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ABSTRACT

The strict and high-standard requirements for the safety and stability of major engineering systems make it a tough
challenge for large-scale finite element modal analysis. At the same time, realizing the systematic analysis of the
entire large structure of these engineering systems is extremely meaningful in practice. This article proposes a
multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel com-
putational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale
finite element modal analysis. Based on two-level partitioning and four-transformation strategies, the proposed
algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of
data but also reduces the solution time by reducing the scale of the generalized characteristic equation (GCEs).
Moreover, a multilevel hierarchical parallelization approach is introduced during the computational procedure
to enable the separation of the communication of inter-nodes, intra-nodes, heterogeneous core groups (HCGs),
and inside HCGs through mapping computing tasks to various hardware layers. This method can efficiently
achieve load balancing at different layers and significantly improve the communication rate through hierarchical
communication. Therefore, it can enhance the efficiency of parallel computing of large-scale finite element modal
analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters. Finally, typical
numerical experiments were used to validate the correctness and efficiency of the proposed method. Then a parallel
modal analysis example of the cross-river tunnel with over ten million degrees of freedom (DOFs) was performed,
and ten-thousand core processors were applied to verify the feasibility of the algorithm.
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1 Introduction

Continuous development and research in engineering and scientific technology have brought the
appearance of complex equipment and large or ultra-large systems [1,2]. The strict requirements of
these systems in terms of safety and stability bring severe challenges to the numerical simulation
of their dynamic system performance, which will result in large-scale DOFs in their finite element
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systems and make them difficult to solve [3–5]. Specifically, modal analysis is the most time-consuming
link among all calculation processes of these complex dynamic systems and is also the basis for
other calculations. High-precision modal analysis requires the help of large-scale finite element
models, but these problems usually cannot get satisfactory solutions on traditional serial computers
[6,7]. As a consequence, the research and development of corresponding large-scale modal analysis
parallel algorithms can provide a feasible method for solving such problems on the basis of parallel
supercomputers.

The mathematical essence of modal analysis can be eventuated to the large sparse matrix
generalized eigenvalue problem. The solutions to these kinds of problems are often based on subspace
projection techniques, which mainly include the Davidson subspace method and the Krylov subspace
method. The Davidson subspace method is primarily applied in solving the eigenvalue of diagonally
dominant symmetric matrices, but the applicability of this method is not as good as the Krylov
subspace method [8,9]. The Krylov subspace method can be traced back to the 1950s with the
proposed algorithms, including the Lanczos algorithm [10], the Arnoldi algorithm [11], the Krylov-
Schur algorithm [12], etc. Later, worldwide researchers conducted a series of explorations on parallel
algorithms of modal analysis based on the Lanczos algorithm, the Arnoldi algorithm, the Krylov-
Schur algorithm, etc. The research mainly focused on two main types of parallel computing methods.
One begins from the most time-consuming linear equations to seek the high-efficiency parallel comput-
ing method, and the other is from the finite element problem’s parallelism to form the modal synthesis
method [13,14]. The direct and iterative approaches are the two fundamental algorithms for the parallel
model solution of modal analysis. In terms of parallel computing of modal synthesis, researchers
have combined direct and iterative methods. They started from the parallelism of the finite element
problem itself, dividing the complex modal analysis problems into smaller sub-modal tasks for parallel
processing. The direct method is used to solve the equations in sub-modal problems. The system-
level modal GCEs after condensation are obtained through two modal coordinate transformations
to reduce its overall scale. Then the iterative scheme is applied to solve the linear equations involved
in the system-level modal GCEs after condensation. Therefore, the advantages of the direct method
and iterative method can be well utilized to improve parallel efficiency, and thus it has been widely
employed in the field of structural modal parallel computing. Rong et al. [15] designed a hybrid parallel
solution for large-scale eigenvalues based on the modal synthesis algorithm (MSA) and transfer matrix
method. Later, this method was applied to a vacuum vessel’s large-scale parallel modal analysis.
Heng et al. [16] delivered a cantilever beam’s large-scale parallel modal solution on a shared memory
parallel computer based on MSA. Aoyama et al. [17] improved the coupling method in the interfaces
of each subsystem in MSA, and they successfully conducted the large-scale parallel modal analysis on
a rectangular plate. Parik et al. [18] used the MSA to complete the design of the parallel modal analysis
computing system based on OpenMP and utilized it in calculating the parallel modal analysis of a shaft
system. Cui et al. [19] developed a simultaneous iterative procedure for the fixed-interface MSA, which
has such merits as high computational efficiency, especially for reanalysis and parallel programming.
However, when solving large-scale problems with the parallel modal synthesis approach (PMSA), with
the increment in the number of subdomains, the scale and conditions of the system-level modal GCEs
obtained after condensation also increase sharply, making it difficult to work out. Additionally, all
processes need to participate in global communication when solving system-level modal GCEs with
the iterative method. The overhead increment in inter-process communication and synchronization
will greatly reduce the parallel efficiency.
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In terms of hardware, the most widely used parallel computer in scientific and engineering com-
puting is the distributed memory parallel computer, which architectures mainly include pure Central
Processing Unit (CPU) homogeneous supercomputers [20] and heterogeneous supercomputers [21].
Particularly, heterogeneous supercomputers have become the mainstream architecture in distributed
memory parallel computers due to their excellent computing power and cost-to-performance effec-
tiveness. For heterogeneous distributed storage parallel computers, the most important parts are
the different storage mechanisms in the cluster environment, the communication and cooperation
between processors, and the load balance of the hardware architecture at all levels. These factors can
also affect parallel efficiency significantly. Therefore, the keys to improving the parallel efficiency of
heterogeneous distributed memory parallel computers are to balance the load between computing
tasks and the hardware topology architecture of heterogeneous clusters, to ensure the storage of large-
scale data, and to deal with the communication and cooperation between processors properly.

This paper focuses on providing a multilevel hierarchical parallel modal synthesis algorithm
(MHPMSA) that is aware of the characteristics of heterogeneous multicore distributed storage
computers and fully exploits their computing power to achieve optimal performance. The proposed
algorithm, based on two-level partitioning and four transformation strategies, not only realizes the
sparsely distributed storage of a large amount of data and speeds up the access rate of data memory
but also reduces the scale of general GCEs after condensation effectively and saves the equation
solution time. Moreover, this algorithm achieves a three-layer parallelization by utilizing the mapping
between computational tasks and the hardware architecture of heterogeneous distributed storage
parallel computers. And it can improve the load balance between different layers and accelerate
communication efficiency by separating the communication between inter-nodes and intra-nodes,
as well as the communication between HCGs and inside HCGs. There are various types of finite
element methods, and this article targets the work of using heterogeneous distributed storage parallel
computers to solve large-scale modal problems. It can be ported as a reference for other types of large-
scale structural problems.

The rest of this paper is organized as follows: Section 2 introduces the related works of CPMSA
to solve the large-scale modal analysis. Then, Section 3 describes the MHPMSA proposed with two-
level partitioning, four-transformation strategies, and the implementation of MHPMSA with the best
respect for the architecture of the ‘Shenwei’ heterogeneous multicore processor. In Section 4, two
numerical experiments are presented. Finally, conclusions are drawn in Section 5.

2 Related Works

MSA can be divided into three categories according to the different processing methods of the
DOFs of the substructure system interface: the free interface MSA [22], the fixed interface MSA
[23], and the hybrid interface MSA [24], as shown in Fig. 1. In the MSA solution procedure, the low-
order modal information of the substructure is used to represent the high-order modal information.
When applying the free interface and the hybrid interface MSA, the existence of rigid body modes
will cause the formation of singular stiffness matrices and cannot conduct matrix inversion. The
fixed-interface MSA was first proposed by Tian et al. [25]. Its substructure modes include rigid body
modes, constraint modes, and low-order modes of the fixed-interface substructure. Later, Craig and
Monjaraz Tec et al. [26] improved the fixed interface MSA by controlling the additional constraints of
the interface of the substructure system. Since the rigid body mode no longer needs to be considered
in this method, the calculation process is simpler and has been widely used.
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Substructure-1 Substructure-2

(a) Global structure

(b) Fixed interface (c) Free interface (d) Hybrid interface

Figure 1: Three categories of MSA

The mathematical description of modal analysis is [27]:

Kϕ = λMϕ (1)

In this equation, K is the stiffness matrix of the overall modal system; M is the mass matrix
of the overall modal system; λ is the generalized eigenvalue of the overall modal system; ϕ is
the corresponding mode shape vector. K and M are all large sparse, symmetric positive (semi)
definite matrices and can be obtained through the finite element discretization and integration of the
engineering system structures. The essence of modal analysis is to solve multiple low-order eigenpairs
of Eq. (1).

The finite element mesh is divided once in the conventional parallel modal synthesis algorithm
(CPMSA), as shown in Fig. 2. There are two meshing algorithms: 1D algorithm and 2D algorithm.
Compared with the 1D algorithm, the 2D algorithm is more suitable for models with extremely large
DOFs or with complicated configurations [16,28]. According to the numbering principle, the generated
m sub-regions first settle the internal DOFs for the I set and then settle the boundary DOFs B set.
The mass matrix Msub and the stiffness matrix Ksub of each sub-domain system can be expressed as:

[Ksub] =
[

KII KIB

KBI KBB

]
; [Msub] =

[
MII MIB

MBI MBB

]
(2)

1D algorithm

2D algorithm

first transformation second transformation

overlapping nodeboundary nodeinternal node

partitioning

Figure 2: Partitioning and transformation of CPMSA

When performing the first coordinate transformation, the relationship between the physical
coordinates of each sub-domain system and the modal coordinates can be expressed as:
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[
UI

UB

]
= [�]

[
pk

pB

]
≈

[
�Ik �IB

0BK IBB

] [
pk

pB

]
(3)

In the formula, UI and UB represent the displacements of the internal nodes and boundary
nodes, respectively. [IBB] is the identity matrix, [0BK] is a zero matrix, {pk} is the k modal coordinates
corresponding to the internal nodes, and {pB} is the l modal coordinates corresponding to the boundary
nodes. [Φ] is the modal transformation matrix of each substructure, and [Φ Ik] is the principle modal
matrix formed by internal nodes. (KII, MII) can construct GCEs and take the eigenvector group
formation corresponding to the first k low-order eigenvalues, as Eq. (4) shows. [Φ Ik] is the constrained
mode and can be calculated as Eq. (5).

KIIϕI = λIMIIϕ (4)

�IB = −[KII ]−1[KIB] (5)

The condensed equivalent stiffness matrix
[
K̃

]
and equivalent mass matrix

[
M̃

]
of each sub-

domain are:[
K̃

]
= [�]T [K] [�] ,

[
M̃

]
= [�]T [M] [�] (6)

The second coordinate transformation is performed as shown below by utilizing the displacement
coordination conditions among the sub-domain systems:

[p̃] = [S] [q̃] (7)

In the equation, [p̃] is the modal coordinates corresponding to the boundary nodes and internal
nodes of the set in each sub-domain system as shown in Eq. (8). In Eq. (7), [S] is the independent modal
coordinate transformation matrix. [q̃] is the independent modal coordinate obtained after removing
the modal coordinate of boundary notes in the repeat set.

[p̃] = [[
p0

k, p0−j1
B , . . . , p0−jj

B

]
, . . . ,

[
pm

k , pm−k1
B , . . . , pm−kk

B

]]T
(8)

[q̃] = [p̃] − {{pjk
B }|{pjk

B } ∈ [q̃] and exist {pkj
B } ∈ [q̃]} (9)

Transform the equivalent stiffness matrix and the equivalent mass matrix after simultaneous all
sub-domains, and we can get the reduced GCEs for the whole system:

K∗ϕ∗ = λ∗M∗ϕ∗ (10)

The reduced stiffness matrix [K∗] and the reduced mass matrix [M∗] are:

[K∗] = [S]T [
K̃ ′

]
[S] , [M∗] = [S]T

[
M̃

]
[S] (11)

Employing the parallel Krylov subspace iteration method to solve Eq. (10) can get the low-order
modal frequencies and mode shapes required by the overall system, and substituting it into Eq. (3) can
obtain the mode shapes of each sub-structure.

3 Proposed MHPMSA Based on Shenwei Multicore Processor Architecture

MHPMSA, based on two-level partitioning and four-transformation strategies and sparsely
distributed data storage, not only improves the load balancing of different levels through parallel
task mapping but also realizes communication separation and effectively improves communication
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efficiency. Furthermore, it reduces the scale of the system-level modal generalized characteristic and
saves the iterative convergence time.

3.1 Proposed MHPMSA

To reduce time in condensing sub-domains, assembling and solving the system-level modal GCEs
in sub-domains level 1 with the increasing number of sub-tasks, MHPMSA war proposed on the basis
of two-level partitioning and four-transformation strategies.

In the two-level partitioning, the initial mesh of finite element is first partitioned into p level 1
subdomains with the 2D algorithm on the basis of ParMetis [29]. Then, every level 1 subdomain is
divided into m level 2 subdomains on the basis of the characteristics of heterogeneous multicore archi-
tecture, which adapts to the heterogeneous multicore distributed storage supercomputer, ‘Shenwei-
Taihuzhiguang’. Where p should be the total number of starting node machines in parallel computing,
and m represents the number of HCGs in a single node machine, which is 4. For example, as shown
in Fig. 3, if p is equal to 2, then the meshing of the finite element will be divided into two level 1
sub-domains at first, and then every level 1 subdomain is partitioned into four level 2 subdomains
again.

internal node
boundary node

first
partitioning

second
partitioning
second

partitioning

level 1 level 2initial mesh

Figure 3: Two-level partitioning

The four-transformation recognizes the transformation process by successfully applying Eqs. (3)
and (7) on levels 1 and 2 subdomains, as shown in Fig. 4. Firstly, it will form the mass and stiffness
matrixes for every level 2 subdomain. Then, throughout the first coordinate transformation, it will
constitute the GCEs that only contain internal freedom. Later, the equivalent stiffness and mass
matrices are calculated by condensation in each subdomain. Then, by grouping all equivalent stiffness
and mass matrices of level 2 subdomains within the same level 1 subdomain and applying the second
coordinate transformation can gain the GCEs of level 1 subdomains that only contain independent
coordinates. After series condensations, grouping, and coordinates transformations according to
Eqs. (7)∼(11), we can get the GCEs of the whole system only involving independent coordinates. Then,
global GCEs can be solved by the parallel Krylov subspace iteration method to determine the low-
order modal frequencies and mode shapes required by the overall system. Finally, modal frequencies
and mode shapes of each sub-structure can be calculated by parallel back substituting according
to Eq. (3). The differences between the different approaches CPMSA and MHPMSA are shown in
Table 1.
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level 1level 2 initial mesh

first transformation second
transformation

fourth
transformation

third
transformation

assembling
assembling

internal node
boundary node
overlapping node

Figure 4: Four transformations

Table 1: Differences between the different approaches CPMSA and MHPMSA

Differences CPMSA MHPMSA

Number of MPI processes p × m p × m
Number of subdomain-level 1 p × m p
Number of subdomain-level 2 — m
Scale of global GCEs (p × m) ∗ r p × r
Mode of GCEs of subdomain-level 1 Calculated by 1 MPI process Calculated by m MPI processes

3.2 Architecture and Execution Mode of Shenwei Multicore Processor

Heterogeneous supercomputers are usually equipped with multicore CPUs, Graphics Processing
Unit (GPUs), Many Integrated Cores (MIC) processors, or heterogeneous groups to calculate the
computational tasks together. For example, the APU project by AMD company [30], the Echolen
project led by NVIDIA company [31,32], the Runnemede project conducted by Intel company, and
Wuxi-Hending company’s project named ‘Shenwei-Taihuzhiguang’ [1] in this article, etc.

Because there are a wide variety of heterogeneous multicore supercomputers, this paper mainly
focuses on the parallel solution of large-scale modal problems using the ‘Shenwei-Taihuzhiguang’
supercomputer to analyze and solve the problem in a targeted manner. ‘Shenwei-Taihuzhiguang
supercomputer is built based on ‘Shenwei’ multicore processor architecture, as shown in Fig. 5. There
are four HCGs in every Shenwei heterogeneous multicore processor, and all four of these HCG shares
32 GB memory. Every HCG owns one main core (computational control core) and 64 computing
cores (computing core array). To ensure the implementation of MHPMSA with the best respect for
the architecture of the ‘Shenwei’ heterogeneous multicore processor, each node should make full use
of all four HCGs in parallel computing. And every HCG should make full use of the main core
and 64 computing cores. Besides, all of ‘Shenwei’ multicore processors are not in any particular
order of importance. The principle of network among ‘Shenwei’ multicore processors adopts peer-to-
peer network communication protocol. Hence, the number of ‘Shenwei’ multicore processors can be
arbitrarily selected without consideration of the parallel efficiency and the storage of large-scale data.
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Figure 5: Shenwei multicore processor architecture

The communication between the HCGs adopts the bidirectional 14 G bits/s bandwidth. And the
communication between the computational control and the computing core adopts the DMA method
to get bulk access to the main memory. The local storage space of the computing core is 64 KB, and the
command storage space is 16 KB. The features of its communication are: the communication efficiency
of the intra-node is much higher than that of the inter-node. Similarly, the communication rate within
the same HCG is much greater than that between the HCGs.

3.3 Parallel Task Mapping

Considering the features of communication on Shenwei multicore processor architecture, the keys
to improving the parallel efficiency of large-scale finite element modal analysis of heterogeneous
distributed memory parallel computers are: (1) to balance the load between computing tasks and
the hardware topology architecture of heterogeneous clusters; (2) to ensure the storage of large-scale
data and (3) to deal with the communication and cooperation between processors properly. Through
mapping, the computing tasks to different hardware layers of heterogeneous multicore supercomputers
can achieve load balancing among different layers and accomplish efficacious partitioning in commu-
nication [33].

Based on the CPMSA and considering the hardware architecture of the heterogenous multicore
supercomputer ‘Shenwei-Taihuzhiguang’, we formed the task mapping of MHPMSA for structural
large-scale modal analysis, as shown in Fig. 6.

When performing task mapping, the level 1 mesh subdomains are mapped according to the order
of nodes, and the level 2 mesh subdomains are mapped according to the heterogeneous groups within
nodes. The floating-point operations in each HCG are mapped in agreement with the computing cores.

‘Shenwei’ heterogeneous multicore processor is configured with 8G private memory and can be
accessed independently. Therefore, to speed up the memory access rate during the calculation, the data
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and information of each subdomain are stored in its corresponding HCG within the node machine
through multiple file streams. Besides, compared to the CPMSA, the MHPMSA further reduces the
scale of the overall GCEs of the system and accelerates its iterative convergence speed with two-level
partitioning and four transformation strategies.
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Figure 6: Task mapping of MHPMSA for structural large-scale modal analysis

3.4 The Three-Layer Parallelization Computational Mechanism

Based on the communication characteristic of heterogeneous multicore distributed storage par-
allel computers, the key to improving communication efficiency lies in realizing the communication
separation between inter-nodes and intra-nodes, also the communication between different HCGs and
inside HCGs when controlling the communication cooperation. As well as reduce the communication
and synchronization overheads generated in the whole solution procedure of the system. That is,
according to the communication architecture of the heterogeneous multicore distributed parallel
storage computer, to restrict the large amount of local communication within the intra-nodes. And
minimize the global communication in inter-nodes at the same time. The MHPMSA just satisfies these
conditions. As shown in Fig. 7, it realizes the three-layer parallelization computation based on the two-
level partitioning and four-transformation approach mentioned before.

Algorithm 1: Vector matrix multiplication on heterogeneous multicore acceleration
code of control core code of computing core array
1. Double a[], b[], c[] 1. __thread_local double bs[], cs[]
2. Int i, J 2. __thread_local int i, J
3. #pragma acc parallel loop 3. athread_get (PE_MODE, &b[], &bs[]„„,)

(Continued)
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Algorithm 1 (continued)
4. copyin (b, c) 4. athread_get (PE_MODE, &c[], &cs[]„„,)
5. copyout (a) 5. for (i = 0; i < J ; i++)
6. for (i = 0; i < J ; i++) 6. as[i] = bs[i] ∗ cs[i]
7. a[i] = b[i] ∗ c[i] 7. athread_put (PE_MODE, &as[], &a[]„„)

Algorithm 2: Parallel Lanczos algorithm for modal analysis
parallel Lanczos algorithm PMCD

1. choose u1 and u1
TMu1 = I 1. for (i = 0; i < J ; i++)

2. broadcast u1 to all processes 2. {iz = FirstNonzero(i)
2. Solve KX1 = Mu1 with PMCD 3. if (I is my column)
3. b1 = 0 4. {Tj = Ajj

4. for (i = 0; i < q; i++) 5. for (j = iz; j < i; j++)
5. {ai = ui

TMXi 6. {Tj = Aji/Ajj; Ti = Ti − Aji ∗ Tj; Aji = Tj;}
6. wi = Xi − aiui 7. Aii = Ti; MPISend T(iz, i) to all a process}
7. for (j = 0; j < I ; j++) 8. else {MPIRecv T(iz, i) from the process}
8. {mji = uj

TMwi} 9. for (j = i + 1; j < n; j++)
9. wi = wi − m1iu1 − L − miiui 10. {jz = FirstNonzero(i)
10. bi+1 = (wi

TMwi)
0.5 11. if (j is my column and jz ≤ i)

11. ui+1 = wi/bi+1 12. {for (k = max(jz, iz); k > i; k–)
12. c = Mui+1 − bi+1Kui 13. {Aij = Aij − Akj∗Tk}}}}
13. Solve KXi+1 = c with PMCD} 14. for (i = J ; i < n; i++)
14. Solve Tφ = 1/λφ 15. {Aji = Aji/Ajj}

Figure 7: Scheme of three-layer parallelization for large-scale finite element modal analysis
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First-layer parallelization: In the first-layer parallelization, the m processes of each node are
responsible for the processing procedure corresponding to the level 2 subdomain system. All processes
operate synchronously, and there is no data interaction between different processes. In the process, data
interaction exists between the computing control core and the computing core array. The maximum
amount of data that can be used in one data interaction between the computing control core and a
single computing core is 64 KB. The data processing processes include: the computing control core
of each HCG reading the model data of the subdomain; each computing control core carrying out
the calculations corresponding to the computing core array to form the equivalent stiffness matrix
Ksub and an equivalent mass matrix Msub of their subdomain; applying the parallel Lanczos method

to solve the equivalent stiffness matrix
[
K̃

]
and equivalent mass matrix

[
M̃

]
, which are calculated

through level 2 GCEs (KII, MII) after condensation, and solving the mode shapes of level 2 subdomain
though back substituting. Since these computing processes are operated based on unit information,
each process can be performed independently according to the system information of the level 2
subdomain. Therefore, there is no need for data to interact between processes, and the data interactions
only exist between the computing control core and the computing core array.

To save memory space and to reduce the amount of calculation, the local overall stiffness matrix
and mass matrix of each level 2 subdomain are stored with the compressed sparse column technique.
The matrix-vector operations involved in Eqs. (2)∼(9), mainly including addition, subtraction, mul-
tiplication, and division, are performed with the Athread library. Take the vector multiplication a =
b × c as an example (a, b, and c are the storage arrays in any matrix-vector operation procedure); its
operation is shown in Algorithm 1. The 64 computing cores on each HCG read the corresponding
data from its memory space synchronously and cyclically. The required memory in this data segment
should be less than 64 kb. After calculation, the data will return to specific locations. Communication
only exists between the computing control and the computing core in the process.

Second-layer parallelization: Each node machine simultaneously performs the set of the corre-
sponding level 1 subdomain, the parallel condensation, and back substituting. Communication exists
between different HCGs within the same node and in each HCG between the control core and the
compute core. The data in the calculation process adopts the compressed sparse column technique
for distributed storage. During calculation, the No. 0 HCG in each node machine is responsible for
summarizing the results and the internal back substituting and solutions of the set, data distribution,
and parallel consideration. At the same time, all HCGs in the same node machine will participate in the
parallel computational procedure corresponding to the level 1 subdomain within every node machine.
The parallel Lanczos method is applied to solve the GCEs (KII, MII) of the level 1 subdomain. And the
linear equations involved in the procedure are preprocessed through the parallel modified Cholesky
decomposition (PMCD), as shown in Algorithm 2.

Third-layer parallelization: The parallel Krylov subspace iteration method is used here to solve
the reduced GCEs of the whole system. Every node machine only has one core group, named No. 0
HCG, to join in the solution and communication, as shown in Fig. 8. During the solution, the overall
reduced stiffness matrix and reduced mass matrix of the system are still stored distributively in the
memory space corresponding to the No. 0 HCG. The intermediate calculation results also employ
the compressed sparse column technique for distributed storage. Consequently, a large amount of
local communication is limited between the computing control core and the computing core array of
each HCG. And only a few dot product operations and computations for overall iterative errors need
global communication. Therefore, it can effectively reduce the amount of communication and improve
parallel computing efficiency.
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Figure 8: Parallel Krylov algorithm and task mapping

In summary, MHPMSA can confine a considerable amount of local communication within every
node machine while ensuring that every node machine has one HCG, which is the No. 0 HCG, to
participate in global communication. This strategy realizes the communication separation of intra-
node and inter-node, reducing the communication and cooperation overheads in the computational
procedure. As a consequence, the MHPMSA can significantly improve communication efficiency.

4 Numerical Study and Discussion
4.1 Numerical Experiments

The ‘Shenwei-Taihuzhiguang’ supercomputer is used to verify the correctness and effectiveness of
the proposed algorithm. Each node starts using four HCGs during the test. And every HCG starts
using one main core and 64 computing cores with 8 GB memory. The proposed algorithm and the
CPMSA are used in the modal analysis of a disc brake rotor in an ultra-deep drilling rig. The FEM
mesh model is shown in Fig. 9. The elastic modulus assigned to the model is 210 GPa, and the density is
7800 kg/m3, and the Poisson’s ratio of 0.3. Applying different DOFs scales and setting fixed constraints
on the 8 bolt-hole positions on the inner surface. The structural first 20 natural frequency results are
calculated and compared with the results computed by the Lanczos algorithm [10,34]. The test scales
are shown in Table 2, and the maximum relative errors of the first 20 natural frequencies of each test
scale are calculated by Eq. (12), and the results are shown in Fig. 10.

εm = ||λ − λlanczos||2

||λlanczos||2

(relative errors) (12)
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Figure 9: FEM of brake system on an ultra-deep drilling rig

Table 2: Testing cases for the main structure of the rotor on the brake system

Test scale discription The scale of DOFs The number of non-zero elements
of the stiffness matrix

Average bandwidth

Case1 51,6632 28,664,127 51
Case2 2,123,721 161,056,251 239
Case3 4,297,537 321,426,211 242
Case4 6,176,367 501,507,352 260
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Figure 10: The modal relative errors for different DOFs

To reveal the necessity of large-scale modal calculation of complex systems, we conduct compara-
tive analyses of the modal frequency results of Case1∼Case4. Table 3 shows the comparison of modal
frequencies under four different scales. And the source of the original experimental data of Table 3 is
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the modal frequency for different scales of the rotor on the brake system, which is calculated by the
Lanczos algorithm.

Table 3: Changes of the modal frequencies for different scales of the rotor on the brake system

Modal
order

Case1 Case2 Case3 Case4

f /Hz f /Hz Error/% f /Hz Error/% f /Hz Error/%

1 211.39 203.943 3.522872 201.860 1.021364 201.358 0.24877
2 211.596 204.078 3.552997 201.877 1.078509 201.369 0.251602
3 417.549 399.152 4.40595 393.565 1.399717 392.228 0.339826
4 1114.99 1113.38 0.144396 1112.82 0.050297 1112.68 0.012814
5 1116.14 1114.55 0.142455 1113.99 0.050244 1113.85 0.012564
6 1341.92 1334.52 0.551449 1333.21 0.098163 1332.78 0.032282
7 2122.78 2088.92 1.595078 2075.40 0.647224 2071.82 0.172461
8 2123.43 2088.98 1.622375 2075.49 0.64577 2071.84 0.175883
9 3056.6 3053.08 0.115161 3051.90 0.038649 3051.56 0.011088
10 3056.65 3053.12 0.115486 3051.90 0.039959 3051.57 0.010753
11 3351.6 3307.69 1.310121 3285.89 0.65907 3280.15 0.17482
12 3353.38 3309.29 1.314793 3289.06 0.611309 3283.684 0.163456
13 4165.8 3984.87 4.343223 3933.09 1.299415 3920.545 0.318951
14 4182.85 3993.96 4.515821 3939.27 1.369318 3926.02 0.336363
15 4184.53 3996.75 4.487481 3939.88 1.422906 3926.244 0.346093
16 4221.26 4023.90 4.675381 3964.54 1.475186 3950.242 0.360652
17 4567.64 4417.36 3.290102 4361.11 1.273385 4347.301 0.316645
18 4597.71 4495.87 2.215016 4460.97 0.776268 4451.632 0.209316
19 4903.85 4792.15 2.277802 4755.27 0.769592 4746.14 0.192004
20 4908.82 4794.29 2.333147 4755.77 0.803456 4746.197 0.201297

From Table 3, it can be seen that with the increase in the calculation scale, the modal frequency
of each order will gradually decrease. This pheromone is caused by the ‘hardening effect’ of stiffness
matrices in complex systematic finite element analysis, and it will cause a higher modal frequency in
a relatively small DOFs calculation scale. Compared with the modal frequencies of Case1∼Case3,
the maximum rate of change is 4.68%, while for the modal frequencies of Case3 to Case4, the rates of
change are much lower, indicating that for the finite element analysis of complex systems, it is necessary
to increase the corresponding calculation scale to improve its accuracy.

For a special problem, if the available nodes for parallel computing range from i to j (0 < i < j
< . . . < p), and the corresponding time costs are (t0, ti, tj, . . . , tp), respectively. Then, the speed up of
parallel computing with j cores is calculated by Eq. (13). And the corresponding parallel efficiency is
calculated by Eq. (14).

Sj = ti

tj

(j = i, . . . , p) (13)
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Ei = hSi

i
× 100% (j = i, . . . , p) (14)

The MHPMSA proposed in this article and the CPMSA are tested by starting the corresponding
number of node machines. With the consideration of features of the ‘shenwei’ multicore processors and
the storage of large-scale data, the total number of startup node machines in sequence during the test
is 16, 32, 64, and 128. Since the total number of level 1 subdomains in two-level partitioning should
be equal to the total number of start node machines, the number of corresponding level 1 domains
should be 16, 32, 64, and 128 as well. Every node of ‘Shenwei-Taihuzhiguang’ supercomputer contains
4 HCGs, and thus in the second partition, every level 1 domain will be divided into 4 independent level
2 domains. The parallel calculation results of Case2 to Case4 are shown in Tables 4∼6. The source of
the original experimental data of Tables 4∼6 is the solution time for different scales, which is calculated
by CPMSA and MHPMSA with different numbers of node machines. Then, the speedup and parallel
efficiency can be calculated by Eqs. (13) and (14).

Table 4: Results of parallel computation for Case2

Computing hardware Nodes 16 32 64 128
HCG 64 128 256 512
Computing core 4096 8192 16384 32768

CPMSA (Direct method) System equations/s 702.2 1561.1 1610.7 1637.5
Total time/s 3520.2 3027.9 2212.8 1722.2
Speedup 1 1.1626 1.5908 2.044
Parallel efficiency 100% 58.13% 39.77% 25.55%

MHPMSA (Direct method) Solving time for
Level1/s

650.1 1101.2 1121.6 1275.8

Total time/s 3455.6 2771.2 1869.1 1422.3
Speedup 1 1.2474 1.8488 2.4296
Parallel efficiency 100% 62.37% 46.22% 30.37%

In Tables 4∼6, the total parallel computing time starts from calculating the subdomains and
ends when the mode shape has been calculated for every subdomain. The solution time for level 1
subdomains includes: the time to form the equivalent stiffness matrix and the equivalent mass matrix
of the level 1 subdomain, the time for condensation and reduction of the level 1 subdomain, the
time for parallel solutions of the equations, and the time to back substitute level 1 subdomain modal
coordinates. In Table 4, the global system equations are solved by parallel solvers SuperLU_D [35].
In Tables 5 and 6, the global system equations are solved by parallel PCG. Based on the results in
Tables 4∼6, it can be observed that when using MHPMSA proposed in this article, we can obtain a
higher acceleration ratio and parallel efficiency than using the CPMSA. This is because when using the
CPMSA, with an increasing number of subdomains, the scale of GCEs and conditions also expands
rapidly, resulting in a significant increase in solution time and thereby seriously affecting the overall
parallel efficiency of the system. From a mathematical point of view, the MHPMSA method solution
of the level 1 subdomain essentially solves the system’s GCEs with the same scale as the CPMSA and
greatly shortens the solution time. For example, in Table 6, the solution time for the level 1 subdomain
is 732.1 s with 512 computing cores, which saves 1289.1 s compared to the CPMSA. The main reason
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behind that is the MHPMSA, based on the two-level partitioning and four-transformation strategies,
improves communication efficiency by separating the communication between inter-node and intra-
node, together with the communication between HCGs and inside HCGs. Besides, it further reduces
the system equation scale after condensation and accelerates its computation and iteration convergence
rate. As a result, it can effectively save the solution time for the level 1 subdomain and obtain a
satisfactory speedup ratio and parallel efficiency. Also, it can be observed that when using parallel
PCG in the solving of global system equations, we can obtain a higher acceleration ratio and parallel
efficiency, compared with SuperLU_D. This is because SuperLU_D will further increase the density
of the original equations. As a consequence, the sets and triangular decomposition require a large
amount of memory. Besides, it also needs a lot of communication and calculation.

Table 5: Results of parallel computation for Case3

Computing hardware Nodes 16 32 64 128
HCG 64 128 256 512
Computing core 4096 8192 16384 32768

CPMSA System equations/s 389.2 632.5 795.8 939.9
Total time/s 5776.5 3517.1 2093.5 1204.0
Speedup 1 1.6424 2.7592 4.7976
Parallel efficiency 100% 82.12% 68.98% 59.97%

MHPMSA Solving time for
Level1/s

259.7 336.8 402.3 479.3

Total time/s 5503.9 3215.27 1719.8 1065.5
Speedup 1 1.7118 3.2004 5.1656
Parallel efficiency 100% 85.59% 80.01% 64.57%

Table 6: Results of parallel computation for Case4

Computing hardware Nodes 16 32 64 128
HCG 64 128 256 512
Computing core 4096 8192 16384 32768

CPMSA System equations/s 722.3 1336.7 1608.8 2021.2
Total time/s 13581.1 7632.4 4243.6 2818.6
Speedup 1 1.7794 3.2004 4.8184
Parallel efficiency 100% 88.97% 80.01% 60.23%

MHPMSA Solving time for
Level1/s

423.3 567.8 636.9 732.1

Total time/s 12213.7 6776.4 3664.3 2309.4
Speedup 1 1.8024 3.3332 5.2888
Parallel efficiency 100% 90.12% 83.33% 66.11%
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The performance of the parallel algorithm for different test scales is shown in Fig. 11, according
to Tables 5 and 6. It can be observed that the performance of the parallel algorithm of CPMSA and
MHPMSA can be improved with the increase of the test scales. This is because the proportion of
communication decreases with the increase of the test scales compared to the proportion of calculation.
When the test scale is relatively large, MHPMSA can obtain a higher acceleration ratio and parallel
efficiency than using the CPMSA. Hence, the proposed method showed good scalability with respect
to the test scale.
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Figure 11: Performance of parallel algorithm for different test scale

4.2 A Typical Application of Cross-River Tunnel System

In real engineering applications, sometimes, complex engineering structures can contain multiple
types of elements. In order to test the parallel efficiency of complex engineering systems under the scale
of tens of millions of DOFs in multi-element hybrid modeling, a cross-river tunnel, as shown in Fig. 12,
is taken as an example for analysis. This model has 2,896,781 solid elements, 186,121 beam elements,
21,685 mass elements, 1,012,581,369 non-zero elements of stiffness matrix, 412 average bandwidth and
13,167,203 DOFs. And we aim to solve its first 20 natural modal frequencies.

In parallel computation, the total number of startup nodes is 32, 64, 128, and 256 in sequence
with considering features of the ‘shenwei’ multicore processors and the storage of large-scale data.
Each node starts using four HCGs during the test. And every HCG starts using one main core and
64 computing cores with 8 GB memory. The calculation results of the CPMSA and the MHPMSA
proposed in this paper are shown in Table 7. The source of the original experimental data of Table 6
is the solution time, calculated by CPMSA and MHPMSA with different numbers of node machines.
Then, the speedup and parallel efficiency can be calculated by Eqs. (13) and (14).

It can be seen from Table 7 that when using CPMSA to solve the overall system equations by the
direct method, the solution time of the overall system equation increases sharply with the increase of
subdomains, thus seriously reducing the parallel efficiency of the system. Although the overall system-
level modal generalized characteristics adopt a compressed sparse column technique for storage, when
conducting triangular decomposition, the PMCD is only applied in the lower triangle decomposition.
The overall interface equation is still highly dense, and the triangular decomposition will further
increase the density of the original equations. As a consequence, the sets and triangular decomposition
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require a large amount of memory. Besides, it also needs a lot of communication and calculation. With
the increase of subdomain, the scale of the GCEs of the system after the overall reduction also gets
larger. Companies with more expense in storage, communication and computing, and take a longer
time for the overall solution of the system. On the contrary, when utilizing the MHPMSA, because
of the use of the iterate method, there is no need to form the GCEs of the system after reduction.
Moreover, the local communication involved in the equation parallel solution only exists between
neighbour subdomains. As mentioned before, only a few dot product operations and computations
for overall iterative errors need global communications. Thus, the proposed algorithm can achieve a
better speedup ratio and parallel efficiency in a shorter computing time.

Figure 12: FEM of the cross-river tunnel structure system

Table 7: Results of parallel computation for over-river tunnel

Computing hardware Nodes 32 64 128 256
HCG 128 256 512 1024
Computing core 8192 16384 32768 65536

CPMSA (Direct method) System equations/s 3211.0 5124.7 6623.9 8009.8
Total time/s 23397.6 18775.2 14532.7 10917.1
Speedup 1 1.2462 1.61 2.1432
Parallel efficiency 100% 62.31% 40.25% 26.79%

MHPMSA Solving time for
Level1/s

1026.1 1354.6 1993.7 2222.7

Total time/s 21812.3 12100.5 6794.3 4082.9
Speedup 1 1.8026 3.2104 5.3424
Parallel efficiency 100% 90.13% 80.26% 66.78%

The calculation results of MHPMSA with different parallel solver on the solving of global GCEs
are shown in Table 8.



CMC, 2023, vol.76, no.3 2813

Table 8: Results of parallel computation for over-river tunnel

Computing hardware MHPMSA
(SuperLU_D)

MHPMSA
(KSPCG [36])

MHPMSA
(parallel
PCG)

Nodes HCG Cores Global GCEs
solution time/s

Global GCEs
solution time/s

Global
GCEs
solution
time/s

32 128 8192 2156.8 1227.9 1026.1
64 256 16384 3001.1 1531.2 1354.6
128 512 32768 4612.9 2267.3 1993.7
256 1024 65536 5111.1 2492.1 2222.7

In Table 8, the global GCEs are solved by different parallel solvers SuperLU_D, KSPCG in PteSc
and parallel PCG. It can be seen from the Table 8, the solution time of GCEs with KSPCG and
parallel PCG can achieve the calculation in a shorter computing time, compared with SuperLU_D.
This is because the local communication involved in the equation parallel solution only exists between
neighbor subdomains during the calculation of global GCEs with KSPCG and paralle PCG. Only a
few dot product operations and computations for overall iterative errors need global communications.
Additionally, the solving time of KSPCG is more than parallel PCG. It is because only 1 MPI
process within the node need to participate in global communication when solving global GCEs
with parallel PCG. However, the KSPCG uses all MPI processes within the same node. Hence, the
increment in inter-process communication and synchronization will greatly increase the solution time
of global GCEs.

5 Conclusion

With the increase of the size and complexity of numerical simulation problems, heterogeneous
supercomputers are becoming more and more popular in the high-performance computing field.
However, it is still an open question how current applications can exploit the capabilities of parallel
calculation with the best respect for the features of the architecture and execution mode of such
heterogeneous systems. The main contribution of this paper is to provide a MHPMSA that is aware of
the characteristics of ‘shenwei’ heterogeneous multicore processors and fully exploits their computing
power to achieve optimal performance.

MHPMSA is on the basis of two-level partitioning and four transformation strategies. To match
the features of ‘shenwei’ heterogeneous multicore processors, computing tasks of large-scale modal
analysis are divided into 3 layers: inter-nodes, intra-nodes, HCGs, and inside HCGs. Through mapping
computing tasks to different hardware layers of ‘shenwei’ heterogeneous multicore supercomputers
can achieve load balancing among different layers and accomplish efficacious partitioning in com-
munication. Then, MHPMSA not only realizes the sparsely distributed storage of a large amount of
data and speeds up the access rate of data memory, but also reduces the scale of general GCEs after
condensation effectively and saves the equation solution time. Finally, the typical numerical example
shows that when compared with the CPMSA, the proposed method in this article can gain a higher
speedup ratio and parallel efficiency. When under multiple work conditions, compared with the direct
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method of reduced GCEs of the whole system, this method can obtain a higher speedup ratio and
parallel efficiency as well.

Although the authors’ current research only focuses on the large-scale modal analysis, MHPMSA
is a general tool for solving many kinds of structural analysis problems, including linear dynamic
analysis and nonlinear dynamic analysis, and so on. Hence, the research outcome of this paper can be
provided as a reference for improving large-scale parallel computation efficiency and can be ported
to other structural finite element analysis software for various analyses on Shenwei heterogeneous
multicore processors or other heterogeneous multicore processors. It can also be used as a practical
example and reference for large-scale equipment systems and complex engineering systems with finite
modeling in parallel computation.
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