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Abstract: A potential concept that could be effective for multiple applica-
tions is a “cyber-physical system” (CPS). The Internet of Things (IoT) has
evolved as a research area, presenting new challenges in obtaining valuable
data through environmental monitoring. The existing work solely focuses on
classifying the audio system of CPS without utilizing feature extraction. This
study employs a deep learning method, CNN-LSTM, and two-way feature
extraction to classify audio systems within CPS. The primary objective of
this system, which is built upon a convolutional neural network (CNN) with
Long Short Term Memory (LSTM), is to analyze the vocalization patterns
of two different species of anurans. It has been demonstrated that CNN:ss,
when combined with mel-spectrograms for sound analysis, are suitable for
classifying ambient noises. Initially, the data is augmented and preprocessed.
Next, the mel spectrogram features are extracted through two-way feature
extraction. First, Principal Component Analysis (PCA) is utilized for dimen-
sionality reduction, followed by Transfer learning for audio feature extraction.
Finally, the classification is performed using the CNN-LSTM process. This
methodology can potentially be employed for categorizing various biological
acoustic objects and analyzing biodiversity indexes in natural environments,
resulting in high classification accuracy. The study highlights that this CNN-
LSTM approach enables cost-effective and resource-efficient monitoring of
large natural regions. The dissemination of updated CNN-LSTM models
across distant IoT nodes is facilitated flexibly and dynamically through the
utilization of CPS.

Keywords: Cyber-physical system; internet of things; feature extraction,
classification; CNN; principal component analysis; mel spectrograms;
monitoring; deep learning

1 Introduction

In the present day, there is a growing focus on global initiatives aimed at organizing the
relationships between different entities worldwide, such as states, businesses, and others. These efforts
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have garnered the attention of international institutions, including the United Nations (UN), and
are centered around establishing sustainable development objectives (SDGs). Notably, the SDGs that
have received significant attention include Goals 11, which focuses on ecological cities and towns; 13,
centered on environmental policy, 14, which addresses life beneath the sea; and 15, which concerns
living on earth. Local and regional institutions are working towards a plan to accomplish these
objectives.

This is precisely the situation with the Doana Biological Station (DBS). This public research
organization is a part of the area of Natural Resources in Spanish Council for Scientific Research-
CSIC and is situated in the Spain’s south. Its research primarily concentrates on the Doana National
Park which is 135 km? natural park comprising various ecologies. On their routes from Europe to
Africa, multiple species of birds pause in the DNP, an important ecosystem. These characteristics give
this area an exceptional setting for exploring various facets of the relationships between people and
the natural world [1].

The SCENA-RBD project, created by the Seville university in DBS conjunction, is discussed in
this publication. The project’s primary objective is to plan and implement a CPS that enables dis-
tributed information analysis for biological information. For different authorities (regional, national,
and international), this CPS will be a valuable resource for assessing an area’s durability. Many
parameters can be considered for this [2].

The initial step of the CPS is the main topic of this essay. The voice recording comes first. Machines
and equipment like the Song Meter [3] have developed into reliable systems for high-quality field
recordings of wildlife sounds. The associated software often provided by these devices allows for
captured data after analysis is made. Moreover, this kind of item has characteristics that should be
considered while deploying several sensing devices. First off, the devices are relatively expensive. If the
study region is large, it is necessary to disperse a sizable number of components. This can significantly
raise the cost of the project.

Even though some initiatives (such as AudioMoth [4]) are built on open hardware and thus lower
the cost of production, the options they present could be more flexible and stable. Second, this kind
of gadget captures sound waves on a predetermined timetable. This trait entails a lack of adaptability,
resulting in much data with little helpful information. Finding out what specific events might start
the data transfer would be beneficial. Thirdly, there is no way to perform any processing. Such data
are either saved in their raw state or after simple preparation. A single channel (mono) with 16 bits in
each sample records audio waveforms with a standardized bandwidth of 19 to 19 kHz at a sampling
frequency of 44.1 kHz.

Another successful method was using CNNs and Deep CNNs [5,6] and other standard techniques
to extract expressions from voice. The researchers employed the Deep CNNs [7] to address the
problem. Two convolutional layers and two pooling layers used to train and validate the data, the
best accuracy of 40.2% in test is obtained. The standard classification problem is solved using support
vector machine, and the authors in [8] conducted a thorough study utilizing them. They approached
the issue using a support vector machine in biased state. Their highest average accuracy was 58.24%.
The proposed contributions is stated below:

e Toto extracts two pairs of features from voice data, and two-way feature extraction is proposed.

e The two-way feature extraction models are principal component analysis (PCA) and Transfer
learning with dense and dropout layers for extracting Mel spectrograms.

e The CNN-LSTM is used for the anuran sounds classification, and also it uses focal loss to
minimize the data imbalance.
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The research article is presented as follows: the related work is discussed in Section 2 on Cyber-
physical systems, Deep learning and environmental monitoring techniques. Section 3 explains general
working architecture of the proposed scenario. Section 4 provides implementation outcomes and
results performance evaluation. At end, Section 5 states conclusion of the work and result evaluation
is discussed.

2 Related Research Work

In the literature, there are two methods used by different research teams to categorize anuran
sounds using CNNs [9,10]. The first study [11] investigated the classification of anuran noises using
CNN with MelFrequency Cepstral Coefficient as input. The database has 7784 noises from the
Leptodactylidae, Hylidae, Dendrobatidae and Bufonidae anuran families. The Two binary CNN are
developed, with the ability to distinguish between members of the Leptodactylidae family with 91.41%
accuracy and Adenomera Hylaedactyla species with 99.14% accuracy.

A collection of papers [12—14] from our research team at the University of Seville have been pub-
lished in the automatic detection framework and classification of noises using different techniques. The
MPEG-7 standards were thoroughly examined in [1 5] to produce standardized acoustic characteristics
that could describe animal sound sequences. The study’s findings show the benefits of using this norm
in scaling the acoustic wireless sensor networks.

Additionally, research in [16] evaluated using a log mel filterbank on a CNN to detect ad hoc
respiratory sounds. In contrast, a work by authors [17] used continuous wavelet transform (CWT)
and STFT characteristics for training the CNN that can predict four different types of sounds from
lungs. Although STFT characteristics were used for a SVM classifier and VGG16 in [1 8] for the same
target, Liu et al. [19] described a bidirectional residual network (bi-ResNet) that combines short-time
Fourier transform (STFT) features and wavelet analysis to classify lung sounds.

In addition to the research conducted by CNN [20-22], LSTMs [23], deep neural networks
(DNNS5) [24-26], and the combination of CNN and LSTM models have also shown promising results
in the field of expression recognition. LSTMs are advanced versions of Recurrent Neural Networks
(RNNs) that have been optimized with gating mechanisms to regulate data flow. This methodology
was employed in a previous study [27]. The study utilized magnitude, log-mel, and Mel-Frequency
Cepstral Coefficients (MFCC) spectrograms extracted from the data, and a hybrid CNN-LSTM model
was trained and evaluated. The researchers used MFCCs as input and achieved an accuracy of 82.35%.
It is worth noting that this study focused on evaluating only four specific emotions.

3 Proposed Methodology

The proposed audio wave processing is processed using Deep Learning methods, and it imple-
ments the Cyber-Physical System (CPS), which also has physical IoT systems. Initially, the sound waves
are collected by the CPS system through IoT Sensor nodes. Next, the data is augmented, and then the
mel spectrograms are generated. Then the mel spectrograms features are extracted using Two-way
feature extraction methods such as Principal component analysis (PCA) and Transfer Learning (TL).
Finally, the extracted features are given in the classification process using CNN-LSTM methods.
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3.1 Implementation of Cyber-Physical System

The decentralized structure is used to implement Cyber-Physical Systems (CPS). The sound wave
data is gathered from the source node and processed the data. The CNN-LSTM classification method
finally produces the short plain text file. With the help of sink nodes, the files are collected.

In contrast to traditional guidelines, the CPS approach combines methodologies from both the
physical and cyber domains, ensuring a comprehensive integration.

The approach used in this method creates CNN-LSTM implementations with two stages: learning
in a cyber system and CNN-LSTM deployment over networks in a physical system. This approach
needs to be examined in light of many criteria. The communication capabilities between nodes
and physical and cyber systems are crucial to achieving the goals since CPS employs a distributed
processing paradigm. On the one hand, the network cannot allow the transfer of raw voice files because
of the low connection speed of wireless links between nodes.

Hence, each node should use its processing power to run the CNN-LSTM. There are two options:
preprocessing the CPU audio signal and running CNN on the GPU or running CNN-LSTM on the
CPU. The CPU pre-processes an audio file, and CNN-LSTM runs in this research with the help of a
TensorFlow Lite Library [28]. The testbed platform utilized in this study is built upon the System on
Chip (SoC) BCM2835. This SoC features the ARM1176JZF-S microprocessor, which operates at a
clock speed of 700 MHz and has the ability to overclock up to 1 GHz with the assistance of the GPU
VideoCore IV. The architecture of the proposed method is illustrated in Fig. 1.
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The cyber system was implemented on a workstation running Windows 10 Pro and fitted with
an AMD Thread ripper Pro 3955WX CPU, 32 GB of RAM, and an NVIDIA Quadro P620 GPU.
TCP/IP protocol was utilized for communication between the physical and virtual systems. A Python
program for CNN-LSTM is developed using a chosen dataset. The biologist, who serves as the end
user, utilizes the cyber system to facilitate communication with the physical servers or their digital twins
for tasks such as ordering new CNN-LSTM training and upgrades. This enables them to perform
simulations and collaborative categorization effectively. Fig. 2 illustrates how a CPS design could
satisfy a classification issue’s needs while reducing the limitations associated with earlier methods.
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Figure 2: Cyber-physical systems

In south spain, Biological Reserve called Doana is separated by 60 kilometers on Higher Technical
School of Computer Engineering, are where the CPS is being tested. The physical design is made up
of 9 IoT nodes that are dispersed over DBR’s Ojillo Lake. With such a base station serving as the root,
these nodes form a spanning tree. LoRa® facilitates communication between nodes. A node with two
interfaces is responsible for executing the functions of the base station.

The proposed method consists of the following steps, which are discussed below. After implement-
ing the Cyber-physical system, the data is augmented. Next, the data is extracted, the classification is
processed, and the results are processed.

3.2 Data Augmentation

An augmentation procedure used the sound database to produce a more reliable training set. While
using CNN-LSTM to process photos, data augmentation entails expanding the collection of original
images (rotations, size modifications, etc.). The audio must be transformed for the current work on
audio, and subsequently, these alterations are mirrored in the images of mel-spectrogram.

In this manner, ten extra audio samples were created for every one of the 865 audio data in the
database:

e Two audio files that have two different forms of white noise applied.

e Four files consists of noticeable shift in time (1, 1.25, 1.75, and 2 s).

e Four records with changes to loudness of signal: two with 20% and 40% amplitude increases
and two with 20% and 40% amplitude decrease. For this procedure, dynamic decompression
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was explicitly applied. It mutes loud sounds while amplifying (to a certain extent) silent ones.
The goal was to produce new transmissions with the ambient noise amplified and the anuran
sound muted.

These adjustments were made so the system would pick up the anurans in a loud setting and
at different ranges from recorded microphones. The 865 soundtracks were changed into 9515 audios
using the preceding procedures. Every component of the system is in its true place in Fig. 3.

Physical system, DBR

loT nodes

Base station

Figure 3: Topology of CPS. Cyber system developed by ETSII in Seville, Spain; physical system by
DBR in Huelva, Spain [1]

3.3 Generation of Mel Spectrogram

Creating a melspectrogram for all the audio file was uniquely fitted to the system’s classifications
goal. To generate the model-spectrogram, filter banks were applied to the WAV recordings. The shape
of every audio sample was changed to 128 435, signifying the employment of 128 filters and 435 time-
series per audio sample.

3.4 Feature Extraction

The feature extraction is processed after the completion of Data augmentation. Here, a two-
way feature extraction approach is used for extracting audio features. Principal Component Analysis
(PCA) and Transfer Learning methods are used for feature extraction.

3.4.1 Principal Component Analysis

A sound dataset is considered applicable by taking acceptable features from audio data. A Mel-
Spectrogram has been extracted using this method. After extraction, every file’s attributes and labels
were transformed into a 2-D feature vector.

The audio files have produced a total of 9515 features. More pre-processing has been done to
reduce the dataset’s sparse and high dimensionality. Firstly, Sklearn for the MinMaxScaler was used
to normalize the data. Dimensionality reduction has also been achieved through the utilization of
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Principal Component Analysis (PCA). PCA is employed because removing highly correlated variables
dramatically reduces overfitting. 865 relevant characteristics have been chosen using PCA to enable
efficient training and evaluation.

3.4.2 Transfer Learning

With this strategy, we added a feature extraction technique utilizing transfer learning. Using
this method, we created a Mel-Spectrogram from the audio input dataset. Every audio file Mel-
Spectrogram has been extracted. Fig. 4 feature extraction process are shown with Audio Files.
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Figure 4: Feature extraction process

Transfer learning is a technique that allows models to leverage knowledge learned from one task
to improve performance on another related task. In the context of the paragraph, transfer learning
was employed as a feature extraction technique to produce a Mel-Spectrogram from the audio input
dataset. The transfer learning process involves implementing pretrained model on large dataset as a
initial point to extract useful features for a new dataset. In this case, the pre-trained data was likely
a deep learning model trained on a large audio dataset such as speech or music, and the new dataset
was the audio input dataset.

The use of transfer learning for feature extraction can be very effective, especially when the pre-
trained model has learned much generalizable knowledge about the domain of interest. This knowledge
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can then be used to extract relevant features to the new dataset, even though dataset is different from
the original dataset. Mel-Spectrograms are a commonly used feature representation in audio signal
processing. They represent the frequency content of an audio signal as it changes over time. They are
often used as input features to machine learning models for speech recognition or music classification
tasks. By extracting Mel-Spectrograms from the audio input dataset using transfer learning, the
model can leverage the knowledge learned from the pre-trained model to create more meaningful and
practical features for the new dataset.

This process involves feeding the audio files into the pre-trained model and extracting the Mel-
Spectrograms from the output of a particular layer in the model. These extracted Mel-Spectrograms
can then be used as input features for the machine learning model.

3.5 Classification Using CNN-LSTM

After the extraction of Mel spectrograms, it forms into 2-dimensional features. Next, the extracted
features are given in the classification process. For classification, it uses a deep learning method CNN-
LSTM. The CNN-LSTM approach combined with Focal Loss Function (FL) helps the training
process and measures errors during the classifications. Most precisely, utilizing STFT with a Hanning
window, 1D respiratory signals are converted into 2D red, blue and green (RGB) spectrogram pictures
with a dimensions of 7550 pixels and transmitted to the input nodes. Initially, the CNN portion
of the system, which consists of a complete 4 convolutional number, 3 max-pooling layers, 2 batch
normalization, and 3 dropout layers, is applied to the collection. As the input traverses through the
deeper network layers, complicated characteristics are retrieved from the array at the exact moment,
and dimensionality reduction occurs.

The 32 histograms with nine-time-steps in the x-axis that were obtained from original Mel
spectrograms via the CNN section and represented by the 3D (32 6 9) array described above are
then flattened into a 2D array (32 54 1) and given into the segments of LSTM network. This
component, which consists of an LSTM, a flattened level, a fully connected layer, and a dropout layer,
is responsible for identifying and remembering the long-term relationships in the data. For every input
Mel spectrogram, At the final output layer, which employs a softmax activation function, estimations
are made for each of the four classes. In a multi-classification network, softmax, a sigmoid function
generalization, is typically selected as the output layer activation function. The rectified linear unit
function is nonlinear used by the convolutional layers and the completely connected layer for their
input signal. As illustrated in Fig. 5 this model comprises an input layer, 17 hidden layers, and one
output layer that classifies the classes.

For the training phase, 80% of the data were utilized as training instances and 20% as test material.
This method is frequently employed to improve a machine learning model’s generalization and avoid
overfitting. For the test set, a balanced sample was performed. One good example (together with
related to samples of data augmentation) was chosen out of five for each form of anuran call. As
a result, 1892 data were utilized for testing, whereas 7623 data were used for training.

A CNN-LSTM was trained initially for classifying model in 4 sound categories created in prior
work [1], as described previously in the data preprocessing part. Afterward, a secondary CNN-LSTM
was developed to add the other five classes in Table | to the classification method.
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Figure 5: CNN-LSTM architecture for mel spectrograms images

Table 1: Collection of various sounds

Category Vocalization No. of actual samples No. of augmented samples
Alytes obstetricans Standard 420 4610

Epidalea calamita Chorus 75 816

Epidalea calamity Standard 293 3225

Epidalea calamita Amplexus 65 694

Alytes obstetricans Distress call 18 178

Remarkable results were achieved in the initial system through training for only eight epochs,
which represents the number of iterations over the entire training dataset. Additionally, a batch size
of 32, indicating the sample sizes used in each training iteration, was found to be effective. Six epochs
and a batch size of 32 once more made the best training results for the second network. The “adam”
optimizer [29] and the initial learning speed [30] with 0.001 have been the variables utilized in the
training procedure with both networks.

The first column lists the sound categories named after the species that produce them (Epidalea
calamity and Alytes obstetricans). The second column indicates the type of vocalization within each
category, such as common vocalization or distress call. The third column shows the actual number
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of audio samples collected for each vocalization type. Finally, the fourth column lists the augmented
models generated for each vocalization type.

The CNN-LSTM architecture uses this data to train a model that can accurately classify different
vocalization types into their respective categories. Specifically, the model first processes the raw audio
data using a CNN to extract relevant feature. The extracted features are subsequently inputted into
a long short-term memory (LSTM) network, which leverages the temporal information to make
predictions regarding the vocalization type. Using a combination of actual and augmented samples,
the CNN-LSTM architecture can learn from a more extensive and diverse set of data, improving its
accuracy and robustness when applied to real-world scenarios.

4 Results Analysis

When examining the CPS, several aspects were taken into account. Initially, two paradigms were
contrasted at the stage of data transport interaction. The central concept is built on delivering an audio
recording from node IoT to its electronic counterpart on the cyber system side, which is analyzed. The
distributed model analyzes the audio file in the Internet of Things node and delivers the outcome to its
digital twin, which then sends it to the central processing unit. The output file (WAV) is 434 kB when
a audio register for 5-second is captured at a sampling frequency of 44.1 kHz and 32 bits per sample
with a mono setup.

Because of this, it considers like there is one radio link (1 kbps) only and that it will take at
least 57.8 s to transfer an physical process on audio file to the cyber system. Compared to data
transmission through a radio link in this method, the time required for fiber optic data communication
was insignificant. Sending the data takes 5 s of audio and more than ten times as long. As a result,
actual broadcasting was impossible. There is a requirement for distributed processing.

Employing the same related to the existing WAV file, it took 120 ms to compute the model-
spectrogram and 160 ms to execute CNN-LSTM using the TensorFlow Lite package. Last, the CNN-
LSTM analysis of a 5-second audio recording suggests that the duration for transmitting the findings
(70 B) is 0.55 s. Therefore, the entire time required in the dispersed paradigm is about 300 ms. In
summation, real-time audio analysis is a possibility. The fundamental drawback of this strategy is that
radio links are required to send the network’s topology, weight, and structure whenever a CNN-LSTM
modification is needed. Using TensorFlow Lite, a typical neural network size is around 5 MB.

Secondly, while running the CNN-LSTM, the temperature of the SoC at the IoT was measured
at the boundary condition layer. Fig. 6 depicts a thermal image illustrating the SoC’s temperature
(48.8°C). This demonstrates that the chosen platform is appropriate for this type of analysis.

The SoC is a complete computing system on a single chip, including a processor, memory, and
other components. The IoT refers to a network of connected devices that are capable of exchanging
data with each other and with other systems over the Internet. In this context, the IoT is likely acting
as a sensor network, collecting data processed by the SoC.

To measure the temperature of the SoC, the authors likely used a thermal imaging camera or
some other type of temperature sensor. The resulting thermal image, shown in Fig. 6, illustrates the
temperature of the SoC at the boundary condition layer. The temperature of the SoC is measured to
be 48.8°C.
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Figure 6: Temperatures at the CNN-LSTM running [oT node’s SoC

This temperature measurement is essential because it demonstrates that the chosen platform is
appropriate for this type of analysis. Running a CNN-LSTM involves significant computation, which
can generate heat and damage the hardware if not correctly managed. By measuring the temperature
of the SoC and confirming that it is within a safe range, the authors can ensure that their analysis will
not cause any harm to the hardware and that the results are reliable.

Thirdly, the CNN-LSTM operation was examined using a precision multimeter at the degree of
power usage. The energy the IoT platform needs when CNN-LSTM starts running is seen in Fig. 7.
The solar panel installed at the node’s remote position has been sized to accommodate the [oT’s power
requirements. Finally, the CNN-LSTM program uses 16.2% of the CPU’s capability and 8.5% of the
Memory at the resources level. These findings enable us to conclude that the computational power
widely accessible is sufficient to support this kind of program.

Power Consumption of loT Nodes

— CPU executing the
CNN-LSTM

Time Sec

00 02 04 0.6 08

CurrentA

Figure 7: The amount of power used by the IoT running CNN-LSTM

Confusion Matrix and Accuracy of CNN-LSTM Methods

For the initial system, which divided the audio into four categories, the total accuracy values are
97.34% for training examples and 98.53% for testing data.
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Apart from the Epidalea calamity category with amplexus vocalization, with 9.05% errors (13
errors vs. 143 audios), all classes have error rates of between 1.01% and 4.78%. Contrarily, there was
only one distress call error in the Alytes obstetricans class. As an outcome, the network categorization
findings can be regarded as both positive and reliable. The efficiency findings for these networks are
marginally less accurate than those for the previous network. However, they are still sufficient to
demonstrate that the CNN-LSTM can distinguish between the standard and amplexus vocalization
for Epidalea calamita. Table 2 provides more information on the confusion matrix for the testing data
in this network.

Table 2: First four classes of the confusion matrix

Predicted values

Ep.cal.st&ch  Ep.cal.amplexus Al.obs.standard Al.obs.distress

Ep.cal.st&ch 97.32 (789) 2.35% (295) 0 0
Actual values Ep.cal.amplexus 4.9% 96.12% 0 0

Al.obs.standard 1.26% 0 97.37% 0

Al.obs.distress  2.32% 0 0 97.45%

Fig. 8 shows the confusion matrix of the First four classes.
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Figure 8: Confusion matrix for four classes

The distribution of mistakes across the five classes is shown in Table 3.
Fig. 9 shows the confusion matrix of 5 classes.

The proposed CNN-LSTM achieves greater precision in both the testing and Training dataset.
The first two bar represents the training accuracy of CNN and CNN-LSTM. The following two bar
represents the testing accuracy of bar charts. In both, CNN-LSTM achieves more precision when
compared to CNN. Fig. 10 shows the training and testing accuracy, and the dataset is compared with
existing CNN methods.
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Table 3: Confusion matrix for the next 5 classes
Predicted values
Ep.cal.std Ep.cal.chrs Ep.cal.amplxs Al.obs.std Al.obs.dstrs
Ep.cal.standard  94.32 (489) 1.01% 4.51% 0 0
Actual values  Ep.cal.chorus 4.92% 95.12% 0 0 0
Ep.cal.amplexus  9.09% 0 90.37% 0 0
Al.obs.standard  1.22% 0 0 97.98% 97.45%
Al.obs.distress 2.54% 0 0 0 97.75%
Confusion Matrix
-100
Al.obs.distress - 097 -075
050
Ep.cal st&ch -
025
Ep cal amplexus - 000
-025
A.obs standard -+
0.50
Al obs distress =0.75
' -1.00
Al.obs.distress Ep cal sthch  Ep cal amplexus Al obs standard Al obs distress
Figure 9: Confusion matrix for five classes
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Figure 10: Accuracy of training and testing dataset

5 Conclusions

The proposed audio wave processing is processed using Deep Learning methods, and it imple-
ments the Cyber-Physical System (CPS), which also has physical IoT systems. Personal assistance
is not required in the categorization system in the current work, thanks to the use of deep learning
capabilities, which is a considerable advancement. Earlier compositions could not distinguish the
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chorus and common vocalization for Epidalea calamity. It is feasible to obtain excellent outcomes
(97.34%) while creating this additional class using the classification technique utilizing the second
CNN-LSTM. This entails a higher level of information in proper categorization and suggests a
significant advancement over the earlier study mentioned above. This anuran sound classification
system shows the viability of a CNN-LSTM-based design for categorizing biological acoustic targets.
In this manner, the first goal of those suggested in the study was accomplished. Based on the results
presented here, the researchers concluded that CPS architecture is a unique, adaptable, and potent
Predator Avoidance Model (PAM) system. Therefore, CNN-LSTM in IoT nodes might be employed
as a fusion technique at the classification stage to reduce the amount of data sent and increase the
amount of data disseminated.
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