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Abstract: Multimodal Sentiment Analysis (SA) is gaining popularity due to
its broad application potential. The existing studies have focused on the SA
of single modalities, such as texts or photos, posing challenges in effectively
handling social media data with multiple modalities. Moreover, most mul-
timodal research has concentrated on merely combining the two modalities
rather than exploring their complex correlations, leading to unsatisfactory
sentiment classification results. Motivated by this, we propose a new visual-
textual sentiment classification model named Multi-Model Fusion (MMF),
which uses a mixed fusion framework for SA to effectively capture the
essential information and the intrinsic relationship between the visual and
textual content. The proposed model comprises three deep neural networks.
Two different neural networks are proposed to extract the most emotionally
relevant aspects of image and text data. Thus, more discriminative features
are gathered for accurate sentiment classification. Then, a multichannel joint
fusion model with a self-attention technique is proposed to exploit the intrinsic
correlation between visual and textual characteristics and obtain emotionally
rich information for joint sentiment classification. Finally, the results of the
three classifiers are integrated using a decision fusion scheme to improve
the robustness and generalizability of the proposed model. An interpretable
visual-textual sentiment classification model is further developed using the
Local Interpretable Model-agnostic Explanation model (LIME) to ensure the
model’s explainability and resilience. The proposed MMF model has been
tested on four real-world sentiment datasets, achieving (99.78%) accuracy on
Binary_Getty (BG), (99.12%) on Binary_iStock (BIS), (95.70%) on Twitter,
and (79.06%) on the Multi-View Sentiment Analysis (MVSA) dataset. These
results demonstrate the superior performance of our MMF model compared
to single-model approaches and current state-of-the-art techniques based on
model evaluation criteria.
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1 Introduction

The current generation of widely accessible and affordable web technologies delivers substantial
social big data with viewpoints that help decision-making. Sentiment Analysis (SA) is a computational
approach that examines people’s opinions, attitudes, and emotions toward a specific entity. It can
track individuals’ moods and perspectives by evaluating unstructured, multimodal, informal, noisy,
and high-dimensional social data. SA is a specialized form of Natural Language Processing (NLP)
that can be applied in a wide range of real-world applications, including financial and stock price
predictions [1,2], politics [3], medicine [4], and e-tourism [5]. Many researchers have devoted substantial
efforts to studying textual SA [6—10] using different techniques, along with visual communication,
which has remarkably developed on social media platforms [1 1-16]. However, most described studies
have only assessed information from one modality and ignored the rich and complimentary sentiment
information in multimodal data. Although there have been several ideas for multimodal sentiment
categorization methods that use different modalities, the complicated relationship between these two
modalities remains challenging due to several factors. First, the semantic information covered by
word description and visual content may vary; thus, extensive and discrete information essential to
sentiment categorization must be extracted from each modality. Second, in contrast to conventional
single-modality SA, multimodal SA comprises various manifestation patterns. For instance, the visual
material and textual description differ in feature spaces; thus, the SA approach must successfully
bridge the gap across multiple modalities. Third, multimodal data often lacks one modality. For
instance, many people submit tweets without accompanying images, whereas some photographers may
share pictures without text. For SA, dealing with insufficient multimodal data is another challenge.
Fourth, Deep Learning (DL) systems are ambiguous black boxes with complex hidden layers and no
understanding of the model’s logic, dynamics, or decision-making. This problem becomes increasingly
prominent in multimodal systems due to the complex interconnections among diverse input streams,
resulting in significant challenges related to interpretability and explainability.

To tackle the abovementioned challenges, the present study proposes a new Multi-Model Fusion
(MMF) model for visual-textual sentiment classification. The framework of the proposed model
comprises three deep neural networks. Two different neural networks are proposed: (1) a deep Convo-
lutional Neural Network (CNN); and (2) a Bidirectional Encoder Representation from Transformers
(BERT)-based convolution-Gated Recurrent Unit (GRU) network. These models aim to extract the
essential discriminative regions and meaningful words that are most related to the sentiment; thereby,
combining both approaches for feature extraction and classification helps to get more discriminative
features and a more accurate result for the sentiment classification task. Then, a Multichannel Joint
Fusion (MCJF) model with a self-attention technique is proposed to combine the coupling features
based on multimodal data and get sentimentally rich information for joint sentiment categorization.
Finally, to overcome the problem of incomplete data, the findings of the three classifiers are combined
via a decision fusion strategy, which can enhance the robustness of the proposed model. To further
explain the underlying model process, this study develops an interpretable visual-textual sentiment
classification model that leverages Local Interpretable Model-agnostic Explanations (LIME) to ensure
model trust and resilience.
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The key contributions of this study are as follows:

e A new visual-textual sentiment classification model named Multi-Model Fusion (MMF) is
proposed to capture the most relevant information from the visual and textual content. The
proposed model employs an intermediate fusion (MCJF) model with a self-attention technique
to capture the intrinsic association of visual and textual properties and obtain emotionally rich
information for joint sentiment categorization.

e A decision fusion technique is proposed to integrate the outcomes of the individual classifiers to
obtain the final sentiment decision. Our approach can perform classification even when specific
modalities are missing and achieve excellent performance without relying on complicated
methods.

e An interpretable visual-textual sentiment classification model based on LIME is developed
to expose the internal model dynamics and visualize the association between the instance’s
characteristics and the model’s prediction.

e The proposed model was thoroughly evaluated on real-world sentiment datasets. The results
demonstrated that the MMF model outperforms single-model techniques and the most sophis-
ticated models regarding model evaluation criteria.

The novelty of this research lies in three aspects. First, the proposed model can analyze the problem
in which a training instance can be an image-text pair, an unpaired image, or an unpaired text. This
capability strengthens the model’s robustness in the presence of missing data, thereby providing a more
comprehensive approach to SA. Second, it combines the robustness of the proposed joint fusion model,
which integrates the derived features from text and image data, with the flexibility of decision fusion
to produce a unified framework for extracting distinguishing features from texts and images while
taking advantage of the inherent correlations between various modalities. Third, our solutions offer
remarkable adaptability; they can be easily configured to address new issues or extended to incorporate
other modalities while attaining excellent accuracy without needing a highly sophisticated model. In
summary, the novelty of our study lies in the combination of robustness, flexibility, and adaptability
that our proposed framework and models provide.

The remainder of this paper is arranged as follows: Section 2 presents the related literature.
Section 3 describes the MMF model in depth. Section 4 provides the results of the experiments.
Section 5 discusses the results. Finally, Section 6 concludes the study and presents prospects for future
research.

2 Literature Review
2.1 Visual-Textual Sentiment Analysis

Multimodal data, which combines images and text, has become increasingly common on social
media websites. Such vast amounts of multimodal input can assist in comprehending how individuals
feel or think about specific situations or topics. As a result, many multimodal sentiment categorization
approaches have been proposed to incorporate diverse modalities. These approaches are classified
into three distinct categories: early/feature fusion [17,18], intermediate/joint fusion [19-28], and
late/decision fusion [29-31]. In the early fusion approach, a unified feature vector is created first, and
then a Machine Learning (ML) classifier is fed with the features extracted from the input data. Al-
Tameemi et al. [17] presented an exhaustive overview of multimodal SA, which investigated visual
and linguistic information shared on social media websites, as a reference for researchers in this
quickly expanding subject. In addition, the most common data fusion techniques, key challenges, and
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sentiment applications were discussed. Jindal et al. [18] suggested a new VIsual-TExtual SA (VITESA)
for polarity classification. A Brownian Movement-based Meerkat Clan Algorithm-centered DenseNet
(BMMCA-DenseNet) was proposed to combine textual and visual data for powerful SA in VITESA.
The visual and textual characteristics were identified using an Improved Coyote Optimization Algo-
rithm (ICOA) and an adaptable embedding for language models (Elmo). The proposed BMMCA-
DenseNet classifier categorized the data as positive or negative by assigning SentiWordNet polarity
and extracting emoticon and non-emoticon features.

According to the concept of intermediate fusion, the integration process occurs at the intermediate
levels of the network. A shared representation layer connects units from distinct paths specific to
multiple modalities. Zhang et al. [19] introduced a novel cross-modal Semantic Content Correlation
(SCC) approach that identifies the relationship between images and captions. A mixed attention
network was developed to acquire the content association between a picture and its caption. A class-
aware distributed vector is then passed into an Inner-class Dependence Long Short-Term Memory
(IDLSTM) network using the image-text pair as a query to gather more cross-modal nonlinear
interactions for sentiment prediction. However, this model suffered from excessive memory overhead
due to its lengthy execution time. Huang et al. [20] developed an Attention-based Modality-Gated
Networks (AMGN) approach to take advantage of the interaction between textual and visual content.
In particular, they proposed a modality-gated LSTM to identify multimodal features by adjusting
to the modality that provided the most reliable expression of emotion. A semantic self-attention
model is further developed to focus on distinguishing features for sentiment classification. The
fundamental disadvantage of this study is that the visual-semantic attention model expects a fine-
grained relationship between the image-text pair. However, specific pairs may lack a robust cross-
modal association.

Xu et al. [21] suggested a unique Bi-Directional Multi-Level Attention (BDMLA) model for
joint visual-textual sentiment classification that exploits complementary and complete information.
The attended visual features are acquired through the interaction between the visual features and
multi-level textual features within the visual attention network. In contrast, the semantic attention
network allows interaction with multiple visual levels to extract the attended semantic aspects.
These characteristics were then included in a comprehensive framework for visual-textual sentiment
classification. The way textual and visual features are extracted and incorporated allows the model
to achieve robust performance. Cao et al. [22] proposed Various Syncretic Co-attention Networks
(VSCN) to investigate multi-level matching correlations between multimodal data and incorporate
each modality’s unique information for integrated sentiment classification. However, the emotion
polarity could be clearer because visual components convey more information than text, causing the
model to generate incorrect predictions occasionally. Hu et al. [23] proposed a neural network that
evaluated global and local fusion features to determine user sentiment. The approach first generated
global modality-based fusion characteristics from attention modules and established local fusion
features via coarse-to-fine fusion learning. Finally, these features were integrated to generate more
precise forecasts.

An et al. [24] presented a complete approach for improving targeted multimodal sentiment
categorization using semantic image descriptions. The model automatically uses semantic explanations
of images and text similarity relations to change the significance of images in the fusion representation.
Liu et al. [25] determined the relative importance of various modalities by constructing an importance
attention network, which assigned weights to each modality. In addition, an attention network
with complementarity was built for the specific complementary associations between the modalities.
Finally, the reconstructed features are combined to produce a multimodal feature with suitable
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interaction. Pandey et al. [26] proposed a novel visual attention and bi-directional caption processing
network (VABDC-Net), which combines an attention module with CNN and attentional tokenizers
to focus on the most important visual information and extract contextual information from captions.
Then, a cross-domain feature fusion predicts sentiment from multimodal data. Zhou et al. [27]
developed a Hierarchical Cross-modality Interaction Model (HCIM) to capture semantic interaction.
A multimodal CNN that can fully leverage cross-modality sentiment interaction is implemented,
creating a more accurate joint visual-textual representation. Yadav et al. [28] introduced a Deep Multi-
Level Attentive Network (DMLANet) to improve multimodal learning. The correlation between
image regions and word semantics was modeled using semantic attention by extracting textual features
related to bi-attentive visual features. Finally, sentimentally rich multimodal data was obtained using
the self-attention method for precise sentiment classification. Incorporating self-attention facilitates
the interaction between visual and textual features, enhancing the model’s efficacy.

On the other hand, late fusion was used to integrate the outputs of several different sentiment
classifiers trained independently. Ghorbanali et al. [29] presented a hybrid Multimodal Sentiment
Analysis (MSA) model based on weighted CNNs. The trained VGG16 network extracted visual traits,
after which the Mask Region-based CNN (Mask-RCNN) model translated the visual objects into
textual descriptions. A Weighted CNN Ensemble (WCNNE) was taught to classify texts using several
weak learners. Using the expanded Dempster—Shafer theory, the correct sentiment label was generated
by fusing the VGG16 and WCNNE outputs at the decision level. Kumar et al. [30] presented a hybrid
deep neural network-based model for fine-grained sentiment prediction in multimodal data. The
model uses a deep neural network and Support Vector Machine (SVM) to handle two systems—textual
and visual—and their combination in online content employing decision-level fusion. The model was
trained using the #CWC2019 hashtag. Compared to the text and image modules, the proposed model
performs better. Kumar et al. [31] developed an MSA that evaluated all incoming tweets. SentiBank
and SentiStrength scores were used for regions built with a convolutional neural network (RCNN) to
determine an image’s sentimental score. An innovative hybrid (lexicon and ML) approach was used
to score the sentiment of texts. The final multimodal sentiment scoring was done by combining image
and text scores.

Although these fusion approaches have shown excellent performance in previous studies of MSA,
they have many significant drawbacks: For instance, early fusion techniques cannot fully exploit
the complementary nature of the modalities and can produce large input vectors with redundant
information. Late fusion, on the other hand, cannot fully capture the cross-modal associations between
multiple modalities. Furthermore, the learning process for these classifiers becomes complicated and
time-consuming when more classifiers are used to make local decisions. However, most existing
studies model each modality separately and combine modality features at a high level, ignoring that
multimodal features may vary, and that simple fusion cannot be used to study information from
different modalities. Furthermore, most MSA models based on deep learning work as black boxes,
making it difficult to comprehend their inner workings. Motivated by these observations and inspired
by [28,21], this paper proposes an interpretable visual-textual sentiment classification model that
combines intermediate and late fusion into a unified approach to extract distinguishing features from
text and image data. The model aims to leverage the inherent correlations between different modalities
to improve classification accuracy. The effectiveness of our approach is attributed to its ability to
handle incomplete multimodal information while explaining how the various modalities contribute
and interact.
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2.2 Explainable and Interpretable Sentiment Analysis

On the one hand, “explainability” refers to the capability to describe the algorithmic method that
leads to a specific output. On the other hand, “interpretability” comprehends the context of a model’s
output, analyzes its functional design, and connects the design to the result [32,33]. The techniques
based on DL models like black boxes and the difficulties associated with explaining and interpreting
their inner workings have spawned a new study field known as “explainable artificial intelligence” [34].
Ribeiro et al. [35] highlighted the need to understand the inner workings of DL-based classifiers by
developing a framework that computes the contribution of each input to a given output and interprets
the classifier’s predictions. Fazi [36] created a method to determine an input’s role in a given output.
Research has also been conducted to trace every neuron’s involvement and grasp output part by part
[37]. Two types of recent research on interpretable multimodal learning have been conducted: (1)
attempts to construct interpretable multimodal models through careful model design [38] and (2) post
hoc explanations of black-box multimodal models [39].

In the post hoc section, two often used approaches are LIME [35], a perturbation-based method
that provides local interpretability, and Shapley Additive Explanations (SHAP) [34], which offers a
global-level explanation. Kumar et al. [40] developed a novel interpretability method based on the
divide and conquer method to compute shapely values that represent the importance of each speech
and image component. Similarly, in [41], they introduced a new interpretability technique called K-
Average Additive Explanation (KAAP) to pinpoint the crucial verbal, written, and visual cues for
predicting a specific emotion category. Jain et al. [42] developed an approach based on co-learning
to deal with noisy and missing modalities. The proposed methodology was validated through post
hoc explainability techniques, namely LIME and SHAP gradient-based explanations, to accurately
represent the contributions and interactions of the modality at the fusion level. Finally, Lyu et al. [43]
developed a new explanation by disentangling the model into Unimodal Contributions (UC) and
Multimodal Interactions (MI). The proposed approach, Disentangled Multimodal Explanations
(DIME), can preserve generality across arbitrary modalities while fostering precise and fine-grained
analysis of multimodal models.

3 Proposed Model
3.1 Problem Definition
N

Visual-textual sentiment classification is expected to contain labeled data X = {(#',v"), y'}" |, where
¢ denotes the text of the ith sample in the dataset, v' indicates the images corresponding to the text, )’
provides the sample’s sentiment label, and N represents the total number of samples. Our objective is
to train a model capable of predicting the label )’ of an instance x’. The model can handle the following
three situations: where the instance x’ during training might be a pair (#, v'), an image only v, or only
text 7.

Therefore, a new MMF model for visual-textual sentiment classification is proposed, as shown in
Fig. 1, which can effectively capture the essential information and the intrinsic relationship between
the visual and textual content. In our MMF model, two distinct neural networks are proposed to
extract the intrinsic features from a single model’s data, thereby enabling comprehensive information
collection. A multichannel joint fusion model with a self-attention mechanism is also proposed
to capture the coupling features from the visual-textual information and obtain sentimental-rich
multimodal features. Finally, a decision fusion scheme is incorporated to merge the results from the
three classifiers, enhancing the generalizability of the proposed model.
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In particular, the framework of the proposed model incorporates three deep neural networks:
(1) a deep CNN is used to determine the most emotionally charged regions in an image, and (2) a
BERT-based convolution-gated recurrent unit network is employed to extract the most sentimentally
significant words from texts. The abovementioned methods have proven to be powerful techniques
for single-model sentiment prediction. Hence, combining both approaches for feature extraction
and classification yields more discriminative characteristics and, ultimately, more accurate results. A
multichannel joint fusion model is proposed to exploit the intrinsic correlation between visual and
textual characteristics; the basic concept for this scheme is that two distinct channels working on
various modalities can extract coupling information, which is then integrated to facilitate sentiment
categorization. Next, a self-attention technique is used to weigh all multimodal aspects to determine
which information receives greater attention, which aids in leveraging the intricate interaction between
images and texts. Lastly, a decision fusion scheme is proposed to integrate the outcomes of the
individual classifiers using a rule-weighted average method that assigns different weights to each
classifier’s prediction. These weights are determined through a grid search technique, optimizing the
fusion of the classifiers’ results to produce the most accurate sentiment classification.

3.2 Textual Sentiment Model

A BERT-based convolution-gated recurrent unit network is proposed to extract the most impor-
tant syntactic and semantic information, along with spatial, contextualized, and high-level textual
information. The entire system for the textual sentiment model can be divided into the following steps:
preprocessing, feature representation, and classification of input data.
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Stepl.: Preprocessing

Different techniques are explored to preprocess the textual data: (1) lowercasing, changing all texts
to lowercase. (2) removing irrelevant information, including punctuation, special characters (e.g., $, &,
and %), hashtags, additional spaces, Uniform Resource Locator (URL) references, @username, stop
words, and numbers. (3) Emoticon translation involves translating all emoticons into their respective
terms. (4) spelling correction, correcting the word spelling to recognize the attitudes accurately. (5)
language translation, converting each text to English using Google Translate [44].

Step2: Feature representation and classification

SA has recently adopted word embedding approaches, which are used to determine the linguistic
relationships between words and their similarity. Word2Vec [45] and Global Vectors for word represen-
tation (Glove) [46] are two common word-embedding techniques used in earlier studies. However, they
cannot distinguish between the same word in various contexts. Word embedding strategies based on
transformers have been widely used to solve thisissue in recent years. Related to this, BERT is currently
considered the most effective vectorization model for semantic, context, location, and grammatical
feature extraction from texts. Its goal is to simultaneously consider left and right contexts while pre-
training deep bidirectional text representations on vast amounts of unlabeled text [47]. BERT is a
multi-layer bidirectional transformer encoder based on the transformer structure [48]. It incorporates
multi-head attention, which separates the model into several heads and creates various subspaces. As
a result, the model can concentrate on different information aspects and fully integrate the sentence’s
contextual knowledge, while parallel processing is also possible. The formula is:

Q1=QVKQ,K:KWK,I/[=VI/I/’.V,Z.ZI,...,IZ (1)
head, = Artention (Q,, K, V) ,i=1,...,12 2)
MultiHead (Q, K, V') = Concat(head,, . . ., head,,)"" (3)

where head, is the vector output by the ith head; Concat(e) specifies a splicing method that horizontally
joins the matrix; W is a weight matrix that assigns weights to output vectors; W<, Wr, W) are
parameter matrices projected for the Query Q,, Key K; and Values V; of input vectors.

The model is pre-trained with a massive unlabeled text corpus, such as Wikipedia or the Book
Corpus; as a result, it can acquire a deeper and more intimate understanding of how language
functions. This knowledge can be enhanced by performing the following tasks: Masked-Language
Modeling (MLM) and Next-Sentence Prediction (NSP). The MLM challenge conceals a random
percentage of tokens and asks users to predict their identities. Meanwhile, the objective of the NSP
task is to predict if two sentences are nearby (i.e., whether one sentence follows another). In BERT
design, the input E;(i = 1,2,...,¢), which corresponds to the ith word in the phrase, is the sum of
the word’s token embedding, position embedding, and segment embedding. BERT can be used for
downstream tasks based on the pre-trained model with minimal architecture modification by jointly
fine-tuning all parameters, which is comparatively affordable compared with pre-training.

In the present study, the textual sentiment model consists of multiple modules, including multi-
channel CNN, two layers of GRU, and a classification layer. The first part is the BERT embedding
layer. After going through the necessary text processing steps for the multi-layer transformer encoder,
the BERT model maps the input text words to vector representation with 768-dimensional word
vectors: BERT (T) = {T|T. e R [ =1,2,...,L}.
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The second part involves learning the textual features using CNN and GRU techniques. The left
side uses CNN channels to extract various local properties of words between phrases. CNNs are
constructed with convolutional, pooling, and fully connected layers. Let x; € R” represent the m-
dimensional word embedding of the ith word in the phrase. Therefore, x,., = x,®x,P. . .®x, represents
a sentence of length n, where @ represents the concatenation operation. In every convolution operation,
a filter w € R was employed on a window of / words to deliver a new feature. For instance, a feature
¢; 1s produced from a window of words X,. ,_, using the formula ¢; = f(w - x;.,.,_, + b), where f is a
nonlinear activation function, and b is a bias term. A feature map ¢ = [c, ¢3, . . ., C,_is1] Was produced
after applying the filter to all sliding windows of / words in the phrase. Then, the feature map ¢ was
passed into a max-pooling layer, which allowed the filter to capture the most vital information by
keeping the maximum value ¢ = max {c} as the final feature obtained by the filter.

The procedure for a single layer has been outlined. The textual representation obtained using
CNN is achieved by implementing three parallel convolution layers with window sizes of 3, 4, and
5, each equipped with 256 filters—the resulting representation, denoted as ¢ = [¢,, ¢,, . . ., ¢, Which
can recognize diverse n-gram patterns. A batch normalization layer is added after the convolution
layer to improve the network’s learning speed and provide some regularization. Finally, these features
are concatenated to create a fixed-dimensional feature vector. The local features retrieved from the
convolution operation are extracted from the redundant terms, and the essential features of the
sentences are retained.

The right side utilizes the GRU network, which is a special type of the recurrent neural network
family [49]. The internal unit of the GRU is analogous to the LSTM internal unit [50], except that
the GRU integrates the forgetting port and the incoming port into a unified update port. Although
it draws inspiration from the LSTM unit, it retains the LSTM immunity to the vanishing gradient
problem. The simplified internal structure of GRUs allows them to train easier because less math is
required to improve the internal states. The mathematical functions used to control the GRU cell’s
mechanism are as follows:

=0 (x W +h_ U +b) 4)
=0 xXW +h_U+Db) (5
h,=tan (r, x h_ U + x,W + b) (6)
hh=0-z)xh +2z xh_ @)

where W=, W', W represent the weight matrices for each connected input vector; U?, U’, U indicate
the preceding time step’s weight matrices; and 4., b,, and b are bias, whereas o, r,, z,, h, denote the
logistic sigmoid function, the reset gate, the update gate, and the candidate hidden layer, respectively.
Two layers of the GRU network are designed to extract contextual and high-level textual information
with long-term dependencies. The number of hidden layers is similar to that of CNN filters, which is
256.

Next, the right-side global feature vector f, = TextGRU is merged with the left-side local feature
vector f, = TextCNN. A fused text feature vector with numerous global and local features is then
produced f, = Concat(f,, f,) as a result of the second part.

The last part is sentiment classification, in which the fused text feature vector is used as input
to a GlobalAveragePooling1 D layer for improved representation. It uses a parser window that moves
across the features and pools the data by averaging it, resulting in a one-dimensional (1D) feature
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vector with shape (batch size, features), followed by a dropout layer with a 50% probability to prevent
overfitting and a dense layer (fully connected) with 128 units and Rectified Linear Unit (ReLU) as an
activation function. Finally, the resulting textual representation F, is passed into the SoftMax classifier,
which predicts the final sentiment as follows:

p (s) = Softmax(w,, F;) (8)

L = _ZIOg(p(S)ay) ©)

where, w, represents the parameters of the SoftMax layer, p (s) denotes the probability distribution of
sentiment prediction, and y represents the actual sentiment class. The model is trained by lowering the
Cross-Entropy (CE) loss.

3.3 Visual Sentiment Model

A deep CNN is proposed to define the most critical and emotional regions in images. The entire
system for the visual sentiment model can be divided into the following steps: preprocessing, feature
extraction, and classification of input data.

Stepl: Preprocessing

Preprocessing is an important step that must be taken to classify the emotion of an image
effectively. As a result, several preprocessing procedures are performed: (1) resizing (where all images
must have the same size), the input images are resized into a [299 x 299]-pixel range for the Getty
and iStock datasets and [300 x 300] for the Twitter datasets. (2) Normalization, also known as data
rescaling, translates image data pixels to a predetermined range, most often (0,1) or (1,1). (3) Image
enhancement improves image quality and information content.

Step2: Feature representation and classification

A CNN based on the Inception-V3 architecture is developed for the visual sentiment model.
The Inception v3 architecture [51] was introduced in 2015, comprising 42 layers of symmetrical and
asymmetrical building elements, such as convolutions, average pooling, max pooling, concatenations,
dropouts, and fully connected layers. According to GoogLeNet [52], Inception-V3 introduced an
inception model that combines convolutional filters of various sizes into a single filter. As a result
of this design, fewer parameters must be trained, requiring less computation. Fig. 2 depicts the
fundamental architecture of Inception-V3 [53].

Conv Conv Conv padded Pool
Patch: 3x3 . Patch: 3x3 Patch: 3x3 " Patch: 3x3
Stride: 2 Stride: 1 Stride: 1 Stride: 2

3 x Inception Conv Conv Conv
del Patch: 3x3 - Patch: 3x3 - Patch: 3x3
model 1 Stride: 1 Stride: 2 Stride: 1

5 x Inception 2 x Inception Pool - Linear

model 2 1 del 3 Patch: B8 Logit
moce Stride: 0 Ogits

Figure 2: The inception architecture



CMC, 2023, vol.76, no.2 2155

To properly apply the Inception-V3 architecture to our work, transfer learning is used to transmit
knowledge from a source area to a target area for an accurate classification model. The choice of the
inception model is made to achieve a balance between feasible accuracy and performance (determined
based on the number of parameters). Inception networks were created to increase the efficiency of
convolutional layers by injecting sparsity into the convolutions. It can provide highly accurate results
on the ImageNet dataset while utilizing fewer parameters. Thus, a new visual network can be built on
the learned weights.

The visual sentiment classification model consists of two main parts: feature extraction using
CNN and classification using the SoftMax layer. The pre-trained Inception v3 model is used as the
base model and is fine-tuned with the sentiment image dataset. The first layers receive multiple raw
images as input and output tensors with dimensions of 8 x 8 x 2048. Then, these tensors are sent to an
average pooling layer with an 8 x 8 filter size tomake a 1 x 1 x 2048 feature vector. The role of average
pooling is considered to minimize computing complexity and data conflict. Next, a dropout layer with
a 40% probability is inserted after the pooling layer to prevent overfitting, followed by a flattened layer
to produce a 1D feature vector with a size of 2048. The classification layer is the final layer, in which
the visual representation F, is transmitted to the SoftMax classifier to predict the final sentiment, as
seen in Egs. (8) and (9), by replacing the textual representation F, with the visual representation F,.

3.4 Multimodal Fusion Methods
3.4.1 Multichannel Joint Fusion Model via Intermediate Fusion

Various data modalities typically contain supplementary information. As shown in Fig. 1, the
word “lovely” represents text-specific information that is difficult to discern from the image. In
contrast, “smiling face” and “flower” represent image-specific data that cannot be captured by textual
tags. The two types of characteristics are complementary to the analysis of emotions. Thus, this study
uses the MCJF model to combine visual and textual features for MSA. In this manner, the inherent
correlation between both modalities can be captured.

This scheme uses two unique channels at the input layer to handle multichannel data indepen-
dently. A deep visual feature vector is first extracted using the pre-trained Inception-V3 model with a
size of 1 x 1 x 2048 from the image part. Then, a high-level textual feature vector is extracted from the
text part using the pre-trained Bert-based multichannel CNN with a size of 38 x 256. Finally, the two
feature vectors are fed to the fusion layer, which expects the two vectors (i.e., the image feature vector V;
and the text feature vector V) to have the same dimension. As the image vector has a higher dimension
than the text feature vector, we must map its features onto the textual feature space. This process is
accomplished by adding a reshaped layer to obtain the two-dimensional (2D) image feature vector.
Then, a dense linear layer with 128 neurons embeds the image and text features into an S-dimensional
common space. This layer is defined as follows:

V! = Relu(W,V; + b)) (10)

V, = Relu(W,V, + b,) 11

where (V7, V) represents the new image and text feature vectors, which have the same dimension.
(W, W,) represents the weights, and (b,,b,) is the bias. To produce the fused feature vector J;, an
average fusion rule is employed to combine the two feature vectors (V/, V) as follows:

J; = Average(V; V) (12)
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The fundamental principle is that two distinct channels operating on different modalities can
extract coupling information. Then, this information is combined to enhance SA and exploit the
inherent connection between texts and images. Our approach relies on the idea that the visual
information and certain key emotional words in the input sequence are essential in determining the
actual sentiment. Therefore, to define the contribution of each modality to the sentiment polarity
of a given image-text pair, a self-attention mechanism is used to highlight the sentimentally rich
information associated with the multimodal feature vector for accurate SA [54]. In particular, the
network automatically calculates the important weights for each modality based on the multimodal
feature vector, as shown below:

e=¢(wxJ,+b) (13)

L _ewe)
T expley)

where e, is the un-normalized attention score indicating how accurately the vector J, reflects the
sentiment, v, is utilized to normalize the attention over the sequence using the SoftMax function;
w and b represent the learnable weights, whereas ¢ is the nonlinear activation function (e.g., tanh).
As a result, distinct input modalities in a self-attention network can interact with one another (“self”)
to determine which input receives greater attention, highlighting the importance of the sequence’s
multimodal input elements. The joint attended multimodal features are formed by computing the
weighted average throughout the entire feature sequence, as shown below.

m = Zf Vs Jy (15

The produced multimodal features m are then used as input for the remaining part of the model,
consisting of two dense layers with 256 and 128 units, and ReLLU as an activation function. A dropout
layer with a 20% probability is used to prevent overfitting. The final representation M is fed into the
SoftMax classifier to predict the final sentiment as follows:

p () = softmax(w,, M) (16)

L= _ZIOg(p(S)ay) (17)

where, w, denotes the SoftMax layer parameters, p (s) is the sentiment prediction probability distribu-
tion, and y is the actual sentiment label of the training data. The model is trained by lowering the CE
loss for optimal performance.

(14)

3.4.2 Decision Fusion via Rule Weighted Average Method

The sentiment from the three modalities—the Visual Sentiment Model (VSM), the Textual
Sentiment Model (TSM), and the MCJF Model—is first classified before attempting to combine
the outcomes. The predicted probabilities of the sentiment classes from the three modalities are then
evaluated. In late fusion, the individual predictions are combined using the rule weighted average
method, in which the contribution of each model is weighted proportionally to its capability or skill.
The weights are small positive values between 0 and 1, and the sum of all weights equals 1. For example,
suppose we have three prediction lists, p,, p,, and p,,, which represent the predictions generated by
the VSM, TSM, and MCIJF, with p, = [pvl,p\,z,p%], P = [p,l,p,z,p,3] P = [pml,p,,,z,p,,%], each
containing the probability distribution for a specific class label predicted by each classifier. Therefore,
the rule weighted average method can be calculated by taking the sum of the product of the predicted
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probabilities from the sentiment labels into weight and dividing it by the sum of weights, which can be
written as:

Weighted Average = (p, * W, +p, x W, + p,, « W) /(W, + W, + W5) (18)

Here, W,, W,, and W; represent the weights corresponding to the relative importance of each
modality to the final prediction. Given that the total sum of all weights is 1, this indicates that the
predicted probabilities from the sentiment labels generated by each modality are multiplied by its
corresponding weight. The final prediction can then be determined by calculating the “argmax” of the
summed probabilities for each class label, which returns the class index with the highest probability
value.

The grid search algorithm is used to compute the weight of each model, which represents the most
comprehensive approach for estimating weights because it uses a unit norm weight constraint to ensure
that the vector of weights sums to one. The grid search works by defining a grid of parameters—in our
case, weights for each modality—and then evaluating model performance for each point in the grid.
We use a predefined performance metric (i.e., accuracy) to measure how well the model performs with
each combination of weights. Grid search aims to find the optimal weights that maximize the model’s
performance on the validation set. This process entails the following steps:

1) Initially, a course grid of weight values from 0.1 to 0.9 is established as weight =[0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9], and all possible combinations are generated using the Cartesian product.
One disadvantage of this strategy is that the weight vectors will not sum to one (the unit norm), as
required. As a result, each generated weight vector is forced to have a unit norm by computing the
sum of the absolute weight values (referred to as the L1 norm) and dividing each weight by that value.
Then, the weight vectors produced by the Cartesian product can be systematically listed, normalized,
and predicted to determine the best weight for use in our ultimate weight-averaging process.

Algorithm 1: Grid search to find coefficient weights

Result: W;

Define W; = random(weight) wherei € {1,2,3};
Define W} = final coefficient weights;

Define score = 0, score_best = 0;

Define acc_score( ) = function to compute score;

Define p;; = predicted probability by it" modality;

score = acc_score(argmax( :-:f(pu * W)));
if score > score_best then

| score «— score_best;

end

2) For each sentiment class, the weighted average is calculated using the predicted probabilities of
the sentiment labels and the coefficient weights created in the previous step.

i=3

P = Z(Pi/ * W) (19)
i=1

where, i represents the modalities (visual, textual, intermediate fusion), j represents the sentiment

labels, W, denotes the final coefficient weights, p, defines the predicted probability for the ith modality,
and P; is the final probability for the j” class.
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3) The final predicted label p is calculated by locating the class index, which corresponds to the
highest probability value, as shown below:

y = argmax(P)) (20)

The proposed framework can analyze the problem in which a training instance can be an image-
text pair, an unpaired image, or unpaired text. When an image-text pair is obtained, the three classifiers
(i.e., VSM, TSM, and MCIJF) are trained, and the rule-weighted average method is then applied to
reach the final classification. The visual classifier makes the final prediction when the instance is an
unpaired image. Similarly, when the instance is an unpaired text, the textual classifier makes the final
prediction. The observed experimental coefficient weights are w = [0.143, 0.423, 0.423], w = [0.143,
0.357, 0.5], w = [0.333, 0.222, 0.444], and w = [0.421, 0.316, 0.263] for the BG, BIS, Twitter, and
MVSA-Single datasets, respectively.

3.5 The Visual-Textual Explainable Model

Deep neural networks can distinguish human emotions, and most of the related literature has
focused on new designs to improve this task, with few attempts to explain these models’ decisions.
Users may be unable to check the results of “black box” models because their core logic is hidden.
Consequently, these models must meet the justifiability, usability, and dependability requirements
for an SA system to be accepted. LIME aims to define an explainable model over an interpretable
representation that is locally accurate for any classifier’s predictions. After dividing the input into
features, it randomly perturbs each feature S times and analyzes the model’s output logits for class
c. LIME then produces a linear model that maps each feature’s perturbations to their logits of c.
The linear model’s weights explain each feature: a positive weight supports class ¢, while a negative
weight opposes it. Furthermore, the higher the absolute value of the weight, the more significant its
contribution.

Weights can also produce an understandable representation. Each feature is usually a segment
for images, so the sections with the most significant absolute weights can be highlighted in different
colors to depict negative and positive effects. Text characteristics are usually presented as words, so
a histogram of word weights can explain them. Mathematically, LIME provides a solution to the
following optimization problem:

§ () = argmin,, £ (£.2.]] ) + 2@ @

X

An explanation model can be described as a model g € G, where G is the family of explanation
models (i.e., linear models), in which ©2(g) be a metric for explaining g € G complexity (as opposed
to its interpretability). In addition, f represents the explained model, where f(x) is the likelihood that
x belongs to a particular class. To determine the locality around x, the [] (z) is utilized as a closeness
measure between an instance of z and x. Meanwhile, the loss £(f, g, [],) represents the degree to
which g approximates f faithfully in the locality given by the weighting kernel [] , which is usually
an exponential kernel of a distance function, in this case, the Euclidean distance. Eventually, the loss
L(f,g,[1,) is reduced while having €2(g) be low enough to be understood by humans to assure both
interpretability and local fidelity.

To explain the model results, we have enhanced the fundamental LIME method to make it
applicable to our proposed MMF model by using LIME Explainer for textual and visual content.
In the case of image data, the explanations are made by generating a new dataset of perturbations
surrounding the instance that needs to be explained. For this purpose, we use a simple linear



CMC, 2023, vol.76, no.2 2159

iterative clustering (SLIC) segmentation algorithm [55] that groups pixels in the unified 5-dimensional
color and picture plane space to effectively construct condensed, relatively uniform superpixels. The
generated model is then used to forecast the class of the recently created images. Each perturbation’s
importance (weight) in predicting the related class is determined using cosine similarity and weighted
linear regression. Ultimately, LIME explains the image regions (superpixels) and the most important
words that considerably influence the image—text instance’s assignment to a specific class.

Fig. 3 displays some of the explanations provided by LIME for the BG dataset; as can be seen,
the explanation model has effectively highlighted the most critical terms in the text section, which
contribute more to the final correct prediction and have greater weight. Similarly, the image part
provided the following explanations: Image (a) represents the original image, while image (b) displays
the superpixels where negative and positive contributions are considered (pros in green, cons in red).

Negative Positive

Prediction probabilities

Negative
Positive (NN 0.99

Text with highlighted words
e n— friends Enjoying BESR BlERE terrace rooftop party
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Positive
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Figure 3: The model explanation for the BG dataset

4 Experimental Setup
4.1 Datasets

Four social media datasets are used to evaluate the efficacy of the proposed MMF model. The
datasets are discussed in detail as follows:
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1) Getty Images: Getty Images [56] provides creative photographs, videos, and audio to businesses
and consumers, with over 477 million resources in its collection. The main advantages of Getty
Images are its user-friendly, efficient query-based search engine and its formal yet descriptive image
descriptions. In particular, 3244 Adjective-Noun Pairs (ANPs) from the Visual Sentiment Ontology
[57] are used as keywords to collect 20,127 image-text samples, with 10098 and 10029 for the positive
and negative classes, respectively. The dataset is named “Binary_Getty” (BG), which includes images,
relevant textual explanations, and labels.

The initial labeling was accomplished using the sentiment scores associated with ANP keywords.
To achieve strong labeling, we further employed the Valence-Aware Dictionary and sentiment Rea-
soner (VADER) [58], a lexicon, and a rule-based SA tool [59] to label the preprocessed textual
description. Then, we selected only the text samples for which the ANP and VADER sentiment scores
were the same. Due to the close relationship between the text and image content of Getty Images,
we classified the image samples based on the accompanying textual labeling. Finally, three volunteers
were chosen to assess the quality of our datasets. Each image-text sample was graded 1 (suitable) or
0 (unsuitable). The results showed that 95% of the samples were suitable and 5% were unsuitable; we
only considered the samples with grade 1 (suitable) and ignored the others.

2) iStock Images: iStock Images [60] provides international, royalty-free microstock photos
online, particularly images, graphics, clipart, videos, and audio tracks. In exchange for royalties,
artists, designers, and photographers worldwide offer their work to iStock. The same procedure from
Getty Images was implemented; 3244 ANPs were used as keywords to retrieve 19,279 image-text
samples, with 10587 and 8692 for positive and negative classes, respectively. The dataset, named
“Binary_iStock” (BIS), comprises images, labels, and relevant textual descriptions. We used the same
labeling procedure demonstrated for the Getty Images dataset to establish the final labeling of the
iStock Images dataset.

3) Twitter Dataset: Additionally, we gathered a new dataset from Twitter. English tweets with text
and photos are specifically gathered using the Twitter streaming Application Programming Interface
(API) [61], with user-generated hashtags as keywords. We carefully filtered out duplicated, low-quality,
pornographic photos and all text that was too short (less than five words) or too long (more than 100
words). We used VADER, a lexicon, and a rule-based SA tool to speed up the labeling process and
predict text sentiment polarity. Then, a visual sentiment analysis model [62] based on the Twitter for
SA (T4SA) [63] dataset is used to predict the polarity of the visual sentiment. Based on the projected
sentiment polarity and visual-textual content, the tweets were manually categorized into positive,
negative, and neutral sentiment polarities. Finally, we obtained 17,073 high-quality tweets containing
image-text pairs with 6075, 5228, and 5770 for positive, negative, and neutral classes.

4) Multi-View Sentiment Analysis (MVSA): The MVSA-Single dataset [64] comprises 5129 image-
text pairs extracted from Twitter. After presenting each pair to a single annotator, the annotator
assigned the image-text pair one of three polarities (neutral, negative, or positive). Like [65], we first
delete tweets with contradicting textual and visual labels. In cases where one modality is labeled neutral
while the other is labeled positive or negative, the ultimate polarity assigned to multimodal data is
positive or negative. Thus, we obtain a new MVSA-Single dataset containing 4511 text-image pairs
with 2683, 1358, and 470 for the positive, negative, and neutral classes.

4.2 Implementation Details

The datasets were divided into training, validation, and testing sets, with the proportions being
60:20:20. Table 1 shows the complete statistical information for each dataset. It can be observed that
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the MVSA-Single dataset is significantly unbalanced and has various data distributions. The absence
of sampling may pose challenges to effectively studying the smaller dataset category during training.
This results in classifying all data into the same class, thereby leading to classifier failure. Thus,
a random up-sampling technique was employed on the smallest category within the MVSA-Single
dataset to minimize the effects of data imbalance during the experiment. In the experiments related
to binary class datasets, the final classifier layer was configured with one unit and a sigmoid as the
activation function. We used a batch size of 32 and Adam with a learning rate of 0.001 as an optimizer
to train the textual and visual models. The intermediate fusion model, on the other hand, is trained
using the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.0001. To ensure a safe
upper bound, the proposed models were trained for 100 epochs with early stopping using a patience
value of 3. The model was evaluated using accuracy metrics and a loss function based on cross-entropy.
The research used an NVIDIA Tesla K80 Graphics Processing Unit (GPU) and 16 GB of Random-
Access Memory (RAM) to conduct the experiments. All codes were written in Python 3.7.13 using the
Keras library in the Google Colaboratory environment.

Table 1: The complete statistics of each dataset

BG Dataset Positive Negative Neutral Total Max. #Words  Min. #Words  Avg. #Words
Train 6500 6380 - 12880 283 1 13.80

Valid 1597 1624 - 3221 76 1 13.58

Test 2001 2025 - 4026 283 2 13.79

BIS dataset Positive Negative Neutral Total Max. #Words  Min. #Words  Avg. #Words
Train 6782 5556 - 12338 70 1 13.00

Valid 1639 1446 - 3085 50 1 12.92

Test 2166 1690 — 3856 107 1 12.93
Twitter dataset Positive Negative  Neutral Total  Max. #Words Min. #Words  Avg. #Words
Train 3874 3365 3687 10926 117 1 8.21

Valid 988 804 940 2732 106 1 8.08

Test 1213 1059 1143 3415 106 1 8.30
MVSA-single dataset  Positive Negative Neutral Total Max. #Words  Min. #Words  Avg. #Words
Train 1696 878 1090 3664 33 1 11.99

Valid 442 211 263 916 31 2 12.06

Test 545 269 332 1146 33 1 12.14

4.3 Results and Analysis

The following evaluation metrics were employed to evaluate the proposed model’s efficacy and
conduct a comparative analysis with previous research: precision, recall, F1-score, and accuracy. These
measurements were explained and computed as follows:

Accuracy is the proportion of accurate projections to the total number of examined instances,
which indicates the model’s overall performance.
TP+ TN

Al —
Uy = TP Y TN + FP 1 FN

(22)
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Precision is the proportion of accurate positive results to the total number of positive outcomes
anticipated by the classifier. It evaluates the model’s ability to identify only the relevant instances
accurately.

.. TP
Precision = —— (23)
TP+ FP
Recall, also called sensitivity, is the proportion of accurate positive outcomes to the total number
of actual positive outcomes (the sum of true positives and false negatives). It quantifies the model’s
capacity to recognize all relevant instances.

TP
Recall = —— (24)
TP+ FN

F1-score is the harmonic mean of precision and recall. It aims to balance these two metrics and
provides a single score that reflects the model’s overall performance. This measurement has a value
between 0 and 1, and if the classifier correctly classifies all samples, it returns a value of 1, indicating
a high degree of classification success.

2 x precision x recall

F1 — score = (25)

precision + recall

TP = true positive, TN = true negative, FP = false positive, and FN = false negative. All evaluation
measures range from 0% to 100%, with higher values indicating excellent model performance. These
metrics offer a comprehensive understanding of the model’s performance. Table 2 demonstrates the
results of the model variants compared to the MMF model, which indicates the following observations.

Table 2: Experimental results on the datasets (%)

BG dataset BIS dataset
Model Precision Recall F1 score Accuracy Model Precision Recall F1 score Accuracy
VSM  85.19 85.08 85.08 85.10 VSM  86.72 86.14 86.37 86.67
TSM  99.53 99.54 99.53 99.53 TSM  98.70 98.66  98.68 98.70
MCIJF 99.70 99.71  99.70 99.70 MCIJF 98.83 98.75 98.79 98.81
MMF 99.78 99.77 99.78 99.78 MMF 99.16 99.05 99.10 99.12
Twitter dataset MYVSA-single dataset
Model Precision Recall F1 score Accuracy Model Precision Recall F1 score Accuracy
VSM  77.67 77.57 77.59 77.45 VSM  56.50 55.61 55.98 58.29
TSM  93.35 93.46 9340 93.35 TSM 7244 72.10  72.26 73.82
MCJF 95.13 95.21 95.16 95.14 MCIJF 74.23 75.37  74.69 75.92

MMF 95.70 95.76  95.73 95.70 MMF 78.10 77.26 77.62 79.06
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Firstly, the VSM demonstrates the poorest performance. The primary reason is that images lack
the contextual information needed for a more precise interpretation. Unlike words, visuals cannot
directly describe emotions. Thus, adding additional modality information, such as textual data,
improves sentiment performance.

Secondly, the performance of the TSM surpasses that of the image-based analysis model. This
can be attributed to the superior efficacy and informational value of emotional cues in textual content
compared to visual data. We credit the BERT models’ success to their ability to learn from large
datasets, enhancing their effectiveness in extracting task-relevant features.

Thirdly, it has been observed that the multimodal approach (i.e., MCJF) exhibits superior per-
formance compared to its related unimodal baseline methods by a significant margin. This illustrates
that depending exclusively on textual or visual elements is generally inadequate for sentiment analysis.
Indeed, a more comprehensive set of information can be derived by utilizing various modalities,
which synergistically aid in capturing the semantic characteristics and the natural relationship through
integration among diverse data modalities. Finally, by combining the confidence scores of the three
separate models, MMF can improve performance even in the absence of one modality, resulting in
more accurate decision-making.

As previously stated, the results demonstrate that TSM outperforms VSM according to the
evaluation criteria across all datasets. Specifically, the BG and BIS datasets achieve significantly higher
accuracy rates (99.53% and 98.70%) than the Twitter-based datasets, which achieved accuracy rates
of 93.35% and 73.82%, respectively. Furthermore, comparable results were obtained for the VSM
approach, which achieved an accuracy of 85.10% and 86.67% for the BG and BIS datasets, respectively,
while achieving an accuracy of 77.45% and 58.29% for the Twitter and MVSA-Single datasets. As a
result, the proposed model’s final sentiment was significantly influenced, resulting in accuracy rates of
95.70% and 79.06% for the Twitter and MVSA-Single datasets, respectively. In comparison, the BG
and BIS datasets achieved higher accuracy rates of 99.78% and 99.12%, respectively.

The performance of the proposed models on the Twitter and MVSA-Single datasets is less
impressive than on the Getty and iStock datasets for several reasons, including the fact that most of
the tweets are short, informal, and unrelated to the image content. In addition, low-quality photos are
frequently included in tweets, which can reduce the model’s effectiveness. Despite being a benchmark
dataset, the MVSA-Single dataset poses various challenges: 1) the texts contain much noise, which
demands extensive preprocessing and spelling correction, as illustrated in Section 3.2; and 2) the
distribution of the classes is significantly unbalanced; thus, a random up-sampling technique was
employed to achieve a better and more balanced distribution for each class. However, the proposed
MCIF still exhibits a significant advancement over earlier models. Meanwhile, weighted late fusion is
more effective than independent models in categorizing emotion.

The F1-score for each model’s polarity and a comparison of the proposed model research findings
across all datasets are shown in Figs. 4 and 5, respectively. As can be seen, the BG and Twitter datasets
have a higher F1-score for the negative class across all the classifiers, achieving the highest value on
late fusion with 99.78% and 97.33%, respectively. In contrast, the BIS and MVSA-Single datasets
have a higher F1-score for the positive class across all the classifiers, achieving the highest value on
late fusion with 99.22% and 83.72%, respectively. Thus, the proposed model effectively utilizes the
correlation between visual and textual modalities across all datasets.
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Figure 5: A comparison results of the proposed model

Meanwhile, a comparison between the confusion matrix of the MMF model on the datasets is
shown in Fig. 6. It can be observed that the proposed model on the BG dataset fared better at correctly
classifying the negative polarity. In contrast, the proposed model on the BIS dataset performed
better in correctly classifying the positive polarity while achieving reasonable accuracy in detecting
the negative polarity. Similarly, the proposed model in the Twitter and MVSA-Single datasets fared
better in correctly classifying the negative and positive polarities while achieving reasonable accuracy
in detecting the neutral polarity. The proposed model can correctly classify 98% and 95% of negative
and positive classes from the Twitter dataset while correctly classifying 85% and 73% of positive and
negative classes from the MVSA-Single dataset.
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Figure 6: A comparison between the confusion matrix of the MMF model

A comparison of the training duration between the proposed models is further shown in Table 3
to provide more experimental details. As can be seen, the MCJF model required more training time,
which is reasonable given the time required to extract and combine the coupling features from the
two modalities. In contrast, the TSM has taken less training time across all the datasets. Compared
to TSM, VSM has taken more time, and this is because image data is more complex than text data.
Also, the dataset’s size significantly impacts the training duration; the MVSA-Single dataset has taken
less time for training, while the BG dataset considerably takes more time for training, especially for
the MCJF model. As for the late fusion model, which does not require training where the predictions
from each model must be combined using the weighted average method, the training time has been
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considerably less than for the other models and has been almost entirely consumed by the grid search
algorithm that is used to estimate the optimal list of weight values required by each classifier.

Table 3: comparison of the training duration

Datasets TSM VSM MCIJF

BG 00h,240m,17.12 s 0.0/4,54.0m,27.53 s 1.0/4,41.0m,0.12 s
BIS 0.0A4,21.0m,47.34 s 0.0 h, 55.0 m, 40.67 s 1.0 4, 33.0m, 2698 s
Twitter 0.0h,24.0m,41.97 s 0.0 2, 30.0 m, 37.94 s 1.0 i, 36.0 m, 53.35 s

MVSA-Single 0.0 4, 11.0 m, 18.53 5 0.0 4, 11.0 m, 38.94 s

Note: & means hours, m means minutes, and s means seconds.

1.0 h, 5.0 m, 57.66 s

Table 4 illustrates the number of parameters consumed by each proposed model across the
datasets. Our proposed MMF’s complexity can be comprehended in various ways. The model includes
two neural networks for image and text processing and classification, as well as an MCJF model
that incorporates the coupling features. Finally, decision fusion combines all of the predictions from
each model. This may indicate greater complexity in terms of parameters and architecture when
compared to single-modality models. The model’s learning mechanism is complicated, as evidenced
by the learning rates and optimizer used for training. However, this additional complexity enables
the model to effectively capture the intricate relationship between the visual and textual modalities,
resulting in improved precision, recall, F1-score, and accuracy across all datasets.

Table 4: Number of parameters

Datasets # Params TSM VSM MCIJF
Train. params 3,577,345 21,770,401 133,972,039
BG Non-train. params 109,483,777 34,432 34,433
Total params 113,061,122 21,804,833 134,006,472
Train. params 3,577,345 21,770,401 133,972,039
BIS Non-train. params 109,483,777 34,432 34,433
Total params 113,061,122 21,804,833 134,006,472
Train. params 3,577,603 21,774,499 133,972,297
Twitter Non-train. params 109,483,777 34,432 34,433
Total params 113,061,380 21,808,931 134,006,730
Train. params 3,576,067 10,243 133,972,297
MVSA-Single Non-train. params 109,482,241 21,806,880 34,433
Total params 113,058,308 21,817,123 134,006,730

4.4 Compared Methods and Baselines

We compared our results to the unimodal and multimodal sentiment baseline models and other

recent studies on visual-textual SA.
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Unimodal Sentiment Baselines: For textual modality, Single Textual Model [21], Logistic Regres-
sion (LR)-BERT, and SVM-BERT apply LR and SVM to predict sentiment based on textual features
retrieved using BERT and CNN, GRU [49], and CNN [66]. For visual modality, Single Visual Model
[21], SVM: an SVM classifier estimates sentiment based on visual features extracted with a pre-trained
Inception-V3 model, VGG16 [67], and ResNetS0 [68].

Multimodal Sentiment Baselines: Different approaches have been proposed; Early Fusion-1 [21],
Early Fusion-2: an SVM classifier predicts sentiment based on the concatenation of visual and textual
features extracted by Inception-V3 and paragraph vector, and Early Fusion-3: an LR classifier predicts
sentiment by combining visual and textual features extracted using Inception-V3 and BERT with
CNN. Late Fusion-1 [21], Late Fusion-2: an average sentiment score is applied on single visual
and textual models, with both models classified using SVM, where the visual and textual features
are extracted using Inception-V3 and paragraph vector, and Late Fusion-3: a classification-based
approach using SVM on a single visual and textual model, with both models classified using LR,
where the visual and textual features are extracted using Inception-V3 and BERT with CNN.

Comparison to Current Visual-Textual SA Research: Our results were compared to other recent
studies on visual-textual SA. The comparison is unfair because other articles used different datasets,
especially the BG and Twitter datasets. Still, it sheds light on the factors that went into it and the
categorization strategy employed with their results. The comparative findings are shown in Tables 5—
8, which are discussed in Section 5. To our knowledge, a model that uses the BIS dataset obtained
from the iStock website has yet to be published. As a result, the proposed models were compared only
with the previously described baseline models.

Table 5: Comparative experimental results for BG Dataset (%)

BG dataset Model Precision Recall F1_score Accuracy
Single textual model 87.56 87.51 87.50 87.51
LR-BERT 94.92 94.94 94.93 94.93
SVM-BERT 95.20 95.21 95.21 95.21
GRU 99.16 99.15 99.16 99.16
CNN 99.23 99.23 99.22 99.23

1) Unimodal baselines TSM (Ours) 99.53 99.54 99.53 99.53
Single visual model  72.65 72.63 72.62 72.63
SVM 80.58 80.58 80.57 80.58
VGG16 75.51 75.47 75.45 75.46
ResNet50 71.97 70.34 69.83 70.42
VSM (Ours) 85.19 85.08 85.08 85.10
Early fusion-1 89.62 89.62 89.63 89.62
Early fusion-2 90.09 90.08 90.09 90.09
Early fusion-3 96.25 96.24 96.25 96.25

2) Multimodal baselines MCJF(Ours) 99.70 99.71 99.70 99.70
Late fusion-1 89.74 89.75 89.74 89.74
Late fusion-2 90.66 90.67 90.66 90.66
Late fusion-3 96.67 96.65 96.67 96.67

(Continued)



2168 CMC, 2023, vol.76, no.2

Table 5 (continued)

BG dataset Model Precision Recall F1_score Accuracy
SCC19] 83.2 79.1 81.0 80.6
VSCN [22] 85.9 84.7 85.3 85.6
BDMLA [21] 87.1 85.4 86.2 86.5

3) Current literature AMGN [20] 89.8 87.6 88.7 88.2
DMLAN:et [28] - - 92.60 92.65
HCIM [27] 92.8 93.6 93.2 93.6
MMF (Ours) 99.78 99.77 99.78 99.78

Table 6: Comparative experimental results for BIS Dataset (%)

BIS dataset Model Precision Recall F1_score Accuracy
Single textual model 87.16 86.82 86.95 87.09
LR-BERT 93.88 93.44 93.61 93.69
SVM-BERT 94.46 94.14 94.27 94.34
GRU 97.92 97.81 97.86 97.90
CNN 97.97 97.72 97.84 97.87
1) Unimodal baselines TSM (Ours) 98.70 98.66 98.68 98.70
Single visual model  76.78 76.69 76.73 76.92
SVM 82.46 82.23 82.32 82.49
VGG16 77.35 77.18 77.26 77.67
ResNet50 82.18 82.61 82.27 82.39
VSM (Ours) 86.72 86.14 86.37 86.67
Early fusion-1 90.60 90.39 90.48 90.59
Early fusion-2 90.53 90.26 90.37 90.48
Early fusion-3 96.00 95.89 95.94 95.98
: . MCJF (Ours) 98.83 98.75 98.79 98.81
2) Multimodalbaselines s sion-1 90.13 89.64 89.82 89.96
Late fusion-2 90.67 89.99 90.23 90.38
Late fusion-3 96.08 96.02 96.05 96.08
MMF (Ours) 99.16 99.05 99.10 99.12

Table 7: Comparative experimental results for Twitter dataset (%)

Twitter dataset Model Precision ~ Recall Fl_score = Accuracy
Single textual model 75.48 75.46 75.47 75.55
LR-BERT 84.69 84.49 84.58 84.39

(Continued)
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Table 7 (continued)
Twitter dataset Model Precision  Recall F1_score Accuracy
SVM-BERT 84.62 84.45 84.53 84.36
GRU 92.22 92.29 92.25 92.18
CNN 92.22 92.22 92.19 92.09
1) Unimodal baselines TSM (Ours) 93.35 93.46 93.40 93.35
Single visual model  71.87 72.19 72.00 71.86
SVM 72.65 72.61 72.60 72.39
VGG16 70.49 70.57 70.50 70.48
ResNet50 73.24 73.39 73.23 73.15
VSM (Ours) 77.67 77.57 77.59 77.45
Early fusion-1 82.13 82.03 82.05 81.96
Early fusion-2 82.00 82.08 82.02 81.99
Early fusion-3 87.78 87.76 87.77 87.67
2) Multimodal baselines MCJF(Ours) 95.13 95.21 95.16 95.14
Late fusion-1 82.09 82.10 82.09 82.05
Late fusion-2 82.64 82.50 82.54 82.49
Late fusion-3 87.96 87.73 87.82 87.64
TomBERT-17 [69] - - 68.04 70.50
. HFN-17[70] - - 68.52 71.35
3) Current literature EF-CapTrBERT- B B 70.2 73
DE-17[71]
MMF (Ours) 95.70 95.76 95.73 95.70
Note: 17 means the results based on the Twitter17 dataset.
Table 8: Comparative experimental results for MVSA-single dataset (%)
MYVSA-single dataset Model Precision ~ Recall F1_score  Accuracy
Single textual model 64.17 62.13 62.71 65.79
LR-BERT 67.43 65.69 66.40 69.02
SVM-BERT 66.98 66.03 66.45 68.84
GRU 70.39 70.86 70.61 72.25
CNN 70.57 70.79 70.65 72.34
1) Unimodal baselines TSM (Ours) 72.44 72.10 72.26 73.82
Single visual model  51.00 50.25 50.43 53.05
SVM 55.62 55.01 54.96 57.42
VGG16 55.24 46.25 46.07 54.54
ResNet50 45.85 39.37 36.75 47.99
VSM (Ours) 56.50 55.61 55.98 58.29
Early fusion-1 64.73 64.18 64.43 67.45
Early fusion-2 65.81 66.05 65.92 68.24
Early fusion-3 66.57 66.66 66.58 68.59

(Continued)
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Table 8 (continued)

MVSA-single dataset Model Precision Recall F1_score Accuracy

2) Multimodal baselines MCJF(Ours) 74.23 75.37 74.69 75.92
Late fusion-1 67.96 65.30 66.29 69.37
Late fusion-2 68.78 61.91 63.58 68.50
Late fusion-3 68.45 67.39 67.86 70.33
MultiSentiNet [65] - - 69.63 69.84
CoMN [72] - - 70.01 70.51
CMCN [73] - - 75.03 73.61

3) Current literature ITIN [74] - - 74.97 75.19
CLMLEF [75] - - 73.46 75.33
GLFN [23] - - 76.42 77.21
MMF (Ours) 78.10 77.26 77.62 79.06

5 Discussion
5.1 Comparative Results on the BG and BIS Datasets

Tables 5 and 6 provide the comparative results for the BG and BIS datasets. As can be seen, the
proposed VSM and TSM outperform the unimodal visual and textual baselines because the VSM can
pay more attention to the most effective image regions. In contrast, TSM can efficiently concentrate
on the most sentimental textual words. With deep intermediate fusion, the MCJF model considerably
outperforms the multimodal baselines, indicating that the MCJF model contributes much to capturing
fine-grained characteristics that improve sentiment categorization. Consequently, MMF obtains better
F1 and accuracy scores than other models.

A comparison of our study with the recent literature utilizing the BG dataset is further carried
out to demonstrate the efficacy of our proposed approach. The comparative results reported in
Table 5 indicate that the DMLANet model outperformed AMGN in terms of F1-score (92.60%) and
accuracy (92.65%). In comparison, AMGN achieved an F1-score of 88.7% and an accuracy of 88.2%,
which shows better performance than BDMLA and VSCN, which had 86.5% and 85.6% accuracy,
respectively. The SCC model exhibited the weakest performance among all the models, with an F1-
score of 8§1.0% and an accuracy of 80.6%. Despite HCIM exhibiting superior performance compared
to other techniques, achieving an F1-score of 93.2% and an accuracy rate of 93.6%, it remains inferior
to our model. The results showed that our model could compete with recent studies by achieving
the highest accuracy and an F1-score of 99.78%. This demonstrates the superior performance of the
MCIJF in comparison to other models, as the multichannel inputs are simultaneously learned under
a single learning structure, and the parameters of numerous channels can be collaboratively tuned
during training. The MMF further improves performance by merging the confidence scores of three
independent models.

5.2 Comparative Results on Twitter and MV SA-Single Datasets

Table 7 compares the outcomes of the various Twitter dataset-based methodologies. As can
be seen, the proposed TSM and VSM models outperform all the unimodal baselines, while our
multimodal approaches show excellent performance over the unimodal and multimodal baseline
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methods. Our study is further compared with the existing literature to show the effectiveness of our
proposed approach. Yu et al. [69] presented a Target-Oriented Multimodal BERT (TomBERT) model,
where the target-sensitive textual representations were initially obtained using BERT. Then, a target
attention mechanism was designed to generate target-sensitive visual representations. Although a
series of self-attention layers were built on top to record the multimodal interactions, they neglected
textual information’s impact on the picture. Zhang et al. [70] developed a Hybrid Fusion Network
(HFN) to collect intra- and intermodal characteristics. They used visual characteristics to derive
emotional data from written content via multi-head visual attention. Several base classifiers were
then taught to acquire discriminative data from various modal representations. The main drawback
of this approach is that choice diversity and classification accuracy clash as the model approaches
convergence. Meanwhile, Khan et al. [71] developed a two-stream model named EF-CapTrBERT-DE,
which used an object-aware transformer to translate images and non-auto-regressive text synthesis. An
auxiliary sentence for a language model was then made using the translation. However, the significant
variance in the utility of the visual modality and the complexity of the scene are significant limitations
that restrict the efficacy of this approach.

According to the comparison results in the third group of Table 7, it can be concluded that EF-
CapTrBERT-DE performed better than HFN, with an Fl-score of 70.2% and an accuracy of 72.2%.
Compared to the TomBERT model, which had the lowest performance with an F1-score of 68.04%
and an accuracy of 70.50%, HFN exhibits a 0.48 and 0.85 improvement in Fl-score and accuracy,
respectively. Our proposed model outperforms the state-of-the-art by a wide margin, both in terms
of Fl-score (95.73%) and accuracy (95.70%), proving the efficacy of the MMF model for precise
sentiment classification.

The comparative results of the different methods using the MVSA-Single dataset demonstrate
the proposed models’ excellent performance compared to the unimodal and multimodal methods, as
shown in Table 8. To further assess the efficiency of the proposed model, we compare our findings to
the current literature. Xu et al. [65] introduced MultiSentiNet, a deep semantic network that uses an
attention-guided visual feature LSTM model to extract emotional terms from tweets and integrate
them with visual features to model picture-text content associations. However, it emphasized the
visual elements more than the impact of the text on the image. A stacked Co-Memory Network
(CoMN) was developed by Xu et al. [72], which employs an iterative approach that leverages textual
data to identify significant visual features while utilizing image data to pinpoint relevant textual
keywords. However, coarse-grained attention may cause data redundancy and must be improved.
Peng et al. [73] developed a framework for a Cross-Modal Complementary Network (CMCN) with
hierarchical fusion that may fully incorporate multiple modal features while lowering the danger of
merging irrelevant modal information. Zhu et al. [74] used an Image—Text Interaction Network (ITIN)
to study the emotional visual areas and written information in multimodal SA. First, the region
word correspondence was extracted using a cross-modal alignment module, after which multimodal
characteristics were integrated using an adaptive cross-modal gating module. The model’s weakness is
that fine-level interaction would be ineffective if the associated text did not specify emotional image
areas. According to this scenario, prediction accuracy would be assessed using unique modal and
contextual representations. Meanwhile, Contrastive Learning and Multi-Layer Fusion (CLMLF) was
proposed by Li et al. [75] for multimodal sentiment identification. Text and images are encoded,
aligned, and fused to obtain hidden representations using a multi-layer transformer-based fusion
module. Hu et al. [23] developed a global local fusion neural network (GLFN) that combines global
and local fusion information to assess user sentiment. Because some posts included unrelated photos
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and sentences, the sentiment expression had to rely on independent elements, which may affect the
model’s performance.

Upon comparison with the current literature, the results in the third group of Table § demonstrate
that CMCN outperformed CoMN and MultiSentiNet with an F1-score of 75.3% and an accuracy of
73.61%. In comparison, CoMN achieved better performance than MultiSentiNet, with a 0.38 and
0.67 improvement on the F1-score and accuracy, respectively. MultiSentiNet achieved an F1-score of
69.63% and 69.84% accuracy and had the lowest performance. Meanwhile, GLFN, which achieved an
F1-score of 76.42% and an accuracy of 77.21%, outperformed ITIN and CLMLF, having an accuracy
of 75.19% and 75.33%, respectively. Our proposed model shows competitive results compared to the
existing literature, achieving the highest Fl-score (77.62%) and accuracy (79.06%). This proves the
effectiveness of the proposed model in capturing complicated associations and extracting the most
relevant information from the visual and textual content.

6 Conclusion

A novel MMF model was proposed to address the visual-textual sentiment classification problem.
The proposed approach leverages the discriminative features of textual and visual information. In
addition, it seeks to optimize the inherent relationships between different modalities to develop a
comprehensive framework to estimate people’s overall sentiments towards a particular object across
multiple modalities. In particular, two neural networks were proposed: a deep CNN with transfer
learning using the Inception-V3 model and a BERT-based convolution-gated recurrent unit network
to identify the most salient emotional regions in images and the essential emotional words in texts,
respectively. This dual feature extraction and classification method results in highly discriminative
features, improving sentiment classification accuracy. Further enhancing this approach, we introduce
an intermediate fusion model, the MCIJF, that integrates coupling features based on multimodal
data, optimizing the intrinsic relationship between visual and textual characteristics. A self-attention
technique is then proposed to weigh multimodal features and extract emotionally rich data crucial
for joint sentiment categorization. Finally, our decision fusion approach, designed to improve the
generalizability of the proposed models, integrates the results for final sentiment classification. In
addition, we develop an interpretable visual-textual sentiment classification model using LIME to
underscore the contributions and interactions of different modalities. This helps model developers
identify and rectify errors and facilitates a deeper understanding of the complex high-level internal
dynamics and relationships among the different levels of their models.

The experimental results from the analysis of four real-world datasets indicate that multimodal
approaches produce significantly better results in terms of model evaluation criteria than their
corresponding unimodal baseline and current literature techniques, achieving the highest accuracy
using the BG dataset with 99.78%. Thus, it can be concluded that relying solely on textual or visual
cues for sentiment classification is usually insufficient and that incorporating diverse modalities may
provide more comprehensive information. This validates our strategy, improving decision-making and
results.

Despite the impressive outcomes, the primary constraint of this study is that our visual-textual
model considers that the image-text pair has a fine-grained relationship. However, some pairs might
not have a robust cross-modal correlation. The performance of our model might suffer as a result of
these examples.
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In the future, a more reasonable deep model will be created to investigate the fine-grained
correlation between image and text pairs, allowing the two modalities to be integrated more thoroughly
and with less redundancy. A notable aspect of our future work will be evaluating the scalability of
the proposed model to handle large datasets. This evaluation will be crucial in understanding the
model’s capacity to maintain high performance even when dealing with extensive data. Additionally,
we aim to adapt our model to accommodate other forms of multimodal data, such as audio and video,
thereby broadening its applicability to a broader range of domains. Ultimately, our goal is to make our
approach more generalized, adaptable, and scalable, and these future directions will be instrumental
in bringing us closer to that objective.
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