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Abstract: Protecting the integrity and secrecy of digital data transmitted
through the internet is a growing problem. In this paper, we introduce an
asymmetric key algorithm for specifically processing images with larger bit
values. To overcome the separate flaws of elliptic curve cryptography (ECC)
and the Hill cipher (HC), we present an approach to picture encryption by
combining these two encryption approaches. In addition, to strengthen our
scheme, the group laws are defined over the rational points of a given elliptic
curve (EC) over a Galois field (GF). The exclusive-or (XOR) function is used
instead of matrix multiplication to encrypt and decrypt the data which also
refutes the need for the inverse of the key matrix. By integrating the inverse
function on the pixels of the image, we have improved system security and
have a wider key space. Furthermore, through comprehensive analysis of the
proposed scheme with different available analyses and standard attacks, it is
confirmed that our proposed scheme provides improved speed, security, and
efficiency.
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1 Introduction

Communication technology, multimedia data technology, and Internet protocol communication
via wireless networks have experienced rapid growth in this decade. However, the transmission of
sensitive information over an open wireless network like the internet poses a security risk. Therefore,
it is crucial to develop new methods that can guarantee the confidentiality of sensitive information
transmitted over such networks. It takes a variety of encryption methods, including substitution box
(S-box) and chaotic maps in all three dimensions, to protect the security of data being transmitted
via communication channels. The three main techniques for securing information—steganography,
watermarking, and encryption—are used to hide data from unauthorized readers. Additionally, there
are two categories of key cryptosystems in cryptography: symmetric (also known as a private key)
and asymmetric (also known as the public key). One key is used in a symmetric key cryptosystem
to perform both encryption and decryption. The private key used by each user in an asymmetric
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cryptosystem, in contrast, is distinct from the private key used by the other user. In recent years, digital
information technology and multimedia data have rapidly evolved, and security has become a crucial
factor in sharing confidential information. Utilising standard-based cryptosystems and using photos
as a base is one trustworthy way to accomplish this. Images are frequently employed for ordinary or
unique actions in personal, institutional, military, medical, and other contexts where they are required.
Hence, to prevent cyber-attacks, the images should be protected from attackers [1]. Several algorithms
have been developed to guarantee secure image transmission, including the image encryption scheme
based on the two-dimensional (2D) Salomon map, a two-dimensional hyperchaotic system using
optimization benchmark functions, and the 2D eπ-map which is a 2D chaotic map based on Euler and
Pi numbers [2–5] by Erkan et al. Moreover, various algorithms have been proposed for encrypting and
decrypting digital audios and images [6–9] by Gao et al. In these algorithms, the sender converts the
original data to an enciphered data before transmitting it to the other user over the internet (receiver)
and the receiver decrypts the ciphered data and restores it to its original state. Also, ECC was suggested
separately by [10,11] as an example of an effective public-key cryptography technique [12] because ECC
has the advantages of small key size, fast computation, and better security [13]. Furthermore, ECC is
promoted because the same security level is possible with shorter keys, less computation, and less
memory usage. ECC’s 160-bit key is as a 1024-bit Rivest-Shamir-Adleman (RSA) key but provides ten
times better speed when using a 128-bit key. Furthermore, ECC uses mathematical problems that are
harder to solve than those used by RSA, making it more difficult for attackers to break the encryption.
ECC is also simpler and uses smaller keys, which require less storage without sacrificing security.
Binary extension fields have been suggested as an alternative to prime fields for ECC, which can reduce
the amount of computation needed [14].

1.1 Related Work

The HC technique is one of the symmetric algorithms used to encrypt a picture in numerous
researches because of its straightforward structure and speedy computations. In order to address
the problem with the inverse key matrices, which are typically not available in HC algorithms,
Acharya et al. [15] introduced the picture encryption utilising an advanced HC approach, obviating
the need for the receiver to compute the inverse key. With the aid of interlacing and iterations,
Acharya et al. [16] enhanced the original HC by adding an unconscious key. However, because the
solution was limited to one grayscale image, the analysis was faulty and the outcome was unreliable.
In order to increase the security of the original HC technique, Hamissa et al. [17] proposed a unique
encoder-decoder approach for picture encryption employing logistic map due functions. To increase
the entropy of the encrypted image, researchers developed a system with three phases, including
the HC. First, the two original images’ pixel values are transformed to eight binary bits each, after
which some fixed k bits are rotated and inverted. The lower nibbles of the image’s pixels are then
switched. The pixel values are then subjected to the HC method [18]. The ciphertext’s numerical
values are converted into points on the ECC via scalar multiplication using the HC algorithm, which
is also utilised to produce another innovative encryption method. This strategy increases security
while lengthening computation time [19]. The HC was further improved by Mahmoud et al. [20] to
defend against assaults utilising statistics, brute force, and plaintext ciphertext. Later, Sun et al. [21]
combined the contourlet-based steganography technique with the HC in their proposed picture
encryption technology. Simultaneously, Naveenkumar et al. [22] offered a hybrid of Chaos and HC-
based picture encryption that incorporates permutation and diffusion techniques as a different option
to the traditional HC algorithm. Additionally, Sazaki et al. [23] integrated the advanced HC with the
affine transform. The method used in [23] is slightly updated in [24] by Goutham et al. with regard to
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the 128-bit key utilised. Due to the fact that the HC uses the same key for both encoding and decoding,
it offers a low level of security. To fix this weakness, Hamissa et al. [17] introduced a revolutionary
image encryption algorithm called Elliptic Curve Cryptosystem with Hill Cipher (ECCHC). This
combination method results in the asymmetry of the ECCHC method. A binary extension field-based
ECC system was subsequently proposed by Rabah [14] as a result. In this article, the fundamental EC
and Diffie-Hellman design concepts are discussed. According to Farwa et al. [25], the group rule stated
over the rational points of an EC over the GF also provides remarkable benefits when applied to block
ciphers for the byte replacement process. A specific EC over the GF

(
24

)
that has the same order as

that of F4
2 is chosen for this. GF is used to handle large primes, which increases computational effort.

1.2 Motivation

The following are the primary justifications for suggesting this approach to boost the HC’s speed
and effectiveness by combining it with the EC over the GF.

• The fundamental flaw in the original HC technique was that it occasionally failed to recover
plaintext since there was not a key matrix inverse because not all matrices could be inverted.

• Because the encryption and decryption operations used the same key, the HC also had the
drawback of offering insufficient security.

• Agrawal et al. [19] suggested employing scalar multiplication to initially produce the ciphertext
using numerical values before translating them into points on the ECC. Although the comput-
ing time was increased by this concept, the security level was increased.

• Although ECC was a novel and effective method, using big primes to achieve the required results
increases computation time and complicates the algorithm [25].

1.3 Our Contribution

In order to increase security and create a new approach that follows the idea presented in [12], we
offered a novel idea for image encryption that combines ECC over GF and HC with a modification in
the key matrix utilised for the encoding and decoding process. According to [25], it stands to reason
that the issue of handling large primes in ECC should be approached from a different angle. By using
prime power fields, particularly binary extension fields, and a few certain elliptic curves, we can boost
complexity while requiring little additional computation, avoiding this problem. This motive is the
driving force for the method presented in this paper, which produces the private and public keys using
ECC over the binary extension field as opposed to a prime field. The secret key can then be generated
by both the sender and the receiver without being shared online or over an unsecured communication
route. One of the critical problems in the HC method is that the inverse of the key matrix does not
always exist. The decryption procedure will therefore fail and the receiver will not be able to recover
the original data if the key matrix is not invertible. This method solves the issue of locating the inverse
of the key matrix for decryption even though it uses the XOR operation because the same key matrix
is utilised for both encryption and decryption. Additionally, the algorithm is strengthened against
different cryptographic attacks by using the inverse function of the appropriate GF. The proposed
scheme is presented in Section 3 of the remaining work, which also discusses the building of the
Galois field, EC over the GF, and the original HC algorithm. We assessed the suggested algorithm
performance indices in Section 4 and contrasted them to other existing S-boxes. Moreover, Section 4
provides an illustration of the suggested approach. The final segment will cover the conclusion.
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2 Preliminaries

This section will discuss some basic definitions and concepts regarding EC and HC.

2.1 Elliptic Curve over a Finite Field

An EC over a field Fp (which is a prime field, and here p is a large prime), is defined by the
Weierstrass equation

E : y2 = x3 + Ax + B, (mod p) (1)

where A, B ∈ Fp and 4A3 + 27B2 �= 0 (mod p). Points of an EC over a finite field make a finite additive
group that satisfies the property of an abelian group. All of the points that satisfy the EC and the
infinity point O make an elliptic curve group [26,27].

2.1.1 Point Addition

Let P′ (x1, y1) and Q′ (x2, y2) be two points of the above EC satisfying its equation, then the addition
of these two points P′ + Q′ = R′ (x3, y3) can be defined as

x3 = t2 − x1 − x2 (mod p)

y3 = t (x1 − x3) − y1 (mod p)

where t = y2 − y1

x2 − x1

(mod p).

2.1.2 Point Doubling

Let P′ (x1, y1) be a point on E
(
Fp

)
satisfying its equation, then P′ + P′ = 2P′ (x2, y2) can be

calculated as follows:

x2 = t2 − 2x1 (mod p)

y2 = t (x1 − x2) − y1 (mod p)

where t = 3x1 + C
2y1

(mod p).

2.2 Galois Field

The binary field F
n
2 is described as

F2 [X ]
〈f (X)〉 where 〈f (X)〉 would be a maximal ideal of F2 [X ]

such that an irreducible polynomial f (X) having degree n generates it. As for GF F
4
2, the irreducible

primitive polynomial is given as f (X) = x4 + x + 1. Elements of F4
2 form a cyclic group G under

multiplication with order 15. Each element of this group is represented as a power of α that is a
primitive element, just like α2 = 0100.

2.3 Elliptic Curve over F4
2

EC over the binary extension field is of the form

y2 + xy = x3 + Ax2 + B (2)
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where A, B ∈ F
n
2, and B �= 0. Here, we take a special curve

E : y2 + xy = x3 + α4x2 + 1 (3)

This curve has unique characteristics because of its rational points. The above curve has total 15
points including a point at infinity.

2.4 Group Law

An EC makes an additive group that adds points using group law [28]. Here, we discuss only the
point doubling and the point addition laws for the EC over the GF.

2.4.1 Point Doubling

Let P′(xP′ , yP′) be the point lying on the curve y2 + xy = x3 + Ax2 + B over Fn
2, then by point

doubling operation, we get 2P with coordinates.

x2P′ = s2 + s + A

y2P′ = x2
P′ + (s + 1) x2P′

where s = xP′ + yP′

xP′
is the slope of a line which is a tangent over P′. This operation is very useful in

point multiplication as 9P′ = 2 (2 (P′ + P′)) + P′.

2.4.2 Point Addition

Let P′(xP′ , yP′) and Q′(xQ′ , yQ′) be two distinct points. The coordinates of P′ + Q′ are given by

xP′+Q′ = S2 + S + xP′ + xQ′ + A

yP′+Q′ = S
(
xP′ + xP′+Q′

) + xP′+Q′ + yP′

where S = yP′ + yQ′

xP′ + xQ′
, is the slope of a line that passes through the given two points.

2.5 Hill Cipher

The symmetric block cipher algorithm known as the HC was created by Lester Hill in 1929 [29].
Both the sender and the receiver use the same key matrix for ciphering and decoding. The fundamental
idea is to give each letter a numerical value, such as a = 0, b = 1, . . . , z = 25. Depending on the size
of the key matrix having order m × m, the plaintext should then be divided into blocks of the same
size m. If m = 2 then the plaintext block (P2×1) will have a size 2 and the key matrix (k2×2) will have
order 2×2. The encryption process ends by producing a ciphertext block with the following two values
(C2×1) [11].

2.5.1 Encryption

If P =
[

a1

a2

]
and K =

[
k11 k12

k21 k22

]
, then

C =
[

b1

b2

]
=

[
k11 k12

k21 k22

] [
a1

a2

]
mod 26
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=
[
(k11p1 + k12p2) mod 26
(k21p1 + k22p2) mod26

]

2.5.2 Decryption

For decryption, the receiver must find K−1 such that K− 1 · K = I where I is the 2 × 2 identity
matrix [27]. So, decryption can be done as given

P = K−1 · C mod 26

3 Proposed Algorithm

This section provides a novel proposed technique that combines EC over the GF with HC, which
is more efficient and secure than the original HC method. This technique has the important benefit
of avoiding the difficult calculations involved in matrix multiplication using XOR which speeds up
decryption computations by removing the need to compute the inverse of the key matrix. Additionally,
employing GF operations expedites the procedure and strengthens the suggested scheme. Let us
assume that the sender (a) chooses to use this approach to send an image to the recipient (b) across
an insecure channel. First, they should agree on the EC function E, and then the domain parameters
{A, B, n, G} should be shared by the two users where A, B are the EC coefficients and n is the power of
binary extension field GF (2n) such that n cannot be greater than the number of bits of the highest image
pixel value, and G is the generator point. Then, each partner must choose his private key randomly
from a given interval [1, 2n − 1], say na the private key of the sender (a) and nb the recipient (b), after
which they compute their public keys in the way shown below.

3.1 Key Generation

The Public key for a is Pa = na · G and Pb = nb · G for b. To get the initial key Km, each user gets a
product of their private key with the public key of the other user.

Km = na · Pb = nb · Pa = na · nb · G = (x, y)

Then it evaluates

K1 = x · G = (
k′

11, k′
12

)
K2 = y · G = (

k′
21, k′

22

)
The above values generate the initial key matrix that is given as

K =
[

k′
11 k′

12

k′
21 k′

22

]
The sender and the receiver then work together to construct the key matrix. Subsequently, an

encrypted message cannot be decoded by the recipient because it is not always possible to create
an invertible key matrix. However, the inverse key matrix will not need to be evaluated because this
suggested method uses the XOR for encryption and decryption. In this technique, the image will be
divided into sixteen pixel-sized chunks, which are then converted into a matrix of size 4 × 4 whose
entries are then transferred into the elements of GF (2n). Then it is computed with a key matrix KM of
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the same size which can be constructed using the initial key matrix as follows:

KM =

⎡
⎢⎢⎣

k′
11 k′

12

k′
21 k′

22

k′
13 k′

14

k′
23 k′

24

k′
31 k′

32

k′
41 k′

42

k′
33 k′

34

k′
43 k′

44

⎤
⎥⎥⎦

over GF (2n) which is consist of 4 matrices of size 2 × 2 such that KM =
[

K11 K12

K21 K22

]
. If K11 = K =[

k′
11 k′

12

k′
21 k′

22

]
, then the others can be calculated as K12 = K · K = K2, K21 = K−1, and K22 = (K2)−1. Hence

KM is given by

KM =
[

K K2

K−1 (K2)−1

]
over GF (2n).

3.2 Encryption

After dividing the values of image pixels into 16 size blocks that are transformed into the size
of a 4 × 4 matrix which is (P1, P2, P2, . . .) with entries converted into the elements of GF (2n), each
4 × 4 matrix of plaintext (Image) is then multiplied by KM using XOR, producing a 4 × 4 matrix of
ciphertext. This procedure may be described as

Ci = KM ⊕ Pi where i = 1, 2, 3, . . .

For i = 1

C1 = KM ⊕ P1

C1 =

⎡
⎢⎢⎣

k′
11 k′

12

k′
21 k′

22

k′
13 k′

14

k′
23 k′

24

k′
31 k′

32

k′
41 k′

42

k′
33 k′

34

k′
43 k′

44

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

a11 a12

a21 a22

a13 a14

a23 a24

a31 a32

a41 a42

a33 a34

a43 a44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44

⎤
⎥⎥⎦

An inverse map is applied after assessing each 4 × 4 matrix of the plain picture,

ϕ : Ci → Ci

such that

ϕ(x) = x−1 if x ∈ GF(2n)/{0}
= x if x = 0

Here, n is the power of binary extension field GF (2n) such that n cannot be greater than the
number of bits of the highest image pixel value. Moreover, the collected data is integrated into a single
matrix that contains the ciphered information.

3.3 Decryption

The decryption procedure can start after the encrypted image has been received. Because we utilise
XOR instead of matrix multiplication, we can skip computing the inverse key matrix. First, we arrange
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all of the 4 × 4 matrices of ciphered image (C1, C2, C3, . . .) and then use an inverse map

ϕ : Ci → Ci

such that

ϕ−1 (x) = x−1 if x ∈ GF(2n)/{0}
= x if x = 0

where n is the power of binary extension field GF (2n) such that n cannot be greater than the number
of bits of the highest image pixel value. Following that, we apply the XOR function to each matrix
Ci with the key matrix KM to produce the 4 × 4 matrix below that contains the original image’s pixel
values.

Pi = KM ⊕ Ci where i = 1, 2, 3, . . .

For i = 1

P1 = KM ⊕ C1

P1 =

⎡
⎢⎢⎣

k′
11 k′

12

k′
21 k′

22

k′
13 k′

14

k′
23 k′

24

k′
31 k′

32

k′
41 k′

42

k′
33 k′

34

k′
43 k′

44

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a11 a12

a21 a22

a13 a14

a23 a24

a31 a32

a41 a42

a33 a34

a43 a44

⎤
⎥⎥⎦

After evaluating Pi, they are combined into a single matrix to get the original image.

3.4 Proposed Technique Using ECC
3.4.1 Key Generation

User (a)

1. Choose a private key na ∈ [1, 2n − 1]
2. Calculate the public key Pa = na · G
3. Evaluate initial key Km = na · Pb = na · nb · G = (x, y) .
4. Compute K1 = x · G = (

k′
11, k′

12

)
and K2 = y · G = (

k′
21, k′

22

)
.

5. Here K = K11 =
[

k′
11 k′

12

k′
21 k′

22

]
is the initial key matrix, then K12 = K2 =

[
k′

13 k′
14

k′
23 k′

24

]
, K21 = K−1 =

[
k′

31 k′
32

k′
41 k′

42

]
, and K22 = (

K2
)−1 =

[
k′

33 k′
34

k′
43 k′

44

]
.

6. Then finally, the key matrix of size 4 × 4 is generated as follows:

KM =
[

K K2

K−1 (K2)−1

]
=

⎡
⎢⎢⎣

k′
11 k′

12

k′
21 k′

22

k′
13 k′

14

k′
23 k′

24

k′
31 k′

32

k′
41 k′

42

k′
33 k′

34

k′
43 k′

44

⎤
⎥⎥⎦

over GF (2n).

User (b).

1. Select a private key nb ∈ [1, 2n − 1]
2. Calculate the public key Pb = nb · G =
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3. Evaluate initial key Km = nb · Pa = nb · na · G = (x, y).
4. Compute K1 = x · G = (

k′
11, k′

12

)
and K2 = y · G = (

k′
21, k′

22

)
.

5. Here K = K11 =
[

k′
11 k′

12

k′
21 k′

22

]
is the initial key matrix, then K12 = K2 =

[
k′

13 k′
14

k′
23 k′

24

]
, K21 =

K−1 =
[

k′
31 k′

32

k′
41 k′

42

]
, and K22 = (

K2
)−1 =

[
k′

33 k′
34

k′
43 k′

44

]
6. Then finally, the key matrix of size 4 × 4 is generated as given below

KM =
[

K K2

K−1 (K2)−1

]
=

⎡
⎢⎢⎣

k′
11 k′

12

k′
21 k′

22

k′
13 k′

14

k′
23 k′

24

k′
31 k′

32

k′
41 k′

42

k′
33 k′

34

k′
43 k′

44

⎤
⎥⎥⎦

over GF (2n).

3.4.2 Encryption

1. Divide 256 × 256 pixel values of the image into blocks of size 16 and convert them into the
matrix of size 4 × 4 (Pi) . Entries of that matrix are then converted into elements of GF (2n) as

P1 =

⎡
⎢⎢⎣

a11 a12

a21 a22

a13 a14

a23 a24

a31 a32

a41 a42

a33 a34

a43 a44

⎤
⎥⎥⎦

2. Apply the operation of XOR to each Pi with KM one by one to get the data in the form of

C1 = KM ⊕ P1

C1 =

⎡
⎢⎢⎣

k′
11 k′

12

k′
21 k′

22

k′
13 k′

14

k′
23 k′

24

k′
31 k′

32

k′
41 k′

42

k′
33 k′

34

k′
43 k′

44

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

a11 a12

a21 a22

a13 a14

a23 a24

a31 a32

a41 a42

a33 a34

a43 a44

⎤
⎥⎥⎦

C1 =

⎡
⎢⎢⎣

b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44

⎤
⎥⎥⎦

3. After obtaining C1, apply an inverse function under the GF (2n) to each entry of that matrix to
get the matrix in the form of

C ′
1 =

⎡
⎢⎢⎣

b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44

⎤
⎥⎥⎦

−1

4. Similarly, apply the same technique to all of the 4 × 4 matrices of the plain image Pi to get the
resultant 4 × 4 matrices C ′

i and combine them to get the ciphered image.
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3.4.3 Decryption

1. Separate 256 × 256 pixel values of the ciphered image into blocks of size 16 and convert them
into the matrix of size 4 × 4

(
C ′

i

)
whose entries are from GF (2n) as

C ′
1 =

⎡
⎢⎢⎣

b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44

⎤
⎥⎥⎦

−1

2. Apply an inverse function under GF (2n) to each entry of the matrix C ′
1 to get the matrix such

that

C1 =

⎡
⎢⎢⎣

b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44

⎤
⎥⎥⎦

3. Similarly, take all matrices of size 4 × 4
(
C ′

i

)
and apply this technique to each matrix to get the

data in the form of Ci.
4. Apply XOR operation to each Ci with the key matrix KM one by one to get values of the form

P1 = KM ⊕ C1

P1 =

⎡
⎢⎢⎣

k′
11 k′

12

k′
21 k′

22

k′
13 k′

14

k′
23 k′

24

k′
31 k′

32

k′
41 k′

42

k′
33 k′

34

k′
43 k′

44

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

b11 b12

b21 b22

b13 b14

b23 b24

b31 b32

b41 b42

b33 b34

b43 b44

⎤
⎥⎥⎦

P1 =

⎡
⎢⎢⎣

a11 a12

a21 a22

a13 a14

a23 a24

a31 a32

a41 a42

a33 a34

a43 a44

⎤
⎥⎥⎦

5. Finally, combine all of the matrices Pi of size 4 × 4 to get the required ciphered image of
256 × 256.

3.5 Example

Let a person (a) want to deliver an image M to the other person (b), and they both agree on the
EC function given by

E : y2 + xy = x3 + α4x2 + 1

over GF
(
24

)
, where A = α4 and B = 1. Let us define the 15 elements of this field that can be expressed

as a power of primitive root as well as binary form, as shown in Table 1.

For the chosen curve, we get a generator point G = (
α3, α8

)
, all other points can be found using

group law and can be expressed as a multiple of G (xG, yG). Let us calculate 2G (x2G, x2G).

s = xG + yG

xG

= α3 + α8

α3
= α3 + α5 = α11,

x2G = s2 + s + A

x2G = (α11)2 + α11 + α4
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x2G = α5

y2G = x2
G + (s + 1) x2G

y2G = (α3)2 + (
α11 + 1

) · α5

y2G = α3

2G = G6

Table 1: Elements of GF
(
24

)
α0 = 0001, α4 = 0011, α8 = 0101, α12 = 1111
α1 = 0010, α5 = 0110, α9 = 1010, α13 = 1101
α2 = 0100, α6 = 1100, α10 = 0111, α14 = 1001
α3 = 1000, α7 = 1011, α11 = 1110, α15 = 0001

All other points are given in Table 2.

Table 2: Points lying on given EC

G∞ G = G4

(
α3, α8

)
5G = G8

(
α6, α8

)
6G = G12

(
α10, α

)
8G = G1 (0, 1) 15G = G5

(
α3, α13

)
11G = G9

(
α6, α14

)
10G = G13

(
α10, α8

)
12G = G2

(
1, α6

)
2G = G6

(
α5, α3

)
3G = G10

(
α9, α10

)
9G = G14

(
α5, 0

)
4G = G3

(
1, α13

)
14G = G7

(
α5, α11

)
13G = G11

(
α9, α13

)
7G = G15

(
α12, α12

)
As the generator point is G

(
α3, α8

)
, other domain parameters are

{
A, B, 24 − 1, G

} ={
α4, 1, 15,

(
α3, α8

)}
. If a person (a) desires to deliver an image of size 256 × 256 to person (b), they

should use the proposed method.

3.5.1 Key Generation

User (a)

1. Select a random value as a private key na = 6 ∈ [1, 15]
2. Calculate the public key Pa = na · G = 6

(
α3, α8

)
3. Evaluate initial key Km = na · Pb = na · nb · G = 6.11

(
α3, α8

) = 6
(
α3, α8

) = (α10, α) = (7, 2) =
(x, y)

4. Compute K1 = x · G = 7
(
α3, α8

) = (
α12, α12

) = (k11, k12) and K2 = y · G = 2
(
α3, α8

) =(
α5, α3

) = (k21, k22)

5. Here K = K11 =
[
α12 α12

α5 α3

]
=

[
15 15
6 8

]
is the initial key matrix, then K12 = K2 =

[
α11 α7

α0 α3

]
=[

14 11

1 8

]
, K21 = K−1 =

[
α10 α4

α12 α4

]
=

[
7 3
15 3

]
and K22 = (

K2
)−1 =

[
α2 α6

α14 α10

]
=

[
4 12
9 7

]
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6. Then finally, the key matrix of size 4 × 4 is generated as follows:

KM =

⎡
⎢⎢⎣

α12 α12

α5 α3

α11 α7

α0 α3

α10 α4

α12 α4

α2 α6

α14 α10

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

15 15
6 8

14 11
1 8

7 3
15 3

4 12
9 7

⎤
⎥⎥⎦

User (b)

1. Select a private key nb = 11 ∈ [1, 15]
2. Calculate the public key Pb = nb · G = 6

(
α3, α8

)
3. Evaluate initial key Km = nb · Pa = nb · na · G = 11.6

(
α3, α8

) = 6
(
α3, α8

) = (α10, α) = (7, 2) =
(x, y)

4. Compute K1 = x · G = 7
(
α3, α8

) = (
α12, α12

) = (k11, k12) and K2 = y · G = 2
(
α3, α8

) =(
α5, α3

) = (k21, k22)

5. Here K = K11 =
[
α12 α12

α5 α3

]
=

[
15 15
6 8

]
is the initial key matrix, then K12 = K2 =

[
α11 α7

α0 α3

]
=

[
14 11
1 8

]
, K21 = K−1 =

[
α10 α4

α12 α4

]
=

[
7 3
15 3

]
and K22 = (

K2
)−1 =

[
α2 α6

α14 α10

]
=

[
4 12
9 7

]
6. Then finally, the key matrix of size 4 × 4 is generated as follows:

KM =

⎡
⎢⎢⎣

α12 α12

α5 α3

α11 α7

α0 α3

α10 α4

α12 α4

α2 α6

α14 α10

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

15 15
6 8

14 11
1 8

7 3
15 3

4 12
9 7

⎤
⎥⎥⎦

3.5.2 Encryption

1. Choose an image of size 256×256 and divide the pixel values into blocks of size 16 and convert
them into the matrix of size 4 × 4 (Pi). Entries of that matrix then converted into elements of
GF

(
28

)
As

P1 =

⎡
⎢⎢⎣

165 161
163 160

157 157
158 159

161 159
159 158

158 160
157 158

⎤
⎥⎥⎦

2. Apply the operation of XOR to P1 with KM to get the matrix of the form

C1 = KM ⊕ P1

C1 =

⎡
⎢⎢⎣

15 15
6 8

14 11
1 8

7 3
15 3

4 12
9 7

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

165 161
163 160

157 157
158 159

161 159
159 158

158 160
157 158

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

170 174
165 168

147 150
159 151

166 156
144 157

154 172
148 153

⎤
⎥⎥⎦

3. Likewise, apply the same procedure to each matrix Pi to get the matrices Ci.
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4. Apply an inverse function under the GF
(
28

)
to each element of the matrix C1 such that

C ′
1 =

⎡
⎢⎢⎣

170 174
165 168

147 150
159 151

166 156
144 157

154 172
148 153

⎤
⎥⎥⎦

−1

C ′
1 =

⎡
⎢⎢⎣

13 194
190 206

170 124
172 9

79 162
15 92

189 155
156 220

⎤
⎥⎥⎦

5. Similarly, take all of the matrices Ci and apply an inverse function under the GF
(
28

)
to get all

the 64 matrices C ′
i of size 4 × 4 and combined them to get the encrypted image of 256 × 256.

3.5.3 Decryption

1. Separate 256×256 pixel values of the encrypted image into a block of size 16 and convert them
into a matrix of size 4 × 4

(
C ′

i

)
, whose entries are from GF

(
28

)
. Firstly, we take the matrix C ′

1

such that

C ′
1 =

⎡
⎢⎢⎣

13 194
190 206

170 124
172 9

79 162
15 92

189 155
156 220

⎤
⎥⎥⎦

2. Apply an inverse to each entry of the matrix C1 under the GF
(
28

)
to get the matrix C1 given

below

C1 =

⎡
⎢⎢⎣

170 174
165 168

147 150
159 151

166 156
144 157

154 172
148 153

⎤
⎥⎥⎦

3. Similarly, apply an inverse function under GF
(
28

)
to each matrix C ′

i to get the matrices Ci of
size 4 × 4.

4. After obtaining Ci, the operation of XOR is utilized for each matrix Ci with the key matrix KM

one by one such that

P1 = KM ⊕ C1

P1 =

⎡
⎢⎢⎣

15 15
6 8

14 11
1 8

7 3
15 3

4 12
9 7

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

170 174
165 168

147 150
159 151

166 156
144 157

154 172
148 153

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

165 161
163 160

157 157
158 159

161 159
159 158

158 160
157 158

⎤
⎥⎥⎦

5. Finally, combine all of the matrices Pi of size 4 × 4 to get the required original image of
256 × 256.

In this article, we encrypted images of Lena, Cameraman and Baboon and their respective
encrypted images are depicted in Fig. 1. After analyzing them, we conclude that our approach is more
robust against cryptographic attacks compared to the existing schemes mentioned in Section 5.
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Figure 1: (a) Original Images: Lena, Cameraman, and Baboon. (b) Encrypted images. Lena, Camera-
man, and the Baboon

4 Security Analysis

To check the performance of the proposed encryption technique, some parameters or measures are
used to check the efficiency of the greyscale image and compare the original image with the encrypted
image. The resulting encrypted images were also subjected to various performance tests, which will
be discussed in the following subsections, to assess their security against different types of attacks. A
comparison has also been made between the existing schemes and this new approach.

4.1 Entropy Analysis

Entropy is the measurement of randomness and statistical parameter used to evaluate image
enciphering. It represents the trends that occur most frequently. The formula for calculating entropy
is given below.

E =
∑255

a=0

[
P (a) × log2

1
P (a)

]
(4)

where P (a) is the probability of pixel value a calculated as

P (a) = The frequency of pixel value
Total number of image pixels

(5)

For the greyscale image of size 256 × 256, the ideal entropy value is 8. As closer the entropy value
to eight, the encrypted image is efficient. The entropy value of the proposed scheme is almost equal
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to 8, which is significantly better than the outcome of the existing methods mentioned in Table 3.
Accordingly, the proposed scheme created optimum haphazardness in the ciphered images. In this
manner, the proposed cryptosystem effectively endures entropy attacks.

Table 3: Entropy analysis

Test images Image size Cipher image

Lena 256 × 256 7.9973

Baboon 256 × 256 7.9973

Cameramen 256 × 256 7.9972

Ref [30]; Lena 256 × 256 7.9970

Ref [31]; Lena
Ref [31]; Baboon

256 × 256
256 × 256

7.9970
7.9969

Ref [12]; Lena
Ref [12]; Cameramen

256 × 256
256 × 256

7.9970
7.9848

Ref [32]; Lena
Ref [32]; Baboon

256 × 256
256 × 256

7.9962
7.9971

4.2 NPCR and UACI

To measure the difference between the original and encrypted images, we use the number of pixels
changes rate (NPCR) and the unified average changing intensity (UACI) tests. They are used to test the
strength of the encryption process. The NPCR is used to check the number of changing pixels between
the original and ciphered images. In contrast, the UACI measures the average change in intensity
between the original and ciphered image. Its value depends upon the size and the format of the image.
These two tests are used to show the resistance of the algorithm to different attacks. The formula for
calculating NPCR is given as

NPCR =
∑m

i=1

∑n

j=1
K (i, j) × 100%

m × n
(6)

where K (i, j) =
{

0, if i = j
1, if i �= j

(7)

UACI can be evaluated as

UACI =
∑m

i=1

∑n

j=1

|X (i, j) − Y (i, j)|
255

(8)

The value of UACI for the greyscale image of size 256 × 256 is 33.61, and the value of NPCR
is close to 100%, which shows that the proposed algorithm is resistant to different attacks. Finally,
the analyses also show that the suggested method’s diffusion property is remarkably superior to the
schemes shown in Table 4.
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Table 4: NPCR and UACI analysis

Test images Image size NPCR UACI

Lena 256 × 256 99.61 33.72
Baboon 256 × 256 99.63 33.70
Cameraman 256 × 256 99.60 33.61
Ref [26]; Lena 256 × 256 98.68 30.38
Ref [33]; Lena 256 × 256 97.74 38.33
Ref [34]; Cameraman 256 × 256 98.08 30.17
Ref [35]; Cameraman 256 × 256 99.44 31.12
Ref [36]; Baboon 256 × 256 98.68 32.62

4.3 Histogram Analysis

Histogram analysis is one of the most straightforward methods to illustrate image encryption
quality. It is a graph that shows the number of pixels of an image at different intensity values found
in the image. For good encryption, the graph of the histogram should be uniformly distributed. It
is used to show how an algorithm is resistant to statistical attacks. The corresponding histogram of
the original, encrypted, and decrypted image is given below. The original and decrypted image has
the same graph, so there is no data loss. In contrast, the histogram of the encrypted image is flat,
indicating that the encryption scheme is good. Fig. 2 shows the histograms of the original images and
corresponding ciphered images of Lena, Cameraman, and Baboon.

4.4 Correlation Coefficient Analysis

Correlation measures the degree of relationship between two adjacent pixels in an image and the
degree of association between two adjacent pixels. Standard images we see daily have a high correlation
of pixel values with their neighbors. There will be a very low correlation of pixel values with their
neighbors for good image encryption. Generally, if the correlation coefficient is equal to zero or is
about zero, then the plain image and its encrypted image are different. This means the encrypted
image is highly independent of the plain image. A correlation coefficient of less than 0.1 between the
plain and ciphered images is preferable. It is calculated as

CC = cov (x, z)
σy × σz

(9)

where σy = √
var (y) and σz = √

var (z)

var (y) = 1
n

∑n

i=1
(yi − E (y))

2 (10)

cov (y, z) = 1
n

∑n

i=1
(yi − E (y)) (zi − E (z)) (11)

Table 5 displays the experimental outcomes of the correlation test of the original and cipher
images.
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Figure 2: (Continued)
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Figure 2: (a) Original Images: Lena, Cameraman, and Baboon. (b) Encrypted Images. Lena, Camera-
man, and Baboon. (c) Decrypted images. Lena, Cameraman, and Baboon. (d) Histogram of original
images. Lena, Cameraman, and Baboon. (e) Histogram of encrypted images. Lena, Cameraman, and
Baboon. (f) Histogram of decrypted images. Lena, Cameraman, and Baboon

Table 5: Correlation analysis and their comparison with existing schemes

Test images Image-size Diagonal Horizontal Vertical

Lena 256 × 256 0.8941 0.9038 0.9451
Enc-Lena 256 × 256 −0.0093 0.0168 0.0081
Cameraman 256 × 256 0.9044 0.9372 0.9595
Enc-Cameraman 256 × 256 0.0092 0.0101 −0.0013
Baboon 256 × 256 0.8282 0.9028 0.8718
Enc-Baboon 256 × 256 0.0330 0.0086 −0.0032
Ref [33]; Lena 256 × 256 0.9376 0.8714 0.8359
Enc-Lena 256 × 256 0.0047 −0.0016 −0.0069
Ref [35];
Cameraman

256 × 256 0.9463 0.9187 0.9423

Enc-Cameraman 256 × 256 0.1856 0.0529 0.0257
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Additionally, compared to some existing relevant literature, the correlation coefficient results
demonstrate that the suggested encryption system is significantly more effective and immune to
statistical attacks (Figs. 3–5).

Figure 3: (a) Original Images. Lena, Cameraman, and Baboon. (b) Diagonal correlation of original
images. Lena, Cameraman, and Baboon. (c) Encrypted images. Lena, Cameraman, and Baboon. (d)
Diagonal correlation of encrypted images. Lena, Cameraman, and Baboon

4.5 Contrast

The contrast ratio is an essential feature of picture quality because it allows the viewer to identify
the object in the image. Contrast analysis is a technique for determining the intensity level of contrast
about pixels in an image. The encryption system is said to pass the contrast test if the contrast ratio in
the ciphered image is high. The following is the mathematical expression of the contrast coefficient:

C∗ =
∑

i,j

f (i, j)
1 + |i − j| (12)

where f (i, j) represents the number of gray level co-occurrence matrices (GLCM) of the image. The
constant image has 0 contrast value while the contrast value of the ciphered image is around 10.52,
given in Table 6, indicating the presence of a significant change in the intensity of a pixel and its
neighbor across the entire ciphered image.
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Figure 4: (a) Original images. Lena, Cameraman, and Baboon. (b) Horizontal correlation of original
images. Lena, Cameraman, and Baboon. (c) Encrypted images. Lena, Cameraman, and Baboon. (d)
Horizontal correlation of encrypted images. Lena, Cameraman, and Baboon

Figure 5: (Continued)
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Figure 5: (a) Original images. Lena, Cameraman, and Baboon. (b) Vertical correlation of original
images. Lena, Cameraman, and Baboon. (c) Encrypted images. Lena, Cameraman, and Baboon. (d)
Vertical correlation of encrypted images. Lena, Cameraman, and Baboon

Table 6: Contrast, energy, and homogeneity analysis and their comparison with existing schemes

Test images Contrast Energy Homogeneity

Lena 10.38 0.0156 0.3813
Baboon 10.48 0.0156 0.3823
Cameraman 10.52 0.156 0.3901
Ref [37] 9.9955 0.0158 0.3948
Ref [38] 9.9764 0.0161 0.4171
Ref [39] 10.3986 0.0158 0.4214
Ref [40] 9.8198 0.0163 0.4228
Ref [41] 9.99240 0.0156 0.3887

4.6 Energy

The GLCMs of the encrypted image are used in the energy analysis of an image. The energy test
calculates the square root of the angular second moment to determine pixel intensity uniformity. To
calculate energy, apply the following mathematical equation.

E∗ =
∑

i,j
f (i, j)2 (13)
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where f (i, j) represents the number of GLCM of the image. The energy score of proposed cipher images
is comparable to many existing schemes given in Table 6, which describes the worth of the proposed
encryption scheme.

4.7 Homogeneity

Images have intrinsically dispersed contents when seized. GLCM dispersed elements are compared
to the GLCM diagonal using this methodology to see how closely they are related. Additionally, a gray-
tone spatial dependence matrix of it has been recorded. The following equation represents the search
for homogeneity mathematically

H∗ =
∑

i

∑
j

g (i, j)
|i − j| (14)

The homogeneity score for Lena’s ciphered image is deficient, as depicted in Table 6. As a result,
it implies that the GLCM difference is more considerable.

4.8 Key Space

A crucial element of a cryptosystem’s security is the size of its key-space. A higher cardinality in the
set of keys used in the encryption algorithm makes it more resistant to brute-force attacks, also known
as exhaustive key search. This new scheme employs the order, base fields of elliptic curves, coefficients
of the elliptic curve, and inverse function as secret keys. The article provides a broad concept that relies
mainly on the GF and the corresponding bit values of the image. A larger key space can be achieved
by increasing the order of the binary extension and using images with higher bit values. Furthermore,
the use of XOR and inverse functions in the encryption process makes it more difficult for attackers to
guess the key. The algorithm also uses ECC over GF, which offers a high level of security and makes
it resistant to attacks based on prime factorization. Overall, the key space analysis indicates that the
proposed image encryption algorithm is highly secure and offers strong protection against various
types of attacks by taking higher order of the binary extension and images with higher bit values.

4.9 Resistant to Cryptographic Attacks

In the proposed scheme, an algorithm for image encryption is designed combining an elliptic
curve, a hill cipher, and an invertible function under the Galois field. This algorithm has been designed
to resist various types of attacks, including ciphertext-only, known-plaintext, chosen-plaintext, and
chosen-ciphertext attacks. The EC provides a secure key exchange mechanism, while the hill cipher
permutes the plaintext and confuses the encryption process. The 2-time invertible function under the
Galois field provides diffusion to ensure that any changes made to the ciphertext will significantly
impact the decrypted image. Using these three cryptographic primitives in combination provides a
high level of security and makes it difficult for an attacker to break the encryption. Additionally, using
an EC in the key exchange process ensures that the algorithm resists attacks. Overall, this proposed
algorithm is a robust and effective method for image encryption that provides resistance to various
attacks. With the increasing importance of secure image transmission in today’s digital world, this
algorithm is an essential contribution to the field of cryptography.

4.10 Noise Analysis

In this section, we examine the effectiveness of the encryption-decryption algorithm in the
presence of noise. When multimedia data is transmitted through a communication channel, various
types of noise can cause distortion or errors. Consequently, to evaluate the decryption efficiency of the
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proposed scheme, we intentionally added some noise to the encrypted image before sending it through
the communication channel. The different types of noise added for this purpose are discussed briefly
below.

Salt and pepper noise, also known as impulsive or fat-tail distribution, causes sudden and sharp
disturbances in an image’s dark and bright regions, resulting in randomly scattered dark and white
pixels. Bit errors typically cause this noise during signal transmission or analogue-to-digital signal
conversion. Thus, several algorithms and techniques like non-local means, block-matching 3D filtering
(BM3D), dark frame subtraction, and interpolation are used to remove salt and pepper noise. In
this study, we added salt and pepper noise, Speckle noise to the encrypted image of Apple and then
decrypted the noisy encrypted images, as shown in Figs. 6 and 7. Figs. (a–c) depict the noisy encrypted
images, while Figs. (d–f) display the corresponding decrypted images. Hence, despite the presence of
noise in the encrypted images, the decrypted images are still recognizable, as seen from the figures.

Figure 6: Slat and Peppers analysis of Apple image: (a–c) Apple ciphered image with salt and pepper
variance 0.05, 0.005, 0.0005 and 0.5. (d–f) Corresponding deciphered images

4.11 National Institute of Standard and Technology (NIST)

The NIST testing suite comprises of various tests used to determine the randomness of sequences,
which can be generated using different techniques such as cryptographic algorithms. In 2001, collabo-
rative efforts between the NIST statistics and computer security departments led to the publication of
the NIST testing suite. Table 7 shows the simulation outcomes of the testing tool applied to the pixels
of the encrypted image. In this research study, our pseudo random number sequences (ES-PRNS) are
evaluated by setting β = 0.01, which imply that a sequence is accepted as random with confidence 0.99
unless its P value is greater than 0.01.
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Figure 7: Speckle analysis of Apple image: (a–c) Apple ciphered image with noise addition 0.003,
0.0003, 0.00003 and 0.5. (d–f) Corresponding deciphered images

Table 7: NIST statistical analysis

No. Test type p-value Random/Non-random

1 Frequency test (Monobit) 0.003747845769769 Non-random
2 Frequency test 0.906478765333257 Random
3 Discrete Fourier 0.313236745633209 Random
4 Longest Run T 0.713281498657333 Random
5 Run T 0.653287524174435 Random
6 Non-overlapping 0.822929875335104 Random
7 Overlapping 0.078167876305817 Random
8 Maurer’s universal 0.735308753493466 Random
9 Binary rank T 0.845488796572692 Random
10 Linear complexity 0.891251897344084 Random
11 Approximate entropy 0.554646472097093 Random
12 Cumulative sums

(Forward)
0.003877855744688 Non-random

13 Cumulative Sums
(Reverse)

0.003 Non-Random

(Continued)
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Table 7 (continued)

No. Test type p-value Random/Non-random

14 Serial 0.206874411 Random
0.515833023 Random

15 Random excursions test:
State Chi-Squared P-value
–4 1.05 0.917792279583921 Random
–3 1.93 0.913223579583945 Random
–2 0.88 0.575957235883537 Random
–1 3.70 0.051954758584633 Random
1 11.02 0.096329744538283 Random
2 9.3 0.066554763775373 Random
3 10.26 0.627889784392978 Random
4 3.50 0.434564333243565 Random

16 Random excursions variant test:
State Counts P-value
–9 292 0.352413954635032 Random
–8 306 0.474512344665062 Random
–7 325 0.446723774673953 Random
–6 328 0.619434236569726 Random
–5 376 0.515447152837526 Random
–4 354 0.382955453828235 Random
–3 320 0.619387544538283 Random
–2 332 0.763276523887282 Random
–1 324 0.256476487646874 Random
1 340 0.067858958949856 Random
2 296 0.043875382591195 Random
3 340 0.118247128295985 Random
4 387 0.929383873673396 Random
5 385 0.728768939838630 Random
6 385 0.827639823929865 Random
7 343 0.829849823982988 Random
8 348 0.729502363702783 Random
9 269 0.5992566438783839 Random

5 Conclusion

In this article, we combined EC over GF with a traditional HC algorithm. The ECC approach
creates a new encryption and decryption key which offers increased security because it is not shared
over the internet. As XOR is used for encryption and decryption, which reduces calculation time and
complexity with parallel increased speed, it eliminates the requirement to determine the invertible key
matrix during decryption. It also reduces the computational work by employing the GF instead of large
primes. Moreover, the use of inverse functions in place of substitution techniques makes the encryption
algorithm more resistant to cryptographic attacks because inverse functions are more complex and
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challenging to reverse-engineer. From a futuristic point of view, XOR and inverse functions can
be easily combined with other encryption techniques to create new and more robust encryption
algorithms, making them a flexible and adaptable option for image encryption. In addition, this idea
can also be extended to generate multiple initial matrices and use them in different cryptographic
protocols.
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