where K represents the number of selected clients, Tci represents the number of correctly classified
samples for client i, and Tsi represents the total number of test samples for client i.

5.2 Evaluate the Test Performance of the FedAvg Algorithm on Local Test Dataset

Since all clients share a unique global model throughout the FedAvg training process, many
previous researchers have typically assumed that the server has a portion of test data that matches
the global data distribution. In their research, the global model is evaluated on the global test data
after the model aggregation stage, but the model’s performance on local datasets is not considered.
When the client data distribution is IID, the data distribution of each client matches the global data
distribution, so the accuracy of the global test data is usually similar to the accuracy of the local
test data. However, when the local data distribution is Non-IID, the global data distribution does
not represent the data distribution of each client. Therefore, the accuracy of the global model is not
representative of its performance on each client’s local data.

We conducted experiments on the Cifar10 dataset to verify the above claims, training a classifi-
cation model using the FedAvg algorithm and performing local tests. We considered different values
of the hyperparameter α, namely 0.1, 0.5, and 5.0. As shown in Table 1, we tested the trained model
on the local datasets of 10 clients and computed the standard deviation δ of their local test accuracies.
The “global” entry in the table indicates the model’s test accuracy on the entire dataset. We observed
that Non-IID data leads to a decrease in both the global and local test accuracies of the FedAvg
algorithm. Specifically, when α = 0.1, the global test accuracy drops by 7.73% compared to when α

= 5.0. Additionally, we noticed that as the Non-IID degree increases, the differences in the local test
accuracies among the clients become more pronounced. In particular, when α = 0.1, the local test
accuracy of client 2 differs from client 8 by 22.12%. Therefore, a single model trained using FedAvg
may not be suitable for scenarios where the client data is highly Non-IID.

Table 1: The local test accuracy (%), standard deviation, and global test accuracy (%) of FedAvg on
the local test data of each client are on the Cifar10 dataset

α Client 0 Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 δ Global
0.1 64.28 62.93 46.69 63.79 56.88 53.58 60.95 48.46 68.81 66.40 0.0758 61.09
0.5 67.12 67.04 57.64 67.10 67.22 76.74 63.49 73.90 57.48 69.09 0.0611 67.02
5.0 71.31 72.01 70.60 65.94 68.76 66.47 66.95 67.11 69.36 70.12 0.0215 68.82

5.3 Compare the Performance of FedAvg and Local Training

Local training can be viewed as a highly personalized setup of federated learning, where each
client trains the model only on its local dataset, and no data is shared between the clients. Traditional
federated learning algorithms that train a single model are rarely compared to local training, as the test
data is usually on the server side. However, the performance improvement on local data may affect the
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client’s interest in participating in federated learning. Therefore, we also compared FedAvg and Local
on the Cifar10 dataset.

The experimental results are presented in Fig. 3, where the x-axis represents the value of α, and
the y-axis represents the global testing accuracy of the corresponding algorithm. It can be observed
that the global model trained by FedAvg outperforms the Local when α = 5.0. As the Non-IID level
increases, the accuracy of FedAvg’s model decreases, but the accuracy of the locally trained model
gradually increases. At α values of 0.5 and 0.1, the accuracy of the model trained by FedAvg decreases
significantly and is lower than that of the locally trained model for each client. To further investigate the
reasons for the accuracy fluctuations of these two algorithms, we visualize the local data distribution
of clients. As shown in Fig. 4, the bar chart shows the local data distribution of each client when
Cifar10 is partitioned into 10 clients based on α values of 0.1, 0.5, and 5.0, where the height of each
bar represents the number of samples. When the α is large, the sample quantity of each label is uniform
among clients, enabling FedAvg to perform better. However, as α decreases, data distribution across
clients becomes more and more different. The single model trained by FedAvg is no longer applicable
to all clients’ local data. However, the decreasing value of α allows clients to have more samples of
a specific class. For example, when α = 0.1, the data of label 3, label 8, and label 9 make up a large
proportion of the local data samples of client 9, which is a simple classification task for the client.
Thus, in the case of highly Non-IID client data distribution, a good model can be obtained solely
through local training, which may outperform the model trained through FedAvg. Therefore, it is
crucial to enhance the performance of FedAvg on Non-IID data to prevent potential discouragement
of user participation in federated learning. In addition, we found that local training may outperform
FedAvg in some extremely Non-IID scenarios, indicating that local models may contain personalized
information that enables them to perform better on local data.

Figure 3: Test accuracy of FedAvg and Local on Cifar10 when α values of 0.1, 0.5 and 5.0
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Figure 4: The local data distribution of each client when Cifar10 is divided into 10 clients according
to α values of 0.1, 0.5 and 5.0

5.4 Evaluation of FedTC

To demonstrate the effectiveness of our proposed method, we compare FedTC with FedAvg,
FedPer, and Local (local training). FedAvg is a classic federated learning algorithm and the baseline for
comparison in many studies. FedPer is a personalized federated learning algorithm based on partial
layer sharing, which proposes keeping the client model’s classifier parameters local and uploading
only the feature extractor parameters to the server for aggregation to ensure local personalization.
Local is implemented the same way as FedAvg, except that model aggregation and model distribution
are removed. In our experiment, the number of clients was 10. We divided the Cifar10 and Cifar100
datasets into 10 parts as the local data of each client according to the α values of 0.1, 0.5, and 5.0.

The experimental results are presented in Table 2. As the Non-IID degree increases, all algorithms
except for Local exhibit a decrease in accuracy, which is expected as a higher Non-IID degree reduces
the difficulty of local tasks. FedAvg performs worse than Local in all cases except for α = 5.0,
indicating that FedAvg is not proficient in handling Non-IID data. FedPer preserves the personalized
information of local models through partial layer sharing. Hence its accuracy is significantly higher
than FedAvg at α = 0.1 or 0.5. This indicates that preserving personalized information is an effective
way to improve model performance in Non-IID scenarios. However, FedPer’s accuracy is slightly lower
than FedAvg at α = 5.0 because some layers’ information is not shared. FedTC, proposed in this
work, preserves personalized information of local models through a two-classifier training strategy
while retaining all layer information in the shared model. Therefore, from the experimental results,
FedTC achieves the highest accuracy in all scenarios. Notably, in the extreme Non-IID scenario where
α = 0.1, where FedAvg performs the worst, FedTC achieves up to 27.95% higher test accuracy than
FedAvg.

Table 2: Test accuracy (%) of Local, FedTC, FedPer, and FedAvg on Cifar10 and Cifar100 datasets

Method Cifar 10 Cifar 100

Dir (0.1) Dir (0.5) Dir (5.0) Dir (0.1) Dir (0.5) Dir (5.0)

Local 88.62 70.95 58.59 49.46 33.50 20.20
FedAvg 61.41 67.17 68.41 28.37 30.82 32.30
FedPer 89.08 75.73 66.65 49.50 38.54 28.14
FedTC 89.36 76.71 70.06 50.68 39.50 32.92
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6 Conclusion and Future Work

In this study, we propose FedTC, a personalized federated learning algorithm that handles the
problem of Non-IID local data distribution. FedTC introduces almost no additional computational
complexity compared to previous methods and ensures that all layers of the client’s local model
are shared. To maintain personalization, we present a two-classifier training strategy that ensures
the classifier of the local model is not discarded before each round of local training. Our extensive
experiments show that FedTC outperforms many federated learning algorithms in Non-IID scenarios.
However, we acknowledge that our current work only considers simple federated learning settings
and future work will need to address the challenge of applying it to complex experimental scenarios.
Additionally, techniques such as generative adversarial networks and model compression can be
considered to improve model accuracy further and reduce communication costs.
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