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ABSTRACT

Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which
enables subjects’ walking patterns to be recognized. Existing research in this area has primarily focused on feature
analysis through the extraction of individual features, which captures most of the information but fails to capture
subtle variations in gait dynamics. Therefore, a novel feature taxonomy and an approach for deriving a relationship
between a function of one set of gait features with another set are introduced. The gait features extracted from
body halves divided by anatomical planes on vertical, horizontal, and diagonal axes are grouped to form canonical
gait covariates. Canonical Correlation Analysis is utilized to measure the strength of association between the
canonical covariates of gait. Thus, gait assessment and identification are enhanced when more semantic information
is available through CCA-based multi-feature fusion. Hence, Carnegie Mellon University’s 3D gait database, which
contains 32 gait samples taken at different paces, is utilized in analyzing gait characteristics. The performance of
Linear Discriminant Analysis, K-Nearest Neighbors, Naive Bayes, Artificial Neural Networks, and Support Vector
Machines was improved by a 4% average when the CCA-utilized gait identification approach was used. A significant
maximum accuracy rate of 97.8% was achieved through CCA-based gait identification. Beyond that, the rate of false
identifications and unrecognized gaits went down to half, demonstrating state-of-the-art for gait identification.
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1 Introduction

In parallel with the growing advantages of high-performance computers, technological advance-
ment in biometric systems is accelerating. In today’s society, biometric systems are used in many areas,
such as the advertising sector, access control units, and identification documents such as passports and
driver’s licenses. These areas utilize biometric identifiers to categorize and identify individuals based
on their distinctive measurable characteristics. Gait is a characteristic behavior of humankind and is
one of these distinctive characteristics. A closer analysis of this behavior provides valuable insight into
individual identification.
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The correct measurement of gait characteristics begins with an accurate gait assessment. On the
other hand, due to the complexity of human gait, gait analysis generates large quantities of data, and
its interpretation is time-consuming. Therefore, human gait assessment begins with identifying the
exact features and then analyzing them according to the appropriate methodology.

Psychophysics shows that [1] people can recognize one another in low-quality environments,
indicating that the gait characteristics contain identity information. The purpose of Lee et al.’s study
[2] was to explore this identity information in gait using simple features such as patterns extracted from
orthogonal view video silhouettes of humans walking. Researchers such as Wang et al. [3] also focused
on spatial-temporal silhouette analysis in gait recognition. They tracked the moving silhouettes of a
walking figure. Then, eigenspace transformation based on Principal Component Analysis (PCA) is
applied to time-varying distance signals derived from a sequence of silhouette images. Wang et al. [4]
developed a statistical shape analysis-based gait recognition system as the next step. Over time,
the methods in gait recognition are improved and diversified. In Ekinci et al.’s study [5], in order
to recognize patterns in the lower dimensional eigenspace, four projections were concatenated and
transformed into one vector. In another paper [6], kernel principal component analysis is utilized to
extract higher-order relations among the gait patterns for feature recognition in the CMU and USF
gait databases. Moreover, eigenspace transformation based on PCA is applied to time-varying distance
vectors [7]. Also, Mahalanobis distance-based supervised pattern classification is then performed in
the lower dimensional eigenspace for human identification. In another way, some research focuses on
specific parts of the body. Some researchers [8] developed a method for analyzing inter-leg dynamics
by comparing local features. They examined the influence of walking speed on the synchronization
dynamics of stride intervals. Afendi et al. [9] also focused on the leg movements. Characteristics of
leg movements depend on human physical conditions and age, so it tends to vary easily. On the other
hand, Afendi et al. [10] aimed to add depth information to 2D images. Therefore, they utilized a 3D
time-of-flight camera to capture depth data. Gait Depth Energy Image (GDE), Partial Gait Depth
Energy Image (PGDE), Discrete Gait Depth Energy Image (DGDE), and Partial Discrete Cosinus
Converted Gait Energy Image (Partial DCCGE) are obtained from gait images. Some researchers
conducted health-related research as well. Toebes et al. [11] showed that gait parameters captured
by sensors might hold promise for identifying individuals at risk of falling. They implied that Local
Dynamic Stability (LDS) of gait might be a predictor of fall risk. In their study, Terrier et al. [12]
attempted to determine the effect of aging on gait variability. They evaluated the walk ratio (step
length normalized by step frequency) and gait instability with acceleration variability. Mapelli et al. [13]
concluded that the kinematics of the center of mass is important in sports surveys. Another approach
that focuses on energy image comes from literature. The specific method [14] identified 20 basic gait
kinetic data features using singular value decomposition, which yielded a 91% accurate reconstruction.
Utilizing shape analysis is another area as Choudhury et al. [15] studied Procrustes Shape Analysis
(PSA) and Elliptic Fourier Descriptors (EFD) to identify human gait silhouettes. There are also
several up-to-date studies on gait recognition. Human shadows were used by Iwashita et al. [16]
among the other features in their study. Choudhury et al. [17] examined human body shapes and the
correlation between these shapes. As well as gait signal analysis, Li et al. [18] used an IMU to gather
information about the gait and pursue it. Some researchers [19] applied Uncorrelated Multilinear
Principal Component Analysis (UMPCA) to analyze the variation of human movement patterns.
Wavelet-based schemes were used by Baratin et al. [20] in their study for characterizing gait signals
associated with neurological disorders. Some researchers [21] showed that artificial walking patterns
are easier to be identified when aligned with egocentric referential. Health and sports issues continued
with Zeng et al. [22], who showed that deterministic learning theory could diagnose Parkinson’s disease
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patients and healthy control subjects based on their gait patterns. In addition, radial basis functions
in neural networks are locally accurate in estimating gait dynamics underlying gait patterns of healthy
controls and patients with Parkinson’s disease. Also, the collaborative healthcare framework utilizing
novel activity recognition explained by Javed et al. [23] helps to capture better accuracy. Deng et al. [24]
demonstrated that gait could be recognized using the principle of the smallest error with spatial-
temporal and kinematic cues. Ardestani et al. [25] used gait analysis scores to treat osteoarthritis. Some
other researchers focus on gender recognition by gait analysis. Zhang et al. [26] studied gait recognition
and gait-based soft biometrics in a joint CNN-based framework. Zakaria et al. [27] presented the
application of the ANN-SCG (Scaled Conjugate Gradient) model with nine hidden neurons in gender
classification for children in Malaysia. Solano et al. [28] aimed to assess gender-related differences in
gait spatiotemporal and quality parameters. Sun et al. [29] proposed a gait template synthesis method
to reduce the intra-subject gait fluctuation of elderly users. The study of distinguishing between normal
and pathological gait variability in older adults was conducted by Bogen et al. [30]. Regarding CCA, it
is beneficial to look at Barcikowski et al. Carlo study [31] on canonical coefficients. Zulcaffle et al. [32]
utilized a classification approach based on an Adaptive Multi-Stage Fusion Classifier, showing distinct
improvements over recognition rates. Xing et al. [33] utilized CCA (Canonical Correlation Analysis)
for gait recognition. First, they reformulate the traditional CCA so that they can avoid the computing
of the inverse of a high-dimensional matrix. Through this, a novel C3A method converts two stable
eigenvalue decomposition problems from the singular generalized eigensystem computation of the
CCA method. Also, there is a study about discoveries of biological significance by Manipur et al. [34]
to find a solution that could consist of the representation of a graph model of the body with the
various points and related features. Numerous studies have obtained results by working one by one
with features without utilizing linear combinations. The lack of stand-alone feature details causes
low identification of individuals, and finding other distinctive components is the optimal solution to
overcome this. The presence of certain components guarantees better recognition clues, thus ensuring
much more accurate identification. This weighted component-based approach shows 6%–7% higher
achievement performance [35], which is an important indicator for comparing the success of our
study. One of the major difficulties in optimizing continuous complex data is premature convergence
and recognition. The proposed algorithms provide stable support for solving optimization problems
through their ability to adjust according to their experiences. This algorithm’s 94% maximum accuracy
is also an important indicator for our novel approach [36]. Hybridization and adaptive parameter
selection approaches lead to higher success rates and find solutions to slow and premature convergence.
The ability to obtain higher accuracy shows the importance of this method for analyzing complex
data [37].

This study improves gait identification in 3D by taking advantage of a unique perspective. The
new method captures the surprising harmony between canonical covariates that describe gait through
multivariate data analysis in separate body halves. Following is the remainder of this paper: Sections 2
& 3 present the materials and the methods used in this work. The Materials and methods sections
consist of the dataset, runtime environment, and the Canonical Correlation Analysis (CCA) method.
Section 4 describes the methodology for selecting features in this study. Experimental results and
performance comparison in terms of the feature selection approach are also provided in Section 4.
Section 5 includes a discussion, concluding remarks, and the contributions of this study.
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2 Materials

This section discusses the database and the runtime environment.

2.1 The Database

The study uses data from Carnegie Mellon University’s motion capture library [38]. The data
is collected from healthy subjects without joint pain or musculoskeletal disorders. These gait videos
are captured using 41 retro-reflective markers seen in Table 1. Moreover, the system includes 12 Vicon
MX-40 infrared cameras, each capable of recording images at 120 Hz with a four-megapixel resolution.
The cameras are placed around a rectangular area of approximately 3 m × 8 m in the center of
the room.

Table 1: T41 retro-reflective marker’s positions

Marker No. Code name R-R marker positions

1 <LBWT> Left back waist
2 <RBWT> Right back waist
3 <LFWT> Left forward waist
4 <RFWT> Right forward waist
5 <LFRM> Left forward arm
6 <RWRA> Right wrist
7 <RFRM> Right forward arm
8 <LWRB> Left wrist back
9 <RELB> Right elbow
10 <LWRA> Left wrist
11 <RTHI> Right thigh
12 <LELB> Left elbow
13 <T10> Middle of backbone
14 <STRN> Middle of chest
15 <LFIN> Left forehand
16 <RFIN> Right forehand
17 <RWRB> Right wrist
18 <LUPA> Left upper arm
19 <LTHI> Left thigh
20 <RUPA> Right upper arm
21 <RBAC> Right back
22 <RKNE> Right knee
23 <LSHO> Left shoulder
24 <C7> Back neck
25 <LKNE> Left knee
26 <RSHN> Right shin
27 <RBHD> Right back head
28 <LBHD> Left back head
29 <LFHD> Left forward head
30 <LSHN> Left shin

(Continued)
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Table 1 (continued)

Marker No. Code name R-R marker positions

31 <RFHD> Right forward head
32 <RANK> Right ankle
33 <RMT5> Right foot little finger
34 <RTOE> Right toe
35 <RSHO> Right shoulder
36 <LANK> Left ankle
37 <LHEE> Left heel
38 <CLAV> Throat
39 <RHEE> Right heel
40 <LTOE> Left toe
41 <LMT5> Left foot little finger

These markers are placed all over the human body, particularly at the ends and medial sides of
the extremities. In addition to this, they are fitted to the body’s torso, head, and backbone. Our gait
records have 32 subjects’ gait sequences, and each sequence contains at least 300–500 frames with a
length of 3 to 6 s. This 3D marker data spots changes on X, Y, and Z coordinates, as seen in Fig. 1.

In the chosen gait sequences, subjects walk in the same direction and do not perform any reversing,
jumping, or turning actions during the records. Hence, the characteristics of gait are preserved as much
as possible.

Figure 1: An aspect of the human body with retro-reflective markers

2.2 Runtime Environment

Our runtime environment system is MATLAB R2020b, which allows matrix manipulations,
plotting functions, implementing algorithms, creating user interfaces, and integrating with other
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computer programs. Its numerical computing ability is another criterion for choosing MATLAB for
gait analysis.

3 Methods

This section discusses the methods used in this study. This novel approach aims to group features
according to whether they are relevant or irrelevant and structures canonical covariates to allow
multiple feature analyses.

3.1 Canonical Correlation Analysis

CCA (Canonical Correlation Analysis) is a well-known method to analyze the relationship
between two groups. Consider two sets of zero-mean random vectors, X = [X1, X2, . . . , XN] ∈ R

dxxN

and Y = [Y1, Y2, . . . , YN] ∈ R
dyxN, which are data matrices with N gait instances, dx and dy features

selected from our gait features. CCA aims to seek the projection pairs for two sets of vectors such that
the transformed vectors are maximally correlated in the dimensionality-reduced space. CCA targets to
capture K pairs of linear projections, called canonical vectors, so that the correlations between W T

X X
and W T

Y X are maximized.

Wx = [wx,1, wx,2, . . . , wx,K ] ∈ R
dxXK and Wy = [

wy,1, wy,2, . . . , wy,K

] ∈ R
dyXK (1)

As an example, consider a canonical vector consisting of features relating to head position in gait
wx ∈ R

dxX1 for X and a canonical vector wy ∈ R
dyX1 for Y. CCA maximizes the correlation coefficient p

between X Twx and Y Twy.

p = wT
x XY Twy√

(wT
x XX Twx)(wT

y YY Twy)
(2)

is maximized. Since p is invariant to the scaling of wx and wy, CCA is formulated as the following
constrained form:

argmaxwx ,wy
wT

x XY Twy (3)

s.t. wT
x XX Twx = 1, wT

y XX Twy = 1

Using the method of Lagrange multipliers to solve the objection function,

L = wT
x XY Twy + λx

(
1 − wT

x XX Twx

) + λy

(
1 − wT

y YY Twy

)
(4)

The derivative of L concerning px and py to zero is seen below:
∂L
∂wx

= Y Twy − λxXX Twx = 0
∂L
∂wy

= X TwX − λY YY Twy = 0 (5)

For the constraints with wT
x XX TwX = 1 and wT

y YY Twy = 1, the equation of λx−λy = 0 is obtained.
By solving the following generalized eigenvalue problem:

XY T(YY T)−1YX TwX = λ2XX TwX (6)

wX and wy are obtained. Suppose X ∈ R
DxXN and Y ∈ R

DyXN, the size of YY T is DyXDy, and the size
of the Eigen matrices XY T(YY T)−1YX TwX and XX T is DxXDx. Not to be forgotten in the equations,
both DX and Dy are very large because of the video frame number and 3D coordinate information
of many sensors, which takes high time and space costs. Hence, the study utilizes the generalized
Eigendecomposition.
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We explain our approach: our dX consists of head relative feature groups, and dy consists of leg
relative features. Table 2 shows dX features such as nodding, flopping, tics, and myoclonic jerks and
dy features such as knee joint angle, ankle joint angle, and chorea. A canonical loading measures the
simple linear correlation between the original observed variable in dX and dX variable set and that set’s
canonical variate. The scores show a significant correlation between nodding, myoclonic jerks, and
chorea. These additional CCA-utilized features will be our unique key in gait identification.

Table 2: Correlation results of conducted study normalized to 1

Head relative features Leg relative features

Significant
variates

Related sensors Canonical
loadings

Significant
variates

Related sensors Canonical
loadings

Nodding <RBHD> 0.41 Knee joint
angle

<RKNE> −0.15

Flopping <LBHD> 0.30 Ankle joint
angle

<LKNE> −0.13

Tic <RFHD> 0.12 Chorea <RANK> 0.40
Myclonic jerks <LFHD> 0.43 (Uncontrolled

Mov.)
<LANK>

A canonical correlation is a correlation between two canonical or latent types of variables. This
feature extraction approach for identifying subjects includes collecting the gait feature sets (forming
groups), then exploring associations between factors from two multidimensional feature groups. This
step will lead to distinctive gait CCA features, as seen in Fig. 2.

Gait 
Feature Set 
(i.e. X)

Gait 
Feature Set 
(i.e. Y)

CCA Gait Features i.e. f(X) CCA Gait Features i.e. f(Y)

Figure 2: A way of inferring information from cross-covariance matrices

3.2 Extracting Canonical Variates

Multivariate data analysis uses canonical variates, the weighted sums of the variables. The quality
of extracting these components has a significant impact on gait analysis. The study goes beyond the
traditional approach by grouping these local features into seven feature sets to capture covariance
between these sets of local features.

The analysis of the gait character contains extracting as many valuable features as possible to
understand the complexity of human gait variability. With this aim, analyzing all parts of the human
body comes first to detect the best local features. Initially, it is focused on head-related features (nod
ratio, flopping ratio, tic) and then advanced to shoulder-related features. Leg-related features (knee
joint angle, ankle joint angle, abnormal movements like chorea) and foot-related features (heel rise,
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foot kinematic angles) come after them. Afterward, pelvic-related features (pelvic curl, pelvic tilt, pelvic
lateral flexion) and torso-related features (variation of the center position, lateral movement ratio) are
obtained. The final step is to identify hand-related features (wrist angles, lateral movements, radial
deviations, pronation, and supination).

In our approach, as an example, knee joint angle in flexion and ankle joint angle in plantarflexion
construct canonical covariates. Similarly, abduction motions of arms contribute significantly to the
construction of relative canonical covariates for shoulders, as seen in Table 3. As a result of using this
covariation, it becomes possible to summarize the relationships into a smaller number of statistics
while maintaining the most significant aspects of the relationships. This approach captures captured
unobservable human gait harmonies that lead the way to identify the subjects based on latent
covariance, thus, gait characteristics.

Table 3: Canonical variates (CV) structured from different body parts

CV Number Location Significant variates Related sensors

1 Head relative features Nodding <RBHD>
Flopping <LBHD>
Tic <RFHD>
Myclonic jerks <LFHD>

2 Shoulder relative features Arm angle <RSHO>
Scapulothoracic angle <LSHO>
Glenohumeral angle <RELB>

<LELB>
3 Leg relative features Knee joint angle <RKNE>

Ankle joint angle <LKNE>
Chorea (Uncontrolled Mov.) <RANK>

<LANK>
4 Foot relative features Heel rise <RTOE>

Foot kinematic angles <LTOE>
Step width <RHEE>

<LHEE>
5 Pelvic relative features Pelvic curl <RFWT>

Pelvic Tilt/Obliquity <LFWT>
Pelvic lateral flexion <RBWT>

<LBWT>
6 Torso relative features Variation of position <T10>

Lateral movements <RSHO>
<LSHO>
<STRN>

(Continued)
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Table 3 (continued)

CV Number Location Significant variates Related sensors

7 Hand relative features Wrist angles <RWRA>
Lateral movements <LWRA>
Radial deviation <RFRM>
Supination & Pronation <LFRM>

3.3 Algorithm

The key to our approach is identifying the most distinctive gait features, as shown in Figs. 3
& 4. Following classifying these traits by location on the body, it is possible to generate CCA
covariates using anatomical planes. Afterward, ML (Machine Learning) methods harness these
covariate harmonies as gait determinants to enhance gait identification.

Gait Samples
-Slow Walk
-Wander
-Quick Walk
-Run

Feature 
Extraction

-Head Relative 
Features
-Shoulder Rel. F.
-Leg Rel. F.
-Foot Rel. F.
-Pelvic Rel. F.
-Torso Rel. F.
-Hand Rel. F.

Anatomical Plane
based CCA 

Covariates Extraction
-Horizontal CCA 
Covariates
-Vertical CCA C.
-Diagonal CCA C.
-Random CCA C.

Machine 
Learning 
Methods

-LDA
-KNN
-NB
-ANN
-SVM

Figure 3: Our proposed approach to strengthening the success of gait identification utilizing CCA

4 Implementation & Results

As shown in Fig. 5, the graphs have normalized coordinate values of the markers on the X, Y,
and Z-axis for the first three subjects. Our first observation is that some body parts are inversely
proportional to one another (Fig. 5a). It should be noted that the intensity of this ratio varies between
the other two subjects (Figs. 5b and 5c). In regards to the correct ratio, there are some values of the
left and right wrists of the same subjects (Figs. 5d–5f). Also, it appears their harmony ratios are not at
that level on the left and right wrists; either the first or the second subject’s wrist motions are smoother
than the third one (Figs. 5g–5i).

Several distinct features were determined by cross-checking throughout the body. All markers and
dimensions are taken into consideration when analyzing the gait features. This step includes focusing
on head movements such as nodding or flopping, arm angles, heel rise, radial deviation of hands, etc.
For example, the rotation of hands and limbs from lateral to medial is a significant feature for us.
The extension and flexion of the arms are also remarkable. Observing other body parts also reveals
valuable information.

As a next step, structuring canonical variates for CCA comes. CCA has two specific purposes,
explaining covariance between two sets of variables using a few linear combinations and identifying
contributing variables. Two points of view are needed to evaluate the importance of each variate in
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CCA. First, it is necessary to determine the strength of the relationship between the variate and the
variables used to create it. It is also required to study the strength of the relationship between the
corresponding X and Y variates. Therefore, our objective is to find meaningful relationships among
the covariates to improve the identification scores of the covariates.

The proposed method of identifying human gaits focuses on the canonical correlation coefficients,
which measure the correlation between different types of canonical variates in different body halves.
These body halves are separated by anatomical planes, which consist of four imaginary flat surfaces
or planes that pass through the body in the anatomical position: the median plane, sagittal planes,
frontal (coronal) planes, and horizontal (transverse) planes, as shown in Fig. 6. Extracting bilateral
harmony leads a way to identify the relevance of gait samples. The study focuses on identifying gait
samples utilizing canonical variates formed by the features in opposite horizontal halves-the right and
left halves, the features in opposite vertical halves-the upper and lower halves, the features in cross
halves-;cross upper and lower halves. During the last forming process, gait samples are identified with
the help of canonical variates made up of randomly selected features distributed throughout the body,
which aims to spot unexpected harmony between body parts.

Figure 4: Proposed feature extraction system
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Figure 5: (a) Example of high correlation value (inverse-ratio) between ankles of Subject#1, which
is usually in a rising trend due to approaching. (b) Example of high correlation value (inverse-ratio)
between ankles of Subject#2. (c) Example of high correlation value (inverse-ratio) between ankles of
Subject#3. (d) Middle-level correlated left and right forward arms of Subject#1, which is both in rising
and decreasing trend up to subjects’ variation. (e) Middle-level correlated left and right forward arms
of Subject#2. (f) Middle-level correlated left and right forward arms of Subject#3. (g) Example of
middle-level correlation of left and right wrists of Subject#1, which has more variation than previous
graphs. (h) Example of middle-level correlation of left and right wrists of Subject#2. (i) Example of
middle-level correlation of left and right wrists of Subject#3

Figure 6: Anatomical planes
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4.1 Benchmarking ML Methods for CCA Contribution

At first, the study reveals identification results utilizing classical machine learning methods. The
findings are displayed in Table 4; all types have four different gait speed categories. SVM (Support
Vector Machines) captured the best mean identification scores among quick walk-and-run sections.
In all, SVM (Support Vector Machines) 92.5% identification rate improves to 96%, which is close to a
4% improvement, demonstrating the success of the CCA’s additional features. Also proposed approach
improves identification scores by 3% over all other methods.

Table 4: Comparison of CCA attribution to all machine learning methods

Slow walk base
ML ROC
scores/CCA
utilized ROC
scores

Wander base
ML ROC
scores/CCA
utilized ROC
scores

Quick walk
base ML ROC
scores/CCA
utilized ROC
scores

Run base
ML ROC
scores/CCA
utilized
ROC scores

Linear
Discriminant
Analysis

Specificity 0.88/0.91 0.80/0.83 0.86/0.91 0.86/0.88
Sensitivity 0.81/0.84 0.79/0.84 0.80/0.84 0.79/0.82
AUC 0.85/0.89 0.80/0.84 0.83/0.88 0.83/0.85

K Nearest
Neighbor

Specificity 0.86/0.89 0.82/0.83 0.84/0.87 0.88/0.90
Sensitivity 0.79/0.82 0.79/0.81 0.80/0.81 0.82/0.85
AUC 0.83/0.86 0.81/0.82 0.82/0.85 0.85/0.88

Naïve Bayes Specificity 0.84/0.87 0.85/0.88 0.85/0.87 0.82/0.84
Sensitivity 0.81/0.82 0.79/0.81 0.81/0.84 0.78/0.81
AUC 0.83/0.85 0.82/0.85 0.83/0.86 0.80/0.83

Artificial
Neural
Network

Specificity 0.89/0.91 0.87/0.89 0.91/0.95 0.84/0.87
Sensitivity 0.84/0.87 0.85/0.87 0.83/0.86 0.82/0.84
AUC 0.87/0.89 0.86/0.88 0.87/0.90 0.83/0.86

Support Vector
Machine

Specificity 0.92/0.96 0.93/0.96 0.92/0.98 0.93/0.97
Sensitivity 0.91/0.96 0.92/0.96 0.93/0.97 0.91/0.97
AUC 0.92/0.96 0.93/0.96 0.93/0.98 0.92/0.97

4.2 Evaluation of Performance Based on the Different Classes of Walking

Further analysis of our gait identification approach also emphasizes the importance of anatomical
planes. Analyzing the identification ROC (Receiver Operating Characteristic) curve scores seen in
Table 5, the CCA utilized identification score for all machine learning methods are higher 2.7% in
horizontal comparison, 3.2% in vertical comparison, 3.8% in diagonal comparison, 3% in random
comparison than without CCA. As a result of using canonical covariates as gait determinants, our
approach to gait identification contributes about 3.5 points to ROC scores. The diagonal cross-
correlation of CCA covariates, based on the CCA covariates in the diagonal body halves, shows the
most remarkable improvement. This result shows a key clue for gait identification with CCA; if there is
some significance between two canonical variates located diagonally, then identification of that person
becomes straightforward. As for speed categories, the gait pace could be more effective. However, a
quick walk is a step ahead regarding the improvement rate. It is the top category for SVM-CCA utilized
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identification by the rate of 97,11%. Concerning comparison in the body halves approach, the diagonal
comparison approach also has the highest identification score of 97,8% related to mean scores. This
high identification score tells us that if there is some significant strength of association between two
canonical variates located in diagonal halves while walking quickly, the identification becomes more
successful than other types.

Table 5: Classified performance evaluation identification results

ROC curve scores
with CCA cross
covariates
comparison
utilized approach
(μ-Mean of all ML
methods)

Gait speed types Specificity
(μ-Mean of all ML
methods)

Sensitivity
(μ-Mean of all ML
methods)

AUC (μ-Mean
of all ML
methods)

Horizontal
comparison
approach

Slow walk 0.8861 0.8621 0.8862
Walk/Wander 0.8529 0.8461 0.8396
Quick walk 0.8921 0.8588 0.8756
Run 0.8846 0.8333 0.861

Vertical
comparison
approach

Slow walk 0.8988 0.853 0.8799
Walk/Wander 0.8674 0.8499 0.8721
Quick walk 0.8933 0.8833 0.8799
Run 0.8892 0.8411 0.8712

Diagonal
comparison
approach

Slow walk 0.9212 0.8641 0.8943
Walk/Wander 0.8821 0.8601 0.8692
Quick walk 0.9211 0.8669 0.9025
Run 0.8932 0.8664 0.8863

Random
comparison
approach

Slow walk 0.9035 0.8552 0.8751
Walk/Wander 0.8696 0.8411 0.8422
Quick walk 0.9162 0.8765 0.8963
Run 0.8811 0.846 0.8789

Biometric identification systems also request low false-negative and false-positive scores as
much as accurate recognized scores. As for our proposed algorithm, SVM-CCA utilized a diagonal
comparison approach with an average false detection rate of 0.03. The result of the study discovers
that the minimum false rate is 0.02 using a diagonal comparison methodology. The other comparisons
are as high as 0.04. The most considerable improvement in gait identification utilizing CCA in this
section is the diagonal comparison approach, with a drop from 0.08 to 0.03.

Even though biometric identification systems can tolerate unidentified samples, false identifica-
tion is a danger that must be avoided and minimized due to their security. Therefore, minimizing
this undesirable situation is also a critical evaluation criterion with the improvement of successful
identification scores for the assessment of our study. Beyond the 4% positive contribution to gait
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identification scores, there is also almost 50% improvement in both unidentified and falsely identified
samples, which shows the success of Canonical Correlation Analysis in gait identification. In addition
to improving identification scores, these ROC results also show that the CCA-oriented approach
reduces unwanted identification results that may compromise security.

4.3 Comparison with Existing Methods

The section presents a comparative evaluation of the proposed approach against related works. All
studies in the Table 6 use the positions of the markers obtained from 3D human gait data. This table
lists the number of markers and the methods used in the studies. The proposed system outperforms
state-of-the-art works in human identification. The paper utilizes CCR (Correct Classification Rate) to
obtain a more applied performance evaluation. According to Table 6, the study indicates that there is,
on average, 10.84% better accuracy than the related works. Beyond that, our proposed system contains
more marker data and, in this way, more feature information than most.

Table 6: Performance metrics of related studies

Methods # of Joints | Markers |
Skeletal Points

ML method CCR

Bobillo et al. [39] 25 K-NN 0.8903
Hosni et al. [40] 23 fPCA + SVM 0.9241
Dikovski et al. [41] 20 MLP (Multilayer

Perceptron Classifier)
0.898

Balazia et al. [42] 31 PCA + LDA 0.8314
Kwolek et al. [43] 39 SVM 0.9099
Sinha et al. [44] 20 ANN 0.7666
Andersson et al. [45] 48 KNN 0.7787
Balazia et al. [42] 31 MMC 0.9102
Proposed system 41 SVM + CCA 0.9684

Figure 7: (Continued)
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Figure 7: Graphical representation of positive contributions of CCA to gait identification

5 Conclusions & Discussion

This paper uses a way of inferring information from the cross-covariance group of features to
improve identification success in 3D gait analysis. The fundamental concept behind the suggested
approach is the use of complicated labels to direct feature selection toward the underlying semantics,
which includes multivariate data harmony between irrelevant human body parts and the ratio of this
relationship between often relevant parts. This method has improved the gait identification ROC
score to attain a positive rise of around 4% and a success rate of 97.8%, as shown in Fig. 7. It
is also remarkable that unidentified and misidentified gait samples have declined to nearly half of
the previous score without utilizing CCA. Another effective, resilient barrier against deceit is the
identification’s low rate of false-negative and false-positive results. The analysis also shows that quick
walk (speed type) and diagonal comparison approach (includes canonical covariates from cross halves)
significantly enhance gait identification performance. It is evident from all of these results that the
model is adequate. Further work will be using a more extensive database to confirm the effectiveness
of the proposed model with different factors of a gait such as clothing, health, and age conditions
which can improve the robustness of the systems for unimagined gait conditions.
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