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ABSTRACT

The combination of spatiotemporal videos and essential features can improve the performance of human action
recognition (HAR); however, the individual type of features usually degrades the performance due to similar actions
and complex backgrounds. The deep convolutional neural network has improved performance in recent years for
several computer vision applications due to its spatial information. This article proposes a new framework called
for video surveillance human action recognition dubbed HybridHR-Net. On a few selected datasets, deep transfer
learning is used to pre-trained the EfficientNet-b0 deep learning model. Bayesian optimization is employed for the
tuning of hyperparameters of the fine-tuned deep model. Instead of fully connected layer features, we considered
the average pooling layer features and performed two feature selection techniques-an improved artificial bee colony
and an entropy-based approach. Using a serial nature technique, the features that were selected are combined into a
single vector, and then the results are categorized by machine learning classifiers. Five publically accessible datasets
have been utilized for the experimental approach and obtained notable accuracy of 97%, 98.7%, 100%, 99.7%, and
96.8%, respectively. Additionally, a comparison of the proposed framework with contemporary methods is done to
demonstrate the increase in accuracy.
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1 Introduction

Over the last decade, machine learning (ML) has emerged as one of the most rapidly growing fields
in advanced computer sciences. Several studies in Activity Recognition have been conducted using
machine learning and computer vision [1]. However, they encountered various types and similarities
between multiple human actions, making it more difficult to identify the action accurately. Several
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techniques for action recognition have been introduced in the past. These techniques belong to
traditional ML methods such as Convolution Neural Networks (CNN) and sparse coding (SC).
Few advanced ML techniques, including Long-term Short Memory (LTSM), Deep Convolutional
Neural Networks (DCNN), and recurrent neural networks (RNN), have also been employed for action
recognition with improved accuracy [2].

These advanced techniques are comprised of complex architectures that require a lot of memory
and have limitations regarding computational resources for HAR applications. Real-world applica-
tions of HAR may include Human-Computer Interaction (HCI) and some intelligent video surveil-
lance applications. Mobile Edge Computing (MEC) also contributes a lot of technology integration
in the field of medicine. Automation in remote health care supervision is also one of the advantages
of MEC. The technique is also applicable in action recognition. The services where HAR might
be applicable may include content-centric summarization [3], sports video analysis and evaluation,
and remote health monitoring applications for intelligent surveillance. Silhouette-based features can
support robust detection of actions in a real-time environment [4]. Action recognition from video
streams has advanced from analyzing the present to forecasting the coming action. It applies highly
to surveillance, driverless cars, and entertainment [5].

EfficientNet Models [6] are state-of-the-art deep CNN (DCNN) models comprising meek yet
highly potent compound scaling functions. The function can scale a baseline CNN to a target resource
bound while maintaining model efficiency. EfficientNet is a scale-able model in terms of layer depth,
width, and resolution, which makes it capable of performing better than other DCNNs, which include
AlexNet, GoogleNet, and MobileNet. It has become an important and basic component of new
computer vision research, especially in deep learning. In the proposed technique, EfficientNet [7] is
used to extract the best features from multiple datasets, and these feature vectors are further processed.
Transfer learning involves transferring information from the source domain (ImageNet) to the target
domain [8]. Information is transferred to get the best features from the datasets. Fully connected layers
are modified to account for the no number of classes in each dataset. The technique helps to create a
high-performance method that uses pre-trained models [9].

Major Challenges and Contributions: Intangible ML and Data Mining (DM) techniques have been
applied to solve numerous real applications. Feature fusion is a technique where extracted feature
vectors from the training images are fused based on some pre-determined standard [10]. The fused
vector has the best features with a high contribution. In supervised learning, the dataset is kept in two
sets, training, and testing, depending upon the ratio set by the researcher. Training images are used to
make the model learn, and then the proposed model is validated on testing images. Evaluation is done
on pre-defined parameters [11]. The current deep learning systems mainly focus on hybridizing the
latest and traditional deep learning methods. Most of the hybrid techniques managed to improve the
accuracy, but their least focus was on reducing the time complexity. Computational time is a significant
component, especially in action recognition problems, as the system needs to identify the correct action
in a minimum time [12]. Some other factors that need to be sorted for better results include redundant
and irrelevant or unimportant features.

In this work, we proposed a deep learning and Entropy controlled optimization algorithm-based
framework for action recognition. The following are our main contributions:

• Fine-tuned EfficientNet-B0 deep learning model and training are performed on selected action
recognition datasets using deep transfer learning. The deep model’s training has been done with
static hyperparameters.
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• Entropy-controlled Artificial Bee Colony optimization algorithm is proposed for the best
feature selection.

• Fusion is performed using a mean deviation-based serial threshold function.

2 Literature Review

Recently, HAR has grown in importance as a research field. The researchers have adapted several
supervised and unsupervised learning methods for HAR applications [13]. It is essential to consider all
available clues to analyze human behavior and predict the appropriate action later. Human action can
also be identified using the blend of some traditional techniques with advanced deep learning methods.
Traditional methods for action recognition may not produce the best result when used in isolation—a
hybrid of conventional and advanced techniques performed better in several recent studies.

Masmoudi et al. [2] presented an unsupervised CNN that has overcome memory and computa-
tional issues to a greater extent. PCANet-TOP is an unsupervised convolutional PCANet architecture;
it can learn spatiotemporal features from Three Orthogonal Planes (TOP). To reduce the dimensions
of the learned features, whitening PCA has been used. They used a Support Vector Machine (SVM)
to classify action. The presented techniques were assessed on Weizmann, royal institute (KTH), UCF
Sports, and YouTube actions datasets, and the achieved accuracy on these datasets is 90%, 87.33%,
92.67%, and 81.40%, respectively. Results have proven that the presented principle component analysis
(PCANet-TOP) model provides distinguishing and balancing features using TOP. It also enabled us
to attain comparatively better results than the existing techniques. Ramya et al. [14] presented an
algorithm based on distant transform and entropy features extracted from the human silhouettes.
The first step was to attain the silhouettes, which were performed by using the correlation coefficient-
based frame difference method. Then, the step was to extract features using Entropy and distance
transform. This helped by facilitating the model with contour and deviation information. In the final
step, the extracted features were given to neural networks to classify human actions. Datasets used
to assess the presented model include Weizmann, KTH, and UCF50, and the achieved accuracy on
them was 92.5%, 91.4%, and 80%, respectively. Researchers also observed that there is still room for
improvement, and results can be improved by manipulating the training testing ratio in the future. The
local variation features and fused shape features resulted in the better performance of the algorithm.

Khan et al. [9] worked on a deep learning algorithm for HAR based on Kurtosis based weighted
k-nearest neighbor (KNN). The architecture included four steps: feature extraction and mapping,
kurtosis-based feature selection, serial-based feature fusion, and action identification. For feature
extraction, two CNN models were used: DenseNet201 and Inception3. The classification was carried
out on four different datasets: KTH, IXMAS, WVU, and Hollywood, with the obtained results
being 99.3%, 97.4%, 99.8%, and 99.9%, respectively. It was discovered here that less features are
included for the final classification aided in improving the algorithm’s performance. Khan et al. [9]
presented a Gated Recurrent Neural Network that has amplified computational competency. For
action classification, researchers have used sequential data. Gaussian mixture model (GMM) and
Kalman’s filters were used to extract features. A novel approach based on hybrid deep learning
methods was used for recognition. The GRUs aid in modeling the problem by the current sequential
dependencies. Furthermore, graph regression neural network (GRNN) can be used to model problems
with temporal relationships and time gaps between events. The method was tested using the KTH,
UCF101, and UCF sports datasets.

Basak et al. [15] presented multiple ways to recognize action, including red, green, blue (RGB),
depth, point cloud, infrared, etc. The choice of technique depends on the nature of the scenario
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and the application for which it is being developed. A survey of the performance of various HAR
techniques is presented. The study surveyed Fusion techniques, including the Fusion of RGB, depth,
and skeleton modalities. Among the existing fusion techniques, the fusion of A/V modalities produced
the best results in predicting actions. Aside from the fusion, co-learning techniques were thoroughly
investigated. It was a technique for transferring learning by extracting knowledge from auxiliary
modalities and applying it to learning another modality. Visual modalities such as RGB and depth are
included in these co-learning techniques. Fu et al. [16] presented an algorithm to detect sports actions
using deep learning methods, specifically the algorithm of clustering extraction. Athletic movements
were first detected from deep learning techniques and then fused with sports-centered movements.
CNN was applied on the sample set where non-athletic and negative images were provided to the
network. The set was gradually enhanced with gathered false positive predictions, and the obtained
results were then optimized using a clustering algorithm. The idea was to acquire athletes’ training
posture by analyzing the movements of their specific sport. The application was designed to assist
sports trainers in giving professional training to athletes effectively and efficiently.

Liang et al. [17] developed a hybrid of CNN and Short-Term Long Memory (LTSM). Exten-
sive testing has been carried out to determine the efficacy of the hybrid method. The paper also
included a comparison of various deep-learning techniques. The researchers named their technique
CNN + LTSM. First, the results demonstrated that the efficiency of learning algorithms differed
marginally, but this did not affect the overall result. Second, it claimed that spatial, temporal interest
point (STIP) could perform even better in the given conditions because it could extract interest
points in video frames containing various human actions. Yue et al. [18] performed survey research
on multiple robust and operative architectures for HAR and future action predictions. The study
compared state-of-the-art methods for the recognition and prediction of actions. Recent models,
efficient algorithms, challenges, popular datasets, evaluation criteria, and future guidelines were also
presented with documented proofs. After detailed study and analysis, it was concluded that better
datasets provide a foundation for better prediction of actions.

3 Methodology

In this section, a detailed methodology for the proposed architecture has been presented. The
complete architecture consists of various steps, including feature extraction via transfer learning, using
two optimizers, i.e., Artificial Bee Colony and Entropy-controlled feature selection, and serial-based
feature fusion. The proposed HAR architecture is illustrated in Fig. 1.

3.1 Datasets

In this work, five publicly accessible datasets have been utilized for the experimental approach.
The datasets include IXMAS [19], KTH [20], UT Interaction [20], UCF Sports [20], and Weizmann
[20]. All these datasets have been well-known and used by several researchers in the last few years. The
IXMAS and Weizmann have ten action classes, whereas the KTH and UT Interaction datasets have
six action classes. UCF Sports action dataset contains 13 action classes.
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Figure 1: Visual illustration of the proposed framework for action recognition

3.2 Convolutional Neural Network (CNN)

In recent times, CNN has become immensely popular for image classification problems. Various
studies are conducted to analyze the efficiency of CNN in spatial patterns that allow for extracting
valuable features [21]. Recent trends in deep learning include spectral resolution, spatial grain, etc.
CNN can apply to various problems in which classification, identification, and segmentation are at
the top. The networks are useful for working on spatial patterns and enabling high spatial resolution
data value. A variety of techniques for feature visualization by CNNs is helpful in the interpretation
and allow learning from these models to improve its productivity. CNN is one of the novel techniques in
machine learning that allows efficient and quick predictions for any given image. The network requires
fewer parameters to learn than previously designed neural networks. A standard CNN has several
layers, including the activation layer, i.e., ReLU (Rectified Linear unit) layer, the Pooling layer (Max,
Avg, Min), the fully connected (FC) layer, and some other hidden layers. There exist a variety of CNNs,
including AlexNet, GoogleNet, Inception, ResNet, and DenseNet. The general structure of a CNN
with multi-layer architecture is illustrated in Fig. 2. The figure shows the complete design from input
steam to final classification through the FC layer. Convolution layers are added to convolve the initial
input and extract the required features. The extracted features are passed to multiple layers for further
processing. After passing through different hidden layers, the network makes the final prediction. A
simple architecture is illustrated in Fig. 2.
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Figure 2: Detailed structure of a multi-layered convolutional neural network

3.3 EfficientNet-B0

EfficientNet is one of the best CNNs of recent times [22]. It is a family of prediction models from
GoogleAI. It can scale up according to the number of parameters in the network. The model scales
up with greater efficiency regarding the layer’s depth, width, and resolution of the input image/video
frame. It can scale up to a mix of the parameters mentioned above. To balance the dimensions of
width, depth, and resolution, compound scaling is performed. These dimensions are scaled up on a
fixed ratio. The mathematical representation of compound scaling is given below:

Depth = d = aθ ; Width = w = ωθ ; resolution = r = rθ (1)

Such that a · ω2 · r2 ≈ 2
a ≥ 1, ω ≥ 1, r ≥

The network also allows the creation of features instead of just feature extraction. These features
can later be passed on to the classifier for predictions. The model outperformed all state-of-the-art
networks of recent times, including ResNet, DenseNet, AlexNet, and others. In this research, the model
is used on five different publically available datasets, and results are then compared on pre-defined
criteria. Fig. 3 defines the complete network structure of an EfficientNet model.

3.4 Transfer Learning

Transfer learning is a modern invention in the field of ML. It is a technique where learned
knowledge is transferred from a pre-trained model to a new network of the related domain [23].
Most ML algorithms are designed for designated applications, but in the case of transfer learning,
the model can be reused for other applications after a little tweaking. Transfer learning modules
depend on the ML algorithms being used for the predictions. Transfer methods can also be used as
an extension of the algorithms already being used. Inductive learning is one of its dimensions where
well-known algorithms are extended as Neural networks. These networks include Bayesian networks
and Markov Logic networks. Another aspect is Reinforcement learning, where Q-learning and policy
search algorithms are extended. Transfer learning aims to enhance the algorithm’s performance in
multiple aspects. Firstly, the initial performance by only transferring knowledge from the source
domain. Secondly, time complexity can also be enhanced as the algorithm’s final efficiency. Successful
completion of knowledge transfer can greatly improve algorithm efficiency [24]. It also helps minimize
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training time requirements as the information is transferred from a pre-trained network to the new
one on a targeted domain. The technique requires less time for training and performs better than
the other existing techniques. ImageNet is a sizable high-resolution image dataset that is typically
utilized as the source domain in transfer learning. It is a dataset with 22,000 image categories and
around 15 billion labels. Fig. 4 illustrates how knowledge is transferred from a source to a targeted
domain. In this research, the targeted domain is action recognition. The source domain is defined
as Ds = {(
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been employed for the features extraction. The layer, before fully connected, has been employed for
feature extraction. A feature vector is obtained of dimensional N×1280 that is later optimized through
Entropy controlled artificial bee colony (ABC).

Figure 3: Detailed architecture of an EfficientNet-b0 deep learning model

3.5 Feature Selection

After feature extraction, the next step is to discard the features that do not contribute much to the
performance. Next, the highest contribution feature is selected using two optimization algorithms,
ABC and Entropy. In this section, the two algorithms are discussed in detail. Finally, from 1280
features extracted via EfficientNet-b0, the top 600 are selected in two separate feature vectors.
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Figure 4: Illustration of transferring knowledge for action recognition

Artificial Bee Colony (ABC): Regarding the real-life bee colonies, ABC divides the bees into
three groups: i) employed bees, ii) observer or onlooker bees, and iii) scout bees [25]. The job of the
employed bees is to look for the food resource and convey the message to onlooker bees. On the given
information, the onlookers choose to start exploring the nearby space of the food resource and find a
new food resource. Employed bees with an improved food resource with already decided iterations get
the scout status, and the new task for the scout is searching for a new food resource. ABC is employed
in four fundamental steps:

The first step is an initialization, where the algorithm is set to produce random food resources.
Each of them is defined as a vector in the search space; xi = xi,1, xi,2, xi.3, . . . , xi,n

xij = xmax
j R (0, 1)

(
xmax

j − xmin
j

)
(2)

where i = {1, 2, 3, . . . , R} and R is the number four resource which is equal to the number of employed
bees or onlookers. j = {1, 2, 3, . . . , ρ} and ρ is the search space dimensions. xij is the jth dimension of
xi, R (0, 1) is a random variable that uniformly distributes the search space. The minimum boundary
value is xmin

j and maximum boundary value is xmax
j .

The second step is employed bees: Every employed bee is assigned a food resource, later modified
by the bee itself after searching for a better resource. That is how knowledge is transferred from all the
neighborhood except for the current location xk. New food resource is located under Eq. (3);

x
′
ij = xij + ϕij

(
xij − xkj

)
(3)

where xi is the current food source location, ϕij is a homogeneously distributed value within the given
range [−1, 1]. After the initial position x′

i is found, the fitness value is assessed and equated with the
xi which is the current position. If x′

i is better than xi, x′
i is replaced by xi and this makes the algorithm

enter its next iteration. The counter for the number of attempts for this iteration again resets to 0.
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Otherwise xi enters the next iteration with the same food resource value. The value of the counter, in
this case, is upgraded to 1.

The third step focuses on onlooker bees. Each of the employed bees passes on the gathered
information about their respective food resources to onlooker bees. Depending on the fitness value
of the food resource, each onlooker bee selects a position, and for the selection, roulette wheel scheme
is followed by the onlookers. They advocate that the better the source’s fitness value, the higher the
probability of selection. Probability is computed by Eq. (4).

δi = fiti∑R

n=1fitn

(4)

where fiti is the fitness value of food resource xi, After equating the probability of each location, a
random number and (0, 1) is generated to govern the choice of food resource. If δi > rand (0, 1), xi is
selected as an employed bee in this step.

The last step caters to the scout bees; each food resource is initialized with 0. A counter contains
the number of attempts. If the counter’s value increases from the fixed value, the previous food resource
will be discarded, and then a new food resource is assigned that is generated by Eq. (2).

Each food resource is added to a feature subset when the features are selected using ABC. Fitness
value determines the quality of the food resource in the feature subset. Each source is represented in
a binary string. One represents the selection, whereas 0 indicates the source is not selected.

Entropy-Based Selection: Entropy is the measure of uncertainty of the random variable λ. It
measures the different probabilities among a set of limited values. Let λ be a random variable with
a limited set of values having n values, such as {λ1, λ2, λ3, . . . , λn} and P is the set of a probability
distribution. If a specified value λ1 occurs with probability distribution P (λi) such that P (λi) ≥ 0, i =
1, 2, 3 . . . , n and

∑n

i=1 (λi) = 1, then the information amount is related to the known occurrences of λi

can be defined as:

L (λi) = − log P (λi) (5)

This shows that the information generated in selecting a symbol λi is−log2 P (λi) bits for a distinct
source. On average, if the symbol λi is selected n x P (λi) times in n selections, the average information
gathered from n source outputs is given below:

− n x P (λ1) log P (λ1) − n x P (λ2) log P (λ2) − n x P (λ3) log P (λ3) , . . . (6)

n x P (λn) log P (λn)

Mathematically, Entropy is the distribution function of a random variable λ which depends on the
probabilities. Hence, Entropy E (λ) is the mean value and can be determined by the following equation:

E (λ) = −
∑n

i=1
P (λi) log P (λi) (7)

3.6 Feature Fusion

In the feature selection phase, two feature vectors generated by ABC and Entropy are fused, and
then the features are passed on to classification algorithms to assess their performance. The algorithm
takes two vectors of 600 features each and combines them serial-wise in a single feature vector. It has
N × 1200 denoted by Ff . The approach is known as Serial-based Extended (SbE) for feature fusion. It
can result in an improvement of the results as the improved feature vector enhances the performance
of the classification algorithm. Considering two feature vectors ABC = →

A
, Entropy = →

E
Defined an
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outline of features space →
U

, for an uninformed sample space β ∈ →
U

and the equivalent two feature

vectors are a ∈→
A

and e ∈ →
E

. The serial-wise fused vector of β is denoted as =
(

i
j

)
. If the

feature vector →
A

has p dimensions and the feature vector →
E

has q dimensions, then the fused feature

vector will be containing (p + q) dimensions. Once is formed, the residing features are arranged
in ascending order, and their mean is computed. The final fusion is formed after the mean value is
extracted.

ϑ
( ) = 1

n

∑M

i=1

(
i

)
(8)

Ff =
{

Fusion (i) for i ≥ ϑ

Discard, Elsewhere
(9)

where Fusion (i) is the resultant of two feature vectors fused with M × J. The value of J is modified in
accordance with the variation in the training images.

4 Results and Discussion

This section focuses on the experiments performed and the analysis of the achieved results
after extensive experimentation. In addition, performance measures and evaluation criteria are also
discussed in the same section. A total of five datasets were chosen for use in this work; information
on the datasets are given in Section 3.1. The results for each dataset are tabulated, and a complete
analysis is provided along with the confusion matrix. 50% of the total images in the dataset were
used for training, with the remaining 50% used for model validation. K fold cross-validation, where
K equals 10. The criteria for evaluation include the achieved accuracy and the computational time
(S). The entire experiment is conducted on MATLAB2021b using a Personal Desktop Computer with
16 GB of RAM and an 8 GB graphics card.

4.1 KTH Dataset Results

Extensive experimentation is performed during the study on different standardized datasets. There
are 6 six classes of this dataset. The entire dataset is split into 50:50 for training and testing. Table 1
presents the results of this dataset which obtained the highest accuracy by Cubic SVM (CSVM)
of 98.4% and a computational time is 157.6 S. In the second step, ABC optimization is used, and
selected the best features. For this experiment, the CSVM obtained the highest accuracy of 98.6%, and
the recorded computational time was 83.412 S. Then, the entropy-controlled weighted KNN-based
selection technique is employed for selecting the best features in descending order. This experiment
obtained the best accuracy of 98.6% on CSVM, whereas the computational time was 73.534 S. In the
last step, both selected features are fused via the SBE feature fusion technique. As a result, the CSVM
obtained the best accuracy of 98.7%, which is improved to the previous experiments; however, the
testing time is increased.

The accuracy of CSVM can be checked through a confusion matrix, illustrated in Fig. 5.
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Table 1: Achieved results on the KTH dataset. ∗Linear discriminant analysis (LDA)

Classifiers Features Measures

EfficientNet Feature selection Feature fusion Accuracy (%) Time (S)

ABC Entropy

LDA

� 97.3 36.486
� 95.9 15.539

� 96.2 19.772
� 96.8 21.521

L SVM

� 97.1 142.9
� 96.3 74.185

� 96.3 69.604
� 96.8 77.027

Q SVM

� 98.4 157.60
� 98.2 76.654

� 98.2 67.992
� 98.4 81.655

C SVM

� 98.6 183.20
� 98.6 83.412

� 98.6 73.534
� 98.7 92.799

MG SVM

� 97.8 303.04
� 97.7 130.39

� 97.8 105.59
� 97.8 129.28

F KNN

� 97.6 163.22
� 97.8 76.699

� 97.7 75.739
� 96.4 144.09

4.2 Weizmann Dataset Results

Weizmann dataset results are presented in this section as numerical and confusion matrix. In
the first experiment, features are extracted from the original EfficientNet model and performed
classification. As a result, the CSVM obtained the best accuracy of 96.5%, whereas the noted
computational time is 45.678 S. The ABC optimizer is applied in the second experiment, and the best
features are selected. The best-selected features are classified using several classifiers and obtained
the best accuracy of 96.4%. For this experiment, the computational time is reduced to 26.65 S,
previously 45.678 (S). In the third experiment, entropy-based features were selected and obtained
the best accuracy of 96.7%, whereas the computational time was 23.758 (S). In the last experiment,
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SbE-based fusion was performed and obtained the best accuracy of 96.8%, which is improved to
the previous experiments (seen in Table 2). Overall, the CSVM outperformed this dataset. Also, the
fusion process’s computational time is extended, but accuracy is also improved. In addition, the CSVM
confusion matrix, which can be used to confirm the proposed accuracy, is shown in Fig. 6.

Figure 5: Confusion matrix for feature fusion on cubic SVM classifier on KTH dataset

Table 2: Achieved results on Weizmann dataset

Classifiers Features Measures
EfficientNet Feature selection Feature fusion Accuracy (%) Time (S)

ABC Entropy

LDA

� 96.1 20.56
� 96.2 16.772

� 95.5 6.356
� 96.8 15.293

L SVM

� 94.2 37.642
� 94.0 23.23

� 93.6 22.873
� 94.1 28.909

Q SVM

� 96.3 43.166
� 96.4 23.924

� 96.4 24.19
� 96.2 30.471

C SVM

� 96.5 45.678
� 96.4 26.65

� 96.7 23.758
� 96.4 31.310

MG SVM

� 94.0 47.595
� 94.2 26.691

� 94.6 24.946
� 94.4 31.589

� 93.4 18.707
F KNN � 93.5 9.502

(Continued)
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Table 2 (continued)

Classifiers Features Measures
EfficientNet Feature selection Feature fusion Accuracy (%) Time (S)

ABC Entropy

� 93.6 9.284
� 93.1 18.259

Figure 6: Confusion matrix for feature selection on cubic SVM classifier on Weizmann dataset

4.3 UCF Sports Dataset

The results of the UCF sports dataset have been described in this section. Table 3 presents the
results of the UCF Sports dataset for all four experiments. In the first experiment, EfficientNet-based
deep features are extracted and performed the classification. As a result, more than one classifier
has been obtained the best accuracy of 100%, whereas the computational time of the LDA classifier
is a minimum of 43.237 S. In the second step, ABC based optimization is performed, and selected
the best features. The selected features are passed to the classifiers and obtain the best accuracy of
100%, whereas the time is reduced to 17.403 S. In the third experiment, Entropy-based best features
were selected, and CSVM and FKNN obtained the best accuracy of 100%. In the last step, fusion is
performed, and 100% accuracy is obtained, consistent with the other experiments but computationally
slow. Moreover, Fig. 7 shows the LDA classifier’s confusion matrix that can be utilized to verify the
classification accuracy.
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Table 3: Achieved results on UCF sports dataset

Classifiers Features Measures

EfficientNet Feature selection Feature fusion Accuracy (%) Time (S)

ABC Entropy

LDA

� 100 43.237
� 100 17.403

� 99.9 15.304
� 100 18.375

L SVM

� 100 180.96
� 99.9 83.445

� 99.9 78.689
� 99.9 91.986

Q SVM

� 100 229.52
� 99.9 104.78

� 100 92.583
� 100 115.79

C SVM

� 100 234.38
� 100 113.88

� 99.9 94.788
� 99.9 122.41

MG SVM

� 99.6 312.21
� 100 139.29

� 99.8 130.7
� 99.7 146.76

F KNN

� 100 112.48
� 100 51.889

� 100 49.090
� 100 96.718

4.4 IXMAS Dataset

Results from the IXMAS dataset are displayed as a confusion matrix and as numerals in this
section. In the first experiment, features are extracted from the original EfficientNet model and
performed classification. As a result, the Fine KNN obtained the best accuracy of 96.7%, whereas
the noted computational time is 189.79 S. The ABC optimizer is applied in the second experiment,
and the best features are selected. The best-selected features are classified using several classifiers and
obtained the best accuracy of 96.7%. As a result, this experiment’s computational time is reduced
to 97.538 S, previously 189.79 S. In the third experiment, entropy-based features were selected and
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obtained the best accuracy of 97%, which improved, whereas the computational time was 88.911 S. In
the last experiment, SbE-based fusion is performed and obtained the best accuracy of 96.9% (as seen
in Table 4). This experiment consumed more time than the first three, but the accuracy was stable. In
addition, the CSVM confusion matrix is shown in Fig. 8, and it can be used to check the proposed
accuracy.

Figure 7: Confusion matrix for feature selection on liner discriminant classifier on UCF sports dataset

Table 4: Achieved results on the IXMAS dataset

Classifiers Features Measures
EfficientNet Feature selection Feature fusion Accuracy (%) Time (S)

ABC Entropy

LDA

� 87.7 57.952
� 81.0 18.525

� 81.3 19.134
� 84.9 20.506

L SVM

� 86.1 424.6
� 82.9 190.79

� 81.8 173.56
� 84.5 202.01

Q SVM

� 93.8 484.57
� 93.0 227.46

� 93.8 200.83
� 93.9 241.1

(Continued)
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Table 4 (continued)

Classifiers Features Measures
EfficientNet Feature selection Feature fusion Accuracy (%) Time (S)

ABC Entropy

� 95.4 542.75
C SVM � 95.1 250.0

� 95.4 209.4
� 95.7 253.03

MG SVM

� 91.5 854.28
� 90.8 336.23

� 91.9 270.06
� 91.9 337.29

F KNN

� 96.7 189.79
� 96.7 97.538

� 97.0 88.911
� 96.9 199.52

Figure 8: Confusion matrix for feature selection on fine KNN classifier on IXMAS dataset
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4.5 UT Interaction Dataset

This section contains the findings from the UT Interaction dataset. Table 5 presents the results of
the UT Interaction dataset for all four experiments. In the first experiment, EfficientNet-based deep
features are extracted and performed the classification. The best-obtained accuracy for this experiment
is 99.7% on the Fine KNN classifier, whereas the computational time is 16.643 S. In the second
experiment, Fine KNN obtained the best 96.7% accuracy and the computational time of 7.343 S.
From this, it is noted that the computational time is reduced, but accuracy is also dropped. In the
third experiment, CSVM obtained the best accuracy of 99.6%, whereas the computational time was
11.113 S. This experiment’s performance is better than the first two experiments. In the last experiment,
fusion was performed and obtained the best accuracy of 99.7% with a computational time of 15.382 s.
Overall, the CSVM performed well for this dataset. Fig. 9 shows this dataset’s confusion matrix that
can be utilized to verify the accuracy of Fine-KNN after the fusion process.

Table 5: Classification accuracy of UT interaction dataset

Classifiers Features Measures
EfficientNet Feature selection Feature fusion Accuracy (%) Time (S)

ABC Entropy

LDA

� 99.0 23.085
� 98.9 4.675

� 98.6 4.803
� 99.0 10.536

L SVM

� 97.2 26.947
� 96.2 10.709

� 96.3 9.830
� 96.7 15.121

Q SVM

� 99.6 23.779
� 99.4 12.473

� 99.2 10.737
� 99.6 15.355

C SVM

� 99.7 24.739
� 99.5 11.887

� 99.6 11.113
� 99.7 15.382

MG SVM

� 98.1 27.884
� 98.2 12.915

� 98.1 10.556
� 98.5 15.342

F KNN

� 99.7 16.643
� 99.7 7.343

� 99.4 6.842
� 99.6 14.667
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Figure 9: Confusion matrix of fine KNN classifier on UT interaction dataset

Finally, a thorough comparison is made with current methods, as shown in Table 6. In this table,
several methods are listed; for each method, it is noted that they used several classifiers. Finally, we
only use relevant data sets to compare the proposed accuracy. It can be seen from the accuracy values
listed in this table that the proposed HAR framework has demonstrated increased accuracy.

Table 6: Comparison of the proposed method’s accuracy with the existing techniques

Reference Dataset/Technique Accuracy (%)

Masmoudi et al. [2]

PCA net
KTH 87.33
UCF sports 92.67
UCF II (youtube) 81.40
Weizmann 90

Ramya et al. [14]

Entropy base feature selection
KTH 91.4
UCF 50 80
Weizmann 92.5

Abdelbaky et al. [26]
PCA net
KTH 93.33
UCF sports 90

Guha et al. [27]

Cooperative genetic algorithm
UCF II (youtube) 84.06
HMDBI 51 53.87
UCI HAR 95.79
KTH 100
Weizmann 86.75

Kumar et al. [28]

Gated recurrent neural networks
KTH 96.72
UCF sports 89.98
UCF 101 90.31

(Continued)
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Table 6 (continued)

Reference Dataset/Technique Accuracy (%)

Afza et al. [13]

Optical flow algorithm
Weizmann 97.9
KTH 100
UCF sports 94.5
UCF II (youtube) 99.3

Zhang et al. [10]

26-layered DCNN
HMDBI 51 81.4
UCF sports 99.2
KTH 98.3
Weizmann 98.7

Khan et al. [9]

SBE approach
KTH 99.3
WVU 99.8
IXMAS 97.4
Hollywood 99.9

Muhamad et al. [29]

Dilated CNN/LTSM
UCF II (youtube) 98.3
UCF Sports 99.1
j-HMDB 80.2

KTH 98.7%
UT Interaction 99.7%
Weizmann 96.7%
UCF Sports 100%
IXMAS 97.0%

5 Conclusion

Action recognition has been gaining popularity in recent years due to its vast range of real-life
applications. In this work, we proposed a deep learning and fusion of optimized features framework
for the classification of accurate action recognition. The proposed framework consists of several serial
steps. The pre-trained EfficientNet deep model was fine-tuned and trained on the selected action
datasets using deep transfer learning in the first step. Then, features are extracted from the average
pooling layer and computed the results. Based on the computed results, we analyzed several redundant
features. Therefore, we performed two feature selection techniques and selected the best features. Then,
the selected features are classified, and improved accuracies are obtained for all selected datasets. Also,
the time was significantly reduced, which was this framework’s main strength. In the last, the fusion of
selected features is performed to enhance the accuracy, but this step also increases the computational
time, which is a drawback of this approach. In the future, we will consider this problem and propose
a more optimized fusion approach.
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