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ABSTRACT

Manual diagnosis of brain tumors using magnetic resonance images (MRI) is a hectic process and time-consuming.
Also, it always requires an expert person for the diagnosis. Therefore, many computer-controlled methods for
diagnosing and classifying brain tumors have been introduced in the literature. This paper proposes a novel
multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid
feature optimization algorithm. NasNet-Mobile, a pre-trained deep learning model, has been fine-tuned and two-
way trained on original and enhanced MRI images. The haze-convolutional neural network (haze-CNN) approach
is developed and employed on the original images for contrast enhancement. Next, transfer learning (TL) is utilized
for training two-way fine-tuned models and extracting feature vectors from the global average pooling layer.
Then, using a multiset canonical correlation analysis (CCA) method, features of both deep learning models are
fused into a single feature matrix—this technique aims to enhance the information in terms of features for better
classification. Although the information was increased, computational time also jumped. This issue is resolved
using a hybrid feature optimization algorithm that chooses the best classification features. The experiments were
done on two publicly available datasets—BraTs2018 and BraTs2019—and yielded accuracy rates of 94.8% and
95.7%, respectively. The proposed method is compared with several recent studies and outperformed in accuracy. In
addition, we analyze the performance of each middle step of the proposed approach and find the selection technique
strengthens the proposed framework.
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1 Introduction

Cancer is rapidly becoming a major public health concern worldwide [1]. It is the second leading
cause of death after cardiovascular disease, accounting for one out of every six deaths worldwide
[2]. Brain cancer is one of the deadliest diseases due to its violent nature, low survival rate, and
diverse features. Tumor shape, texture, and location are some of the different features that can be
used to classify brain tumors [3]. Meningiomas are the most common benign intracranial tumors that
inflame the thin membranes surrounding the brain and spinal cord. Astrocytomas, ependymomas,
glioblastomas, oligoastrocytomas, and oligodendrogliomas are all types of brain tumors known as
gliomas [4]. Pituitary tumors, which develop at the pituitary gland’s base in the brain, are frequently
benign. However, these lesions may prevent the generation of pituitary hormones, which would have
a systemic impact [5].

In medical care, the incidence rates of meningiomas, gliomas, and pituitary tumors are about 15%,
45%, and 15%, respectively [6]. Physicians may diagnose and predict a patient’s survival rate based
on the type of tumor. At the same time, the best treatment method, from surgery, chemotherapy, or
radiotherapy to the “wait and see” strategy that ignores invasive procedures, can also be agreed upon.
Classification of the tumor is vital for planning and monitoring the course of treatment [7]. MRI
is a non-invasive, painless medical imaging technique. It is one of the most accurate detection and
classification techniques for cancer. A radiologist’s knowledge is required for the highly technical,
error-prone, and time-consuming task of identifying the type of malignancy from MRI scans. In the
artificial intelligence (AI) area, a new and creative computer assistant diagnostic (CAD) system is
urgently required to enable doctors and radiologists to ease the workload of diagnosing and classifying
tumors.

A CAD system typically consists of three steps denoted (1) tumor segmentation, (2) extraction
of the segmented tumor’s characteristics based on statistical or mathematical parameters evalu-
ated throughout the learning process using a collection of MRI images that are labeled, and (3)
implementing an accurate machine learning classifier to estimate an anomaly class [8]. Before the
classification stage, many conventional machine learning (ML) approaches are required for lesion
identification [9]. The segmentation process is a computationally intensive phase, which might be
unpredictable according to image contrast and intensity normalization variance and can influence
classification performance. Feature extraction is a critical method of producing interesting features
to identify a raw image’s contents. However, this phase has few adverse effects of being a time-
consuming assignment requiring prior knowledge of the problem domain. The extracted features are
then utilized as ML inputs and assigned an image class label according to these crucial features [10].
Alternatively, deep learning (DL) is a subfield of artificial intelligence (AI) that automatically learns
data representation and makes predictions and conclusions [11]. DL is independent of hand-crafted
feature extraction methods and can learn features directly from the sample data through several hidden
layers. Convolutional, ReLu activation, and pooling layers to avoid overfitting normalization, fully
connected, and softmax layers are among the hidden layers in a straightforward convolutional neural
network (CNN) model. The completely linked layer is the most crucial layer in which characteristics
are obtained in 1D for classification purposes.

Deep learning models already pre-trained include Alexnet, VGG16, ResNet, and NasNet-Mobile.
Compared to previous models, the NasNet-Mobile is lighter and performs better while analyzing
medical images. Transfer learning (TL) is used to fine-tune and train the pre-trained deep models on
the target dataset. The TL is a method of recycling a model with the least memory and computation
required [12]. Later, some activation functions are employed on the newly trained feature extraction
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models, such as sigmoid or tanh. Generally, these deep learning models are trained using raw images
without any region of interest (ROI) detection; therefore, there is a high chance of irrelevant and
redundant feature extraction. The researchers try to resolve this issue by introducing some feature
selection techniques. The feature selection is the optimal subset selection method from the original
feature set. A few famous feature selection techniques employed in medical imaging are mouth flame,
the t-distribution stochastic neighborhood approach (t-SNE) approach, correlation, etc. Sometimes,
the feature extraction from one type of data does not give better results; therefore, researchers
introduced several feature fusion techniques. As a result, they have improved the accuracy through
feature fusion techniques but faced a limitation of high computational time [13].

Deepak et al. [14] suggested a CNN via transfer learning framework for classifying brain tumors.
They utilized a pre-trained GoogleNet model and extracted features through TL. The extracted
features were subsequently classified utilizing machine learning classifiers that improved classification
accuracy. The main observation of this work was the ability of TL for fewer training images.
Mohsen et al. [15] designed a classifier based on CNN for brain tumor classification. They used discrete
wavelet transform and principal component analysis (PCA) to combine the features of CNN in the
designed classifier. Sharif et al. [16] presented an end-to-end system for brain tumor classification.
They used the Densenet201 pre-trained model to extract features that were later refined through
two feature selection techniques called entropy-Kurtosis and modified GA. The selected features are
merged utilizing the non-redundant serial-based approach and then employed as input to the classifiers
for final classification. The observation of this study was the selection of the best features to reduce
the computational time of the classifiers and enhance the classification accuracy. An automatic brain
tumor segmentation method in 3D medical images was proposed by Kamnitsas et al. [17]. The two
main parts mainly describe this method for the 3D CNN’s extremely accurate soft segmentation and,
more importantly, for the 3D CRF’s post-processing of the created soft segmentation labels, which
successfully produces the hard segmentation labels and eliminates false positives. The model offers
more effective performance and has been tested on the BraTs2015 and ISLES 2015 datasets. An
entirely automatic model for segmenting 3D tumor photos was proposed by Alqazzaz et al. [18]. They
trained four SegNet models for analysis, and post-processing combined the data from those models.
The original images’ maximum intensity information is encrypted to deep features for improved
representation. This work categorizes the extracted features using the decision tree as a classifier.

On BraTs2017, experiments are conducted to arrive at an average F1 score of 0.80. A mul-
timodal automatic brain tumor classification technique utilizing deep learning was presented by
Khan et al. [19]. The model was based on performing the following task sequentially as follows: Linear
contrast stretching; transfer learning-based features extraction utilizing pre-trained CNN models
(VGG16 & VGG19); features selection based on correntropy; and finally, the classification of brain
cancers using a fused matrix sent to the extreme learning machine (ELM). A deep learning model
for brain tumor segmentation by merging short-term memory (LSTM) and co-evolutionary neural
networks (ConvNet) concepts was introduced by Iqbal et al. [20]. Following pre-processing, the class-
weighting concept is presented to solve the problems with class inequality. ConvNet produced a single
score (exactitude) of 75% using the BraTS 2018 benchmark dataset, while an LSTM-based network
generated 80% of the results with an overall fusion accuracy of 82.29 percent. Few other recent
techniques are also introduced for brain tumor classification such as DarkNet-Color Map Superpixels
[21], Exemplar Deep Features [22], and named a few more [23] (summary is seen in Table 1).
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Table 1: Summary of recent state-of-the-art (SOTA) techniques

Reference Methods Datasets Accuracy (%)

[17], 2017 3D CNN & 3D FC conditional
random field

BraTs2015 & ISLES 2015 84.0

[15], 2018 Discrete wavelet, principal component
analysis (PCA) & DCNN

Private collected MRI
images

96.97

[14], 2019 CNN via transfer learning approach MRI dataset from
figshare

98.0

[18], 2019 SegNet CNN & post-processing BraTs2017 85.0
[24], 2019 Dual path residual CNN BraTs2019 84.9
[25], 2020 Active saliency map, CNN & improved

PSO
BraTs2018 92.5

[19], 2020 DCNN, discrete cosine transform
(DCT), corentropy-based joint
learning, partial least square (PLS),
ELM

BraTs2015, BraTs2017,
& BraTs2018

93.40

[16], 2021 Deep learning, entropy–kurtosis
features fusion, modified genetic
algorithm (GA) based optimization

BraTs2018 & BraTs2019 >95

[26], 2021 3D CNN & features optimization BraTs2018 92.67
[27], 2022 Variation autoencoder & generative

adversarial network (GAN)
The dataset collected
from [28]

92.30

[29], 2022 Pre-trained CNN models, features
fusion, KNN

LGG-1p19qDeletion [30] 97.0

The techniques mentioned above focused on the fusion of deep learning features and selecting
the optimal or best features from multimodal brain tumor classification. However, in the fusion
process, they mainly focused on the accuracy of a classification and computational time. Moreover,
the major challenge is accurately classifying tumor categories such as T1, T1CE, T2, and Flair. Each
class has a high similarity in shape and texture; therefore, it is not easy to classify correctly. Another
challenge is the high computational time that can be resolved using feature optimization techniques. In
this work, we proposed a two-way deep learning features extraction and hybrid feature optimization
algorithm-based best feature selection framework for brain tumor classification. Our major efforts
and contributions to this work are listed as follows:

• A two-way deep learning framework is introduced and trained using transfer learning. Then,
the trained deep learning framework’s average pooling layers are used to extract features.

• A multiset canonical correlation analysis (MCCA)-based features fusion technique is employed
to get better information for accurate classification.

• We proposed a hybrid enhanced whale optimization algorithm with crow search (HWOA-CSA)
to select the best feature and reduce the computational time.

• A comparison is conducted among the middle steps of the proposed framework. Also, we
evaluated by comparing the proposed framework’s accuracy with recent state-of-the-art (SOTA)
techniques.
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The proposed methodology of this work, which includes a two-way deep learning framework
for a hybrid feature optimization algorithm, is mentioned in Section 2. At the same time, detailed
experimental results are shown in Section 3. Finally, we conclude the proposed framework in Section 4.

2 Proposed Methodology

The proposed two-way deep learning model and optimal feature selection framework consist of a
few important steps, as illustrated in Fig. 1. In the first step, a deep two-way learning fine-tuned model
is trained on original and enhanced images. The main purpose is to obtain the most important features
for accurate classification results. In the second step, fine-tuned networks are trained through TL and
extracted features from average pooling layers. The extracted average pooling layer features are fused
using a multiset CCA-based approach in the third step. In the next step, a hybrid HWOA-CSA feature
selection algorithm is proposed and applied to a fused feature vector that is finally classified using an
ELM classifier. The description of each step is given below.

Figure 1: Architecture of proposed framework of multimodal brain tumor classification

2.1 Dataset Preparation and Contrast Enhancement

In this work, two datasets–BraTs2018 and BraTs2019, are employed for the experimental process.
Both datasets consist of four types of tumor classes such as T1, T1W, T2, and FLAIR.

BraTs2018 [31]: This dataset consists of 385 scans for training and 66 scans for its validation. All
the MRI scans of this dataset have a volume of 240×240×155. Each volume is segmented manually by
expert neuroradiologists. Each volume includes T1, T1CE, T2, and FLAIR sequences, as illustrated
in Fig. 2.
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T1 Tumor T1CE Tumor

T2 Tumor Flair Tumor

BraTs2018 Dataset Samples

T1 Tumor T1CE Tumor

T2 Tumor Flair Tumor

BraTs2019 Dataset Samples

Figure 2: Sample brain tumor images

BraTs2019 [32]: This dataset consists of 335 scans for training, and validation scans are the same
as Brats2018. Four sequences-T1, T1CE, T2, and FLAIR tumors are contained for each volume.
Similar to the BraTs2018 dataset, the ground truths are generated manually with the help of expert
neuroradiologists. All the MRI scans of this dataset have a volume of 240 × 240 × 155. A few sample
images are shown in Fig. 2.

In this work, we utilized 48,000 MRI samples from the BraTs2018 dataset (12,000 in each class),
whereas for BraTs2019, the total extracted samples tally 56,000 (14,000 in each class). Initially, the
extracted MRI samples had a dimension of 240 × 240; therefore, we converted all into 512 × 512. In
addition, a contrast enhancement technique has been proposed named haze-CNN and applied to the
original MRI images of the selected datasets.

Consider � is a database that consists of two datasets, BraTs2018 and BraTs2019. Each image in
the dataset is represented by I (x, y) with a dimension of 512 × 512. The first operation on the image
is applied to clear the tumor region as follows:

I1 (u) = I (u) T (u) + Lg (1 − T (u)) (1)

where, I1 (u) is the observed intensity value, I (u) is the original intensity value, T (u) is the transmission
map, Lg is atmospheric light, and u ∈ (x, y). The following formula is applied to get brighter pixels
based on the observed intensity value.

I2 (u) = (I1 (u) − α)

Max ((h (u) , h0))
+ α (2)

where α is a global atmospheric light and h (u) is a medium transmission. Later on, to apply the updated
intensity values on the original image, the following transformation is performed:

I3 (x, y) = (I2 (u) × I (x, y)) + const (3)
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Here, the value of const is 0.7, which is selected based on the higher intensity value in the original
image. After that, we employed a deep neural network-based approach [33] for the final enhancement.
The VGG16 pre-trained model is trained on authentic (original) MRI images (grayscale) and applied
on each channel of the image I3 (x, y). It is described mathematically as follows:

Ĩ (x, y, z) = C (3, I3 (x, y) , I3 (x, y) , I3 (x, y)) (4)

Ci =
∑3

i=1

(̃
I (x, y, z)

)
i
, i = 1, 2, 3 (5)

Here, i represents the number of extracted channels, and C defines the concatenation operation.
The output of the above equation in the form of enhanced images is illustrated in Fig. 3. This figure
clarifies that the tumor region in the enhanced images is more precise than in the original images.

Figure 3: Enhanced MRI samples using a haze-CNN approach

2.2 Fine-Tuned NasNet-Mobile

Nasnet CNN architecture is a scalable network with building blocks optimized through rein-
forcement learning. Each building block consists of several layers (convolutional & pooling) and
the recurrent time according to the network capacity. This network consists of 12 building blocks
and a total of 913 layers. The total number of parameters is 5.3 million, less than the VGG and
Alexnet [34]. In the fine-tuning process, the last classification layer is removed and added by a new
FC layer. The main purpose of replacing this layer is that this network was previously trained on the
Imagenet dataset, and the number of labels tallied at 1000. However, the selected datasets BraTs2018
and BraTs2019 include four classes; therefore, it is essential to modify this deep network.

After fine-tuning, deep transfer learning is employed to train this model; the TL’s main purpose
is to reuse a pre-trained model for another task with less time and memory. Moreover, the TL is useful
when the training data is fewer (target) than the source data.

Transfer learning: Given a source domain φS = {(
dS

1 , eS
1

)
, . . .,

(
dS

i , eS
i

)
, . . .,

(
dS

n , eS
n

)}
, where(

dS
n , eS

n

)
εR; with a specified learning task LS and target domain ψT ={(

dT
1 , eT

1

)
, . . .,

(
dT

i , eT
i

)
, . . .,

(
dT

n , eT
n

)}
,
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where
(
dT

n , eT
n

)
εR; with a specified learning task LT . Let ((u, v) | (u � v)) be a training data size and

eD
1 , eT

1 , are labels. Hence, the TL function works to boost the learning capability of ψT by utilizing the
knowledge gained from φS and ψT .

In the training of the deep learning model, several hyperparameters are employed as specified–the
learning rate is 0.0001, mini-batch size is 64, max epochs are 100, an optimization method is Adam, and
the loss function is cross-entropy. The activation function for feature extraction is sigmoid. Visually,
this process is shown in Fig. 4. This figure illustrates that the ImageNet dataset is used as source data
for the pre-trained network. After fine-tuning, the model is trained on BraTs2018 and BraTs2019
datasets. As shown in Fig. 1, the fine-tuned NasNet-Mobile is trained separately on original and
enhanced samples; therefore, two deep-learning models are obtained. On both trained models, features
are extracted from the GAP layers and obtained a feature vector of dimensions N×1056 and N×1056,
respectively. After that, the extracted features are fused using an MCCA-based fusion approach.

Source Dataset
(ImageNet)

Source Model (NasNet
Mobile)

Source Labels (1000
Classes)

Target Dataset
(BraTs2018 and 2019)

Target Model (Fine-
Tuned NasNet Mobile)

Target Labels (4
Classes)

Knowledge transfer

Figure 4: Features extraction using transfer learning

2.3 MCCA-Based Deep Features Fusion

Given J feature sets, Jε (j1, j2), the canonical variates Gj can be computed through a deflationary
approach as follows:

Gj = V1j, V2j, j = 1, 2, . . ., J (6){
V (1)

21 , V (1)

22 , V (1)

23 , . . ., V (1)

2J

} = armax K
(
r(1)

j,l

)
(7)

The r(1)

j,l is a correlation among ith canonical variates from jth to lth feature sets. The symbol K (.)
denotes the chosen cost. The canonical correlation is optimized by maximizing the sum of squared
correlations among the canonical variates.{

V (1)

21 , V (1)

22 , V (1)

23 , . . ., V (1)

2J

} = argmaxV2

{∑J

j,l=1

∣∣r(1)

j,l

∣∣2
}

(8)

Based on this formula, both deep feature vectors are fused and obtain a new fused feature vector
of dimension N×1450. Later, this fused vector is refined using a hybrid feature selection algorithm.

2.4 Hybrid Feature Selection Algorithm

This work utilized a hybrid optimization algorithm for best feature selection. In the selection
process, initially, a fused feature vector of dimension N × 1450 is passed to the hybrid optimization
algorithm (HOA). The first features are processed in the HOA through a modified whale optimization
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algorithm in the output, while a global best vector is obtained. The entropy is computed to give the
global best vector and passed through a threshold function (Eqs. (14)–(15)). The resultant features
are again evaluated through a fitness function, and the resultant vector is passed to the Crow
search algorithm for further dimensionality reduction. In the end, a best-fitted feature vector Pit+1

e

of dimension, N × 726 is finally passed to an extreme learning machine (ELM) for final classification.
The mathematical working of the HOA selection algorithm is given below.

The hybrid method is based on the enhanced WOA and Crow search algorithm (CSA). In addition,
Mirjalili introduced a swarm intelligence algorithm known as WOA [35]. This algorithm is established
on the predatory approach of humpback whales. Humpback whales catch a school of small fishes or
krill close to the surface. This procedure generates specific bubbles with a ring path, and the operator is
divided into three components. In the first phase of the algorithm, a prey is surrounded and attacked
by a spiral bubble net (exploitation phase); in the second phase, whales randomly search for food
(exploration phase). Mathematically, the WOA process is described as follows:

Encircling prey: Initially, the optimal position is not recognized; therefore, it is supposed that the
current optimal solution is the objective prey or near to the optimal solution. After defining the best
search space, the other search spaces try to set their location regarding the best search space.
→
T =

∣∣∣→
D · P∗ (h) −P (h)

∣∣∣ (9)

P (h + 1) = P∗ (h)−→
A · →

T (10)

where h denotes the current iteration, P∗ (h) is the location of prey, and the humpback whale’s position
in the current and the next procedure is represented by P (h) and P (h + 1), respectively. The variable

vectors
→
A and

→
D defined as

→
A = 2

→
a ·

→
k−→

a and
→
D = 2·

→
k,

→
a = 2−2 ∗ h/H is uniformly reduced within the

range of [2, 0], T represents the number of maximum iterations, and
→
k Represents a random number

between the range [0, 1].

Bubble-net attacking: The local search process is described as each humpback whale relocates to
get near a prey within a dense ring while following a spiral-shaped path. Then, following the compact
ring or spiral mechanism, a probability of 0.5 is set to renew the location of the humpback whale. The
mathematical formula is defined as follows:

P (h + 1) =
{

P∗ (h) −→
A · →

T , if y<0.5
→
T ′ · ebl · cos (2px) + P∗ (h) , if y30.5

(11)

where
→
T ′ represents the distance between the current humpback whale and prey, which is defined as

→
T ′ = |P∗ (h) −P (h)| , b = 1, denotes a constant value that is the situation of a logarithmic spiral, and
x and y are random numbers between the range of [−1, 1] and [0, 1], respectively.

Searching for prey: The location of the current humpback whale is revised based on the random
walk approach, defined as follows:
→
T =

∣∣∣→
D · Prand −P (h)

∣∣∣ (12)

P (h + 1) = Prand −→
A · →

T (13)

where Prand shows the placement of a random humpback whale picked from the given population. After
selecting the global best features through the whale optimization algorithm, Entropy is computed to
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solve the problem of uncertainty, and it is calculated as follows:

E (x) =
∑n

i=1
H (xi) logH (xi) (14)

Based on the entropy value, the threshold function is defined to enhance the selection performance
of the whale optimization algorithm, and it is defined as follows:

Th =
{

Sel (i) for W 3
i E (x)

ignore, Elsewhere
(15)

The best-selected features are passed to the Crow search algorithm to reduce some redundant
features. This metaheuristic’s purpose is for a given crow i to be able to follow another crow j to
identify its concealed food location. Therefore, it is important that the crow i position is constantly
updated during this process. Furthermore, when food is stolen, crow i must move it to a new location.
Accordingly, based on a swarm of crows (N), a CSA algorithm begins by initializing two metrics.

Location matrix: All the possible solutions for the problem in this study are represented by the
location of crow e in the search space. The crow’s position at iteration it is denoted as a vector X it

e .

X it
e = [

X it
e1, X it

e2, . . ., X it
ed

]
; e = 1, 2, . . ., N (16)

it = 1, 2, . . ., Itmax

where N is the population size, d is the problem’s dimension, Itmax denotes the maximum number of
iterations.

Memory matrix: this matrix represents the memory of crows to store the location where their food
is kept. Crows have an exact recollection of where their food is hidden, and it is also believed to be the
best position for that particular crow. Therefore, at each iteration, there are two scenarios of crows’
movement in the search space:

In the first scenario, crow g is completely unaware that crow e follows him. Consequently, this
means that the next position of crow e in the direction of the crow g’s hidden food site is denoted as
follows:

Pit+1
e = Pit

e + re ∗ flit
e ∗ (

Mit
g −Pit

e

)
(17)

where flit
e signifies Crow e’s flight length at iteration it, and re is a uniform distribution random ∈ [0, 1].

The crows’ capacity to seek is influenced by the value of fl. Global searches are aided by high fl values,
while local searches are aided by low fl values.

The second scenario occurs when crow g realizes it’s followed by crow e. Consequently, to fool
crow e, crow g will move to an entirely random location in the search region. Randomness determines
Crow e location. These two scenarios of the crows’ position update can be modeled as follows:

Pit+1
e =

{
Pit

e + re ∗ flit
e ∗ (

Mit
g −Pit

e

)
, if r3

gAPit
g

a random position otherwise
(18)

where re and rg are random numbers with uniform distribution in [0, 1]. The awareness probability of
crow g at iteration it is denoted by APit

g . It is AP’s job to maintain a balance between exploration and
extraction. Large AP values encourage diversification, while small AP values increase intensification.
The new crow’s position is assessed using an f () objective function on each iteration, and then the
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crows update their memorized positions, denoted as follows:

Mit+1
e =

{
Pit+1

e if f
(
Pit+1

e

)
is better than f

(
Pit

e

)
Mit

e otherwise
(19)

where Mit+1
e denotes the crows with updated positions and Pit+1

e are best-fitted crows (features). The
pseudo-code of the hybrid algorithm is exhibited in Algorithm 1. The best-fitted features Pit+1

e of
dimension, N × 726 is finally passed to an extreme learning machine (ELM) for final classification.

Algorithm 1: Hybrid optimization algorithm (HOA)
Input ← objective function f (x), population size (N), maximum iterations (Tmax),
1 Output ← optimal solution
2 Begin
3 Initialize a population of a whale (solutions)
4 Evaluate all solutions according to the objective function f (x)

5 Find the best solution
5 For t = 1 to Tmax

6 For i = 1 to N
7 If y < 0.5
8 If |A| < 1
9 Update the position of whales using (10)
10 ElseIf |A| > 1
11 Update the position of whales using (13)
12 End If
13 ElseIf p > 0.5
14 Update the position of whales using (11)
15 End If
16 End for
17 Evaluate the fitness of each whale
18 Update the best solution
19 End for
20 Return the global optimal solution
21 Compute the entropy of global optimal
22 Set a threshold function via Eqs. (14) & (15)
23 Evaluate the fitness
24 Best features are selected
25 CSA (selected features) through Eq. (19)
26 Check the fitness
27 Obtained the selected features
28 End

3 Results and Analysis

Two publically available datasets, such as BraTS2018 [31] and BraTs2019 [32], are employed for
the experimental process. In the validation process, 50 percent of the dataset images are utilized for
the training, and the remaining 50 percent are utilized to test the proposed deep learning framework.
In the deep learning model training, several hyperparameters are employed: learning rate is 0.0001,
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mini-batch size is 64, max epochs are 100, an optimization method is Adam, the loss function is cross-
entropy, and the activation function for feature extraction is sigmoid. Furthermore, five different
classifiers, such as multiclass support vector machine (MCSVM), weighted K-nearest neighbor
(WKNN), Gaussian Naïve Bayes (GNB), ensemble baggage tree (EBT), and extreme learning machine
(ELM), have been implemented for the classification performance. Finally, the testing results are
computed through 10-fold cross-validation. The entire framework is implemented on MATLAB2021b
using a desktop PC with 16 GB of RAM, 256 SSD, and a 16 GB graphics card.

3.1 Results

Experimental process: The proposed deep learning framework is validated through several exper-
iments: i) deep learning feature extraction from an average pooling layer of a fine-tuned NasNet-
Mobile CNN trained on original dataset images and performed classification; ii) deep learning feature
extraction from an average pooling layer of a fine-tuned NasNet-Mobile CNN trained on enhanced
MRI images and performed classification; iii) fused deep features of both fine-tuned CNN models
using the MCCA approach; and iv) the proposed hybrid feature optimization algorithm is applied on
fused feature vector and obtains the best feature for final classification.

Results of BraTs2018 dataset: Table 2 presents the classification results for the middle steps of the
proposed deep learning framework. This table calculates the results for NasNet-Org, NasNet-Enh,
and fusion. NasNet-Org represents deep learning extracted features through NasNet-Mobile original
sample images of the selected dataset, while NasNet-Enh represents feature extraction using enhanced
MRI images. The ELM classifier gives better results, with 88.9%, 90.6%, and 91.8% accuracy than the
other classifiers. According to the results given in this table, it is shown that classification performance
is improved for the enhanced images that are further boosted after the fusion of both deep feature
vectors. The computational time is also mentioned in this table, and it is observed that the time of
NasNet-Enh and fusion steps is increased more than NasNet-Org. To resolve the challenge of high
computational time and improve the classification accuracy, a hybrid feature optimization algorithm
is applied to the fused feature vector, with the results presented in Table 3. The ELM classifier achieved
the best accuracy of 94.8 percent, whereas the sensitivity rate was 94.62 percent. The computational
time of ELM is 13.660 (sec), which was previously 66.3264 (sec) for NasNet-Org.

Table 2: Step-wise classification results of the proposed framework on the BraTs2018 dataset

Classifiers Features Performance measures
NasNet-Org NasNet-Enh Fusion Accuracy (%) Time (sec)

MCSVM � 85.2 77.4673
� 86.5 92.5543

� 88.3 116.4432
WKNN � 84.8 88.3224

� 85.4 97.0034
� 87.1 128.6732

GNB � 81.4 104.6623
� 83.0 116.9362

� 85.7 145.2564

(Continued)
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Table 2 (continued)

Classifiers Features Performance measures
NasNet-Org NasNet-Enh Fusion Accuracy (%) Time (sec)

EBT � 85.9 80.2589
� 87.6 87.7893

� 90.1 118.5773
ELM � 88.9 66.3274

� 90.6 72.9940
� 91.8 89.5830

Table 3: Classification results of the final hybrid feature selection algorithm on the BraTs2018 dataset

Classifier Sensitivity (%) Accuracy (%) FNR (%) Time (sec)

MCSVM 91.20 91.5 8.8 21.469
WKNN 90.70 90.8 9.3 31.116
GNB 87.10 87.3 12.9 46.554
EBT 92.60 92.7 7.4 24.150
ELM 94.62 94.8 5.38 13.660

Fig. 5 illustrates the confusion matrix of the ELM classifier after the best feature selection. In this
figure, it is noted that each tumor class prediction rate is above 90 percent. A time-based comparison
among each middle step is also conducted, as plotted in Fig. 6. This figure describes that the fusion
process consumed more time than the rest.

Class T1 Tumor T1W Tumor T2 Tumor Flair

T1 Tumor 95% 2% >1% >1%

T1W Tumor 3% 93% 2% 2%

T2 Tumor 1% 3% 94.5% >2%

Flair 1% >1% >1% 96%

Figure 5: Confusion matrix of ELM classifier for BraTs2018 dataset

Results of BraTs2019 dataset: Table 4 presents the classification results for the middle steps
of the proposed deep learning framework using the BraTs2019 dataset. The results given in this
table are computed for NasNet-Org, NasNet-Enh, and deep features fusion. ELM classifier gives
better results for the first three middle steps than the other classifiers, achieving accuracies of
88.0%, 89.3%, and 90.6%. According to the results given in this table, it is shown that classification
performance is improved for the enhanced images that are further boosted after the fusion features.
The computational time of each step for all classifiers is also mentioned in this table, while it is observed
that the time of NasNet-Enh and fusion steps is increased more than NasNet-Org. This challenge is
resolved through a hybrid feature optimization algorithm applied to the fused feature vector, with the
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results presented in Table 5. The ELM classifier achieved the best accuracy of 94.8 percent, whereas the
sensitivity rate was 94.62 percent. These values showed that the selection of the best features not only
reduced the computational time but also increased classification accuracy. The computational time of
ELM is 23.100 (sec) after the feature selection process. The previous minimum time was 77.3484 (sec)
for NasNet-Org features.

Figure 6: Time-based comparison of each middle step on selected classifiers using the BraTs2018
dataset

Table 4: Step-wise classification results of the proposed framework on the BraTs2019 dataset

Classifiers Features Performance measures

NasNet-Org NasNet-Enh Fusion Accuracy (%) Time (sec)

MCSVM � 87.5 92.2564
� 88.1 108.3346

� 90.2 141.2675

WKNN � 83.7 121.2330
� 85.0 139.6126

� 87.8 161.35780

GNB � 84.1 141.0554
� 85.4 154.2570

� 86.0 174.8960

EBT � 87.6 107.8533
� 88.3 118.3562

� 88.9 149.8564

ELM � 88.0 77.3484
� 89.3 80.0950

� 90.6 108.0309
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Table 5: Classification results of final hybrid feature selection algorithm on BraTs2019 dataset

Classifier Sensitivity (%) Accuracy (%) FNR (%) Time (sec)

MCSVM 93.17 93.6 6.83 37.643
WKNN 90.18 90.4 9.82 51.540
GNB 90.65 90.7 9.35 96.114
EBT 92.42 92.5 7.58 45.207
ELM 95.37 95.7 4.63 23.100

Fig. 7 illustrates the confusion matrix of the ELM classifier after the best feature selection. Time-
based comparison among each middle step is also conducted, as plotted in Fig. 8. The time plotted
in this figure shows the importance of the feature selection step. This figure also describes that the
fusion of a deep learning process consumes more time than the other steps, such as NasNet-Org and
NasNet-Enh.

Figure 7: Confusion matrix of elm for BraTs2019 dataset

Figure 8: Time-based comparison of each middle step of the selected classifiers using the BraTs2019
dataset
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3.2 Discussion and Comparison

In Figs. 9 and 10, a comparison of middle stages is also performed and plotted. The precision
is improved following the fusion procedure, as shown in these figures. The fusion accuracy is further
tuned while the optimization approach enhances each classifier’s accuracy by over 4%. Furthermore,
the computational time shown in Tables 2–5 indicates that the fusion process consumes more time than
that saved by the proposed hybrid feature selection technique. Finally, the correctness of the proposed
framework is compared to several previous approaches, as given in Table 6. Khan et al. [19] obtained an
accuracy of 92.5 percent using the BraTs2018 dataset. Rehman et al. [26] used the BraTs2018 dataset
and achieved an accuracy of 92.67 percent. Sharif et al. [25] presented a deep learning model and
achieved an accuracy of 92.5% using the BraTs2018 dataset. In this article, the proposed framework
obtained an accuracy of 94.8 percent on the BraTs2018 dataset and 95.7 percent on the BraTs2019
dataset. Overall, the proposed accuracy is improved as opposed to the existing techniques [19,25,26].

Figure 9: Comparison of each middle step of the proposed framework based on the accuracy for the
BraTs2018 dataset

Figure 10: Comparison of each middle step of the proposed framework based on the accuracy for the
BraTs2019 dataset
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Table 6: Comparison of proposed brain tumor classification framework with SOTA techniques

Methods Data Accuracy (%)

[24], 2019 BraTs2019 84.9
[19], 2020 BraTs2018 92.5
[26], 2021 BraTs2018 92.67
[25], 2020 BraTs2018 92.5
Proposed BraTs2018 94.8

BraTs2019 95.7

4 Conclusion

This research proposes a multimodal brain tumor classification framework based on two-way deep
learning and hybrid feature optimization algorithms. The framework’s first stage was to train a fine-
tuned two-way deep learning model on original and augmented images, which were then trained using
TL. A multiset CCA-based system is employed to extract and fuse the features of the average pooling
layers. Before being classified using an ELM classifier, the fused feature vector is enhanced using
a hybrid HWOA-CSA feature optimization approach. The experiment used two publicly available
datasets called BraTs2018 and BraTs2019, with 94.8 and 95.7 percent accuracy rates, respectively. In
terms of accuracy, the proposed strategy outperforms recent SOTA techniques. According to the data,
combining two-way CNN features improves classification accuracy. However, it increases the time
consumed, but the proposed hybrid feature optimization approach overcame the long processing time.
Tumor segmentation and CNN model training will be done in the future. In addition, the BraTs2020
dataset will be used in the testing process.
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