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Abstract: In the field of medical images, pixel-level labels are time-consuming
and expensive to acquire, while image-level labels are relatively easier to
obtain. Therefore, it makes sense to learn more information (knowledge)
from a small number of hard-to-get pixel-level annotated images to apply
to different tasks to maximize their usefulness and save time and training
costs. In this paper, using Pixel-Level Labeled Images for Multi-Task Learning
(PLDMLT), we focus on grading the severity of fundus images for Diabetic
Retinopathy (DR). This is because, for the segmentation task, there is a finely
labeled mask, while the severity grading task is without classification labels.
To this end, we propose a two-stage multi-label learning weakly supervised
algorithm, which generates initial classification pseudo labels in the first
stage and visualizes heat maps at all levels of severity using Grad-Cam to
further provide medical interpretability for the classification task. A multi-
task model framework with U-net as the baseline is proposed in the second
stage. A label update network is designed to alleviate the gradient balance
between the classification and segmentation tasks. Extensive experimental
results show that our PLDMLT method significantly outperforms other state-
of-the-art methods in DR segmentation on two public datasets, achieving
up to 98.897% segmentation accuracy. In addition, our method achieves
comparable competitiveness with single-task fully supervised learning in the
DR severity grading task.

Keywords: DR lesion segmentation; pseudo labels; grading task; class
activation heat map; update label network

1 Introduction

The past few years have seen great success in interdisciplinary research in artificial intelligence and
medical image analysis [1–3]. As these studies have become more widespread, the research on fundus
images has become more comprehensive and in-depth, especially in the area of Diabetic Retinopathy
(DR) on fundus images. DR is a vascular disease affecting the normal blood vessels of the eye and is
the leading cause of preventable blindness worldwide [4]. DR analysis usually has two essential areas of
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research: disease classification and fine-grained lesion segmentation [5]. Although the former problem
depends on the latter, these two problems are usually studied separately.

Disease severity grading can be considered a classification problem, and there is a uniform
standard for DR classification, the International Clinical Diabetic Retinopathy Scale (ICDRS) [6].
According to this standard, the severity of DR can classify into five levels, namely 0 (no significant
DR), 1 (non-appreciative early DR), 2 (non-appreciative mid-stage DR), 3 (non-appreciative late DR),
and 4 (proliferative DR). These require only image-level labeling, and due to the limited labeled
data and the subjective labeling of different human graders, the labeling may be noisy. Grading
diabetic retinopathy (DR) based on fundus images has attracted increasing interest from academia
and industry. Most convolutional neural network (CNN)-based algorithms treat DR grading as a
classification task through image-level annotation. However, these algorithms do not fully exploit
the valuable information in DR-related lesions. Furthermore, the improvement of generalization and
robustness of the classification model eventually obtained by training the model will be a challenge
for this task.

Conversely, lesion segmentation requires more specialized pixel-level labeling in DR segmentation
tasks. They are commonly performed on soft exudates, hard exudates, microaneurysms, and hemor-
rhages for single or multiple lesions. Fig. 1 shows the sample retinal images and the corresponding DR
pixel-level lesion annotation based on the Indian Diabetic Retinopathy Image Dataset (IDRiD) [7].
Pixel-level data annotation of medical images is very time-consuming and requires experts in the field.

Figure 1: Soft exudates (SE), hard exudates (EX), microaneurysms (MA) and hemorrhages (HE) Pixel-
level annotation of individual lesions corresponding to the fundus image. The resolution of both the
original image and the individual lesion-labeled images is (4288, 2848). The horizontal resolution is
4288 and the vertical resolution is 2848

Compared to the graded annotated images of fundus images, pixel-level annotated images are
challenging to obtain and much smaller in number than the graded annotated images. However,
the more annotation information they contain, the easier it is for the model to learn more helpful
knowledge. Therefore, we propose to use a pixel-level labeled dataset for segmentation and grading
tasks, whose labels for grading tasks obtain from pre-trained classification models.

This paper proposes multi-task learning using pixel-level annotated fundus images called
PLDMLT. Our PLDMLT consists of two tasks: DR lesion segmentation and DR severity grading.
These two tasks can be considered intermediate and advanced vision tasks [8,9]. Therefore, it is
not appropriate to share the hidden layer among the tasks using the traditional multi-task learning
approach [10]. To this end, an effective hierarchy of the two tasks is established in our PLDMLT
framework. At the same time, a pseudo-label generation method is proposed to obtain high-confidence
pseudo-labels for the images of this dataset. In addition, we propose a pre-trained classification model
to generate a class activation heat map and fine-tune this heat map for the classification pseudo-labels
with the pixel-level labeling ratio of the segmented dataset.
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Unlike traditional multi-task learning approaches, our PLDMLT is more flexible and can be used
directly in most networks with an encoder-decoder architecture like U-shaped network (Unet), without
modifying the network.

Contributions: To our knowledge, our work is the first attempt to perform both medium and
high-level medical services simultaneously using only pixel-level annotated fundus images. The main
contributions of this paper are as follows:

(1) We propose a method to obtain high-confidence pseudo labeling for learning classification
methods for pixel-level labeled images. The simultaneously trained multi-task model can
segment and classify fundus images, significantly saving cost and training time.

(2) We designed a label update network for mitigating inter-task gradients.
(3) The proposed PLDMLT framework with extensive experiments verifies that our approach

achieves excellent performance in segmentation and comparable results in DR severity
classification.

2 Related Work

In medical imaging, lesion segmentation, and disease classification are two critical tasks that can
drive the progress of computer-aided diagnosis. Research on these two tasks in fundus images is also
becoming more and more extensive.

Recently, lesion segmentation tasks and disease grading tasks have been widely explored in the
field of medical images. As for the segmentation tasks, most of the proposed models are based on
the reconstruction of Fully Convolutional Networks (FCN) or U-Net in order to achieve excellent
performance. Subsequently derived for DR segmentation task. Reference [11] proposed an improved
U-Net architecture ResUnet based on residual network with periodic blending wash where sub-
pixel convolution is initialized to convolutional nearest neighbor size. Transformers and U-Net
(TransUNet) [12] using Transformers Make Strong Encoders for Medical Image Segmentation. Deep
learning models have also been widely used to grade fundus images for disease. For example, reference
[6] utilized the Inception architecture for Computer Vision3 (Inception-V3) for DR grading and
designed a pathology-aware network. However, most are model designs or improvements for a single
task, and a few work on correlating two tasks.

Weakly supervised learning is introduced to make fuller and more efficient use of the data with
reduced annotation effort. Weakly supervised Pseudo labels Existing methods are broadly classified
into two categories. One is a one-stage approach which usually comes to build an end-to-end model
and introduces multi-instance learning and some other conditions to optimize it, the overall framework
is relatively simple, but the accuracy is generally low as in [13]. The other class of methods is a two-
stage one, which usually uses some method to generate pseudo-labels first and then uses them for
training, such as [14]. Although this method is more accurate than the first-stage method, the overall
method is slightly more complicated when the pseudo-label generation may introduce a lot of noise
and uncertainty.

With the further development of deep learning image algorithms in the past two years, multi-task
learning has become one of the important directions of its research. There is some kind of correlation
between different tasks, then multiple tasks can share some feature extraction process between them,
and they can share the information they learned in learning training, which is not available in
single-task learning. Associated multi-task learning can achieve better generalization than single-task
learning. A two-stage Dynamic Convolution Neural Network (DCNN) [15] is proposed that allows
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the simultaneous description of the lesion and grading of DR severity. In reference [16], attention
mechanisms are also commonly used for multi-task learning. Because annotation requires domain
expertise and physical labor, it is challenging to train large-scale deep-learning models. Reference
[17] proposed DR grading and multiple lesion segmentation tasks using semi-supervised learning and
experimenting with the optimal solution for classifying output variants for each grading. Nevertheless,
all these methods require many image inputs at a much higher computational cost.

The learning of multi-tasks share a common dataset or image features and generally speaking,
this approach is further subdivided into multi-label learning domains. The earliest, mainly proposed
machine learning-based approaches to address the problem of multi-label learning, exploring corre-
lations between labels and enabling simultaneous learning of multiple labels. Reference [18] proposed
using synthetic datasets to analyze better the behavior of Machine Learning (ML) methods in domains
with different characteristics. Reference [19] showed that binary relevance-based methods have much to
offer. With the increasing application of deep learning in images, neural networks have been proposed
for multi-label learning, and reference [20] constructed a two-branch network with an original image
and its transformed image as inputs and introduced a new attention consistency loss. However,
multi-label learning methods have yet to be studied much on medical images because medical image
datasets usually lack multiple labels. It is tedious to perform pixel- and image-level annotation on the
same medical image. We propose a deep learning-based multi-label framework for weakly supervised
multi-task learning by generating disease-graded pseudo-labels. The two tasks do not simply share
parameters.

3 Methodology

An overview of the proposed approach is shown in Fig. 2. The framework is divided into two
parts: on the left is the pixel-level labeled image processing part. Given the limited number of images
with pixel-level labels, we use a five-fold cross-validation method so that each category of lesions can
be fully and effectively trained and learned. Two segmentation datasets with pixel-level annotation are
also introduced for joint training to avoid overfitting.

The network module is divided into two stages: the red box indicates the generation of initial
pseudo-labels and heat maps using the method. The initial model is trained using IDRiD-D [7], on
which pseudo-labels are generated, and the classification basis is visualized using this pre-trained
classification model. The blue box indicates multi-task learning, where the auxiliary labels are pseudo-
labels generated in one stage for the label update network and the multi-task learning network. The
following sections include details of generating pseudo-labels and disease classification heat maps,
weakly supervised multi-task learning and label update networks, and the whole training process.

3.1 Generating Pseudo-Labels and Class Activation Heat Maps

In this study, to enable the model to learn two tasks simultaneously for pixel-level labeled
images lacking disease grading labels, we propose the approach shown in Fig. 3. The DR severity
grading models of Aggregated Residual Transformations Network (ResNeXt) ResNeXt-101 [21] and
ResNeXt-50 [21] were first pre-trained using the IDRiD-D dataset. These two pre-trained models
predicted disease grading pseudo labeling of pixel-level annotated images. In addition, the pseudo
label with the highest confidence in the pseudo label predicted by the two models is selected.
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Figure 2: Overall framework

Figure 3: The pseudo-label generation process

Heat maps can provide medical interpretability for deep learning-based medical image analysis.
In our work, we propose to use segmentation masks to guide the heat map and fine-tune the pseudo-
labeling. The class activation heat map [22] is an improvement to the original Class Activation Mapping
(CAM) [23] by calculating the partial derivatives of the category-specific prediction scores concerning
each element of the output feature map of the last convolution layer, and thus the degree of influence
of each channel of the feature map on the model prediction for a specific category. In our proposed
method, the dataset is predicted, and the degree of influence of different categories is visualized. The
pixel-level annotation of the dataset can be used as a visual guide to the heat map of the impact level
of different categories. Since the grading of DR images is based on typical DR lesions, locating the
lesions of interest should be the key for the physician to evaluate the algorithm’s predictions without
needing fine segmentation. In medical domain knowledge, DR severity is graded with 0, indicating no
DR lesions on the image. 1 indicating only microaneurysms, and 2 indicating not only the presence of
microaneurysms. At the same time, the other two levels show more than them in terms of the number
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of DR lesion categories. For this reason, we propose a secondary modification of the classification
pseudo-labeling by comparing the sensitivity of the different categories on the heat map with the
corresponding acceptable segmentation annotation of the image.

In Gradient-weighted Class Activation Mapping (Grad-CAM) [22] we take the pre-trained
classification model for the last layer of F feature extraction and vary the different severity levels
c. k represents k th channel in the feature layer F , Fk represents the data of channel k in the feature
layer F , and αc

k is the weight equation to Fk as follows.

Lc
Grad−CAM = ReLU

(∑
k
αc

kF
k
)

. (1)

By varying the different DR severity levels of c, the heat map of class activation under each level
is obtained.

3.2 Weakly Supervised Multi-Task Learning Network

In this work, The backbone network extracts features due to the excellent performance of Visual
Geometry Group16 (VGG16) [24] as feature extraction in either diabetic retinopathy classification or
segmentation. VGG16 is used as the backbone of our encoder. In addition, the availability of pre-
trained weights of VGG16 on the ImageNet dataset allowed us to take advantage of the successful
improvements in image classification and segmentation by migration learning. The model is divided
into two parts: encoder and decoder. Segmentation and grading share the encoder part, a pooling
layer with a fully connected layer is added at the end of the encoder to obtain a classification output,
grading and segmentation share the encoder block, and the output of segmentation is at the end of the
decoder. The model is shown in Fig. 4.

Moreover, during the experiments, we found that simply adding output and transforming it
into multi-task learning does not directly lead to an effective improvement of the overall model
performance. We need to adjust the weights and design a suitable loss function continuously. For this
reason, we focused on the newly added grading task and found that the overall model performance is
closely related to its gradient change. Considering the noise and unreliability caused by weak pseudo-
labels, we added a self-supervised learning approach. We designed a label update network, which
optimizes the loss to alleviate better the impact caused by the gradient imbalance in the shared layer.
In the next section, we will introduce it in detail.

The training process for weakly supervised multi-task learning is similar to that of fully supervised.
Our proposed network uses two loss functions from the segmentation and DR grading tasks in this
multi-task learning. Since, for both tasks, the samples are unbalanced, for this reason, we use the [25]
multi-category FocalLoss (CategoricalFocalLoss). The lesion segmentation task has an input image
size w × h × c and an output size w × h × cls, where h is the height of the input image, w is the width,
and c is the number of channels. The loss function is shown in Eq. (1).

LS,C (y, y′) =−α
(
(1−y′)γ

)
log (y′) . (2)

The loss function reduces the simple sample loss weights, thus allowing the network to focus
more on difficult sample losses. The formula is shown above, where y is the true category value, y′

is the probability value of the predicted category, α is the category weight value, and γ is the sample
classification difficulty factor, and finally, we combine the loss weights of the individual tasks into a
multi-task network loss L as follows.

L = LS+βLC. (3)
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where β is the hyperparameter, we experimented with different values of β and found that β = 0.8
γ = 2.0 α = 0.25 gave the best results for both tasks.

Figure 4: The architecture of the multi-task model

3.3 Label Update Network

We designed a label update network for the grading task, Inspired by [26]. As shown in Fig. 5,
the network gets new labels by self-supervised learning. The updated labels were used as the input
of the grading task, and then supervised training was performed, and it was found that the overall
performance was improved, and the model converged better.

3.3.1 Parameter Setting

Unlike the setting in [26], the initial label of the model is weakly labeled. Similarly, we make the
update label network trained simultaneously with the multi-task network and represent the multi-task
network as a function fθ (x) with parameter θ . The parameter θ is taken as input x. The function
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fθ1
(x) with the encoder network module and the parameter θ1 of the update label network. The

parameter θ is updated by the loss L of the segmentation task from the decoder output and the disease
classification task from the encoder output, and θ1 is updated by updating the label network and the
disease classification task. In addition, the initial pseudo label ŷ is predicted and updated by applying
Mask SoftMax, denoted as ygrad = uθ

(
x, ygrad, ψ

)
, and the parameter θ is updated in the multi-task

network. n denotes the total number of samples in the dataset.

Figure 5: Label update network structure. The final generated grading labels are used to make gradient
descent with the predictions of the grading task

3.3.2 Pseudo-Label Update Method

Through the parameter setting in the above part, we can know that the label update is obtained
according to the initial pseudo-label after the formula (4), however, for the disease classification task
the number of corresponding data set in each level is not exactly the same, some levels will not even
appear, it can be found that the number of categories of the initial pseudo-label is less than or equal to
true five classes, the number of categories of ŷ, i = 2, 3, 4, 5, so in the process of updating the labels,
we set the hierarchy to five classes. Even if the class does not exist in the original pseudo-label, we
generate a pseudo-label prediction probability for it and learn it during the training process. The setup
is done by the following equation.

p
(
ŷi

) = expM � ŷi∑
i expM � ŷi

. (4)

The above equation p
(
ŷi

)
denotes the probability of the grading label ŷ generated on the five

classes i of the hierarchy, where M denotes the created binary mask M = B (y, ψ), � denotes the two
elements doing the multiplication operation ψ is the hierarchy of the main task network, and y denotes
the five classes [0, 1, 2, 3, 4] of the hierarchy. We found that by this method and fine-tuning the weights
and some parameters, we were able to balance the gradients of the two tasks.

3.3.3 Overview of Parameter Updates

The goal of PLDMLT is to update labels and generate pseudo-labels. First, initial pseudo-labels
and heat maps are obtained from the pre-trained classification model in the first stage. Secondly, in the
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second stage, the parameters of the multi-task network and update label network models are updated
and converged with loss minimization, respectively. It is worth noting that the label update network
is updated by calculating the label update network’s prediction accuracy relative to the multi-task
network for the shared parameter network.

In summary, the entire PLDMLT algorithm is defined as follows:

Algorithm 1: The PLDMLT algorithm
1: Input: Pixel-level labeling of fundus images P ∈ R

w×h×c, Ground-truth T ∈ Y
2: Output: Predictions S ∈ X C ∈ Ŷ
3: Initialise: Learning rate: ε, ϑ ; Hierarchical structure: ψ

4: # Stage 1
5: Obtain initial grading pseudo labels ŷ = {

ŷ1, . . . , ŷn

}
using pre-trained model [21]

6: Obtain the heat map of class activation [22]
7: # Stage 2
8: while not Convergence(L) do
9: for epoch ← 1 to 100 do
10: # fetch one batch of training data
11: (x, yseg) ,

(
x, ygrad

) ∈ (x, y) ,
(
x, ŷ

)
;

12: ygrad∼ = uθ

(
x, ygrad, ψ

)
.

13: Update: θ − ε∇θ (L
(
f seg
θ (x) , yseg

) + L
(
f grad
θ (x) , ygrad∼)

14: end
15: for epoch ← 1 to 100 do
16: # fetch one batch of training data
17: (x, yseg) ,

(
x, ygrad

) ∈ (x, y) ,
(
x, ŷ

)
;

18: ygrad∼ = uθ

(
x, ygrad, ψ

)
.

19: # retain training computational graph
20: Compute: θ ∗ = θ − ε∇θ

(
L

(
f seg
θ (x) , yseg

) + L
(
f grad
θ (x) , ygrad∼))

21: Update: θ1 ← θ1 − ϑ∇θ1

(
L

(
f grad
θ∗ (x) , ygrad∼))

22: end
23: end

3.4 Training Progress

We implemented a joint DR grading task for multifocal region segmentation in the Keras
framework and conducted experiments to evaluate its performance. We used the Adam algorithm
to optimize the network with an initial learning rate of 0.00005. The input size of the network was
1024 × 1024 × 3. ImageNet pre-training weights were used as the initial weights for the encoder part,
while the decoder part was initialized with He Normal. An NVIDIA GeForce RTX3090 server is used
to train the network.

4 Experiments and Results

This section introduces the experimental results of DR lesion segmentation and grading by
PLDMTL in several datasets and compares the evaluation with other networks.
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4.1 Dataset

The datasets in the model are preprocessed. Each image corresponds to a mask. We fused the
lesions of soft exudates, hard exudates, hemorrhages (including red dots), and microaneurysms. We
are using morphological methods [27] on a single image as a new mask for the dataset.

IDRiD-S Indian Diabetic Retinopathy Image Segmentation Dataset (IDRiD-S) [7]. It is a publicly
available dataset containing 81 retinal images for the segmentation task, where each image has a
manually labeled segmentation mask.

IDRiD-D Indian Diabetic Retinopathy Image Dataset (IDRiD-D) [7]. This publicly available
dataset contains 413 images manually classified into 5 DR severity levels. This dataset is primarily used
to train DR severity classification models and to predict the output IDRiD-S with weakly supervised
pseudo-labeling of DiaRetDB1.

DiaRetDB1 Data from [28]. 89 color fundus images, 84 of which were at least mild non-
proliferative signs of diabetic retinopathy (microaneurysms), and 5 were normal, according to all
experts involved in diabetic retinopathy, which did not show any signs of diabetic retinopathy. Images
were taken using the same 50-degree field-of-view digital fundus camera with different imaging
settings. The data correspond to good (not necessarily typical) real-world conditions, and the images
are comparable and can be used to assess the general performance of the diagnostic method. The
dataset is called “Calibrated Level 1 Fundus Images”.

A General-Purpose High-Quality Dataset for Diabetic Retinopathy (DDR) [29] 757 fundus images
of the DDR dataset are annotated with pixel-wise segmentation for four retinal lesions, including
microaneurysms (MA), hard exudates (EX), soft exudates (SE), and hemorrhages (HE).

Data Enhancement We applied data augmentation to improve the initial network, as well as
the accuracy of this network, using random rotation, vertical/horizontal flipping, rotation, flipping,
left/right flipping, and cropping.

4.2 Class Activation Heat Map

The sensitivity of each segmented image at different levels is visualized using Grad-CAM, and is
shown in Fig. 6.

Taking the fundus image in the above figure as an example, we can find that the most relevant
thermal localization map to the image’s mask is a severity level of 3 or 4. Both level 0 and level 2
have fundus image optic discs as a grading guide, so levels 0 and 2 are not considered a category for
classification pseudo labeling, and the upper part of level 1 has only a tiny fraction of sensitive lesion
localization. Therefore, it is not considered a category for this label. The pseudo label value predicted
by the pre-training model for this image is 4, so it is within our speculative range and is used as the
initial pseudo label obtained.
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Figure 6: (a) We propose to take the fundus image of each segmented dataset for the original image
and plot each severity level’s sensitivity to the lesion’s location using the better-trained pre-trained
classification model. (b) The pixel-level labeled segmentation mask of (a). (c) Is the heat map obtained
after Grad-CAM. The heat map shows that the red region location is the most sensitive part of the
DR severity level. The most sensitive part is when the DR severity level is 0. (d) The sensitive part is
visualized. (e, g, i, k) Correspond to the heat map of each DR severity level

4.3 Evaluation of Multi-Task and Results

We evaluated the performance of the PLDMLT method for DR lesion segmentation and disease
classification on the DDR IDRiD-S and DiaRetDB1 datasets. We compared it with various other
methods on a single task, such as Unet [30] Linking to the Network (LinkNet) [31], Deep Labelling
for Computer Vision plus version (DeepLabv3+) [32], and Feature Pyramid Network (FPN) [33],
as well as multi-task methods [17] for comparison. All methods were performed on 1024 × 1024 × 3
fundus images, while we applied different metrics to evaluate the performance of both tasks, for disease
classification using accuracy assessment and for segmentation task using average Dice similarity
coefficient (Dice) and average Intersection Over Union (IOU), with larger values of these metrics
indicating better performance and more accurate segmentation or classification. Tables 1 and 2 list
the results of our and other methods. Our PLDMLT method is better than the single-task method and
is competitive with the semi-supervised multi-task learning method of [17] for the segmentation task.
Specifically, at least 1.05% improvement is achieved on the segmentation task on the IDRiD dataset
and 4.68% on the classification task, while similar results can be found on the DDR dataset.
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Dice (X , Y) = 2 |X ∩ Y |
|X | + |Y | . (5)

Accuracy = TP + TN
TP + FP + FN + TN

. (6)

where TP, FP, TN and FN are true positives, false positives, true negatives, and false negatives,
respectively. For segmentation, we use the evaluation metric Dice Similarity Coefficient (Dice), the
classical metric for evaluating medical image segmentation, and a region-based method for assessing
regional overlap. We express it as (5) in the equation. Let X be the set of pixels extracted, and Y be the
set of annotated pixels in the ground truth.

Table 1: The performance of segmentation and grading task on IDRiD and DiaRetDB1 dataset

Task performance IDRiD and DiaRetDB1

Backbone Network mDice (%) mIOU (%) Weight

Segmentation

Vgg16 [24] UNet [30] 91.859 86.216 –
ResNet-18 [34] LinkNet [31] 95.145 91.950 –
ResNet-50 [34] DeepLabv3+ [32] 95.732 91.813 –
ResNet [34] FPN [33] 95.897 87.101 –
Vgg16 [24] MTUnet [17] 96.181 93.562 [1, 1]
Vgg16 [24] Ours 96.949 94.164 [1, 0.8]

Task Network Accuracy (%) Weight

NASNet [35] 50.74 –
DenseNet-201 [36] 48.98 –
ResNeXt-50 [21] 53.01 –

DR grading ResNeXt-101 [21] 57.83 –
MTUnet [17] 60.75 [1, 1]
Ours 57.69 [1, 0.8]

Table 2: The performance of segmentation and grading task on the DDR dataset

Task performance DDR
Backbone Network mDice (%) mIOU (%) Weight

Vgg16 [24] UNet [30] 95.612 91.591 –
ResNet-18 [34] LinkNet [31] 97.346 94.829 –
ResNet-50 [34] DeepLabv3+ [32] 96.244 92.760 –

Segmentation ResNet [34] FPN [33] 98.258 96.577 –
Vgg16 [24] MTUnet [17] 98.961 97.942 [1, 1]
Vgg16 [24] Ours 98.897 97.820 [1, 0.95]

(Continued)
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Table 2 (continued)

Task performance DDR
Backbone Network mDice (%) mIOU (%) Weight

Task Network Accuracy (%) Weight

NASNet [35] 76.59 –
DenseNet-201 [36] 74.25 –
ResNeXt-50 [21] 81.39 –

DR grading ResNeXt-101 [21] 82.12 –
MTUnet [17] 84.59 [1, 1]
Ours 81.98 [1, 0.95]

It is worth noting that although it is inferior to the semi-supervised learning Multi-task U-shaped
network (MTUnet) in terms of disease classification effect, which is related to the sample amount.
However, PLDMLT outperforms the existing model in terms of segmentation effect, and the semi-
supervised learning MTUnet model requires training a large amount of data with high memory
requirements, which consumes more cost compared to the proposed method. At the same time, the
trained model can solve both the segmentation task and the disease classification task of fundus
images without having to train different models for the two tasks, which would make the medical-
aided diagnosis process much more efficient. A comparative study of different segmentation model
experiments is done for our proposed method, and the experimental results are visualized. It is shown
in Fig. 7.

The proposed multi-task network shows better performance than fully supervised on both
segmentation and classification tasks, especially on the segmentation task, even surpassing the
performance of semi-supervised learning, as can be seen from the above figure, the segmentation result
map predicted by the PLDMLT model with the segmentation label Ground-truth (GT) can predict
most of the lesions present, compared to LinkNet and U-net, the method can effectively detect the
distribution and location information of lesions. This also validates the effectiveness and superiority
of the network.

4.4 Ablation Study

We ablate different components of our PLDMLT method to analyze their effects on multi-task.
The results of the ablation experiments are shown in Table 3.

As can be seen from the above table, the initial segmentation loss LS can be seen to decrease in
segmentation performance after adding the graded loss LC, which is due to the effect of the gradient
imbalance between the two tasks. To solve this problem, the Label Update Network (Upd-Net) is
proposed, and it can be seen from the above table that the segmentation effect is improved to some
extent, and after adding the weight assigned to different tasks, the segmentation effect is higher than
all other parts. The ablation experiments validate our proposed method, in which the inclusion of each
part or network is necessary.
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Figure 7: Different network segmentation results in soft and hard exudates. The segmentation results
of each model comparison experiment, in which (1) the segmentation result of the PLDMLT method,
(2) the segmentation result of LinkNet, (3) the segmentation result with Unet

Table 3: Performance evaluation of ablation experiments

LS LC Upd-Net Weight mDice (%) mIOU (%)

� 94.96 91.02
� � 94.64 89.83
� � � 95.05 90.48
� � � � 96.94 94.06
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5 Conclusion

In this paper, We propose a method for multi-task learning using pixel-level annotated images.
It is called PLDMLT. We propose taking the graded classification labels from the different pre-
trained models. Update the original pseudo label by self-supervision, and use it as the valid label
for grading this multi-task model. While coarsely adjusting the pseudo label using the heat map
as supervision, the model is divided into encoder and decoder modules. The segmentation and
graded classification tasks share the encoder part by training this multi-task model to minimize the
segmentation classification loss.

With this approach, we obtain better performance on the segmentation and classification task.
The segmentation task achieves an average segmentation accuracy of 96.949% on the datasets IDRiD
and DiaRetDB1%, and 98.897% on the DDR dataset. On the classification task, 57.69% and 81.98%
accuracy were achieved on the two datasets, respectively. In the future, we want to evaluate whether this
method can be applied to other medical segmentation or classification domains and solve the problem
of gradient imbalance among multi-tasks.
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