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Abstract: Attribute-based encryption (ABE) is a technique used to encrypt
data, it has the flexibility of access control, high security, and resistance
to collusion attacks, and especially it is used in cloud security protection.
However, a large number of bilinear mappings are used in ABE, and the
calculation of bilinear pairing is time-consuming. So there is the problem
of low efficiency. On the other hand, the decryption key is not uniquely
associated with personal identification information, if the decryption key is
maliciously sold, ABE is unable to achieve accountability for the user. In
practical applications, shared message requires hierarchical sharing in most
cases, in this paper, we present a message security hierarchy ABE scheme for
this scenario. Firstly, attributes were grouped and weighted according to the
importance of attributes, and then an access structure based on a threshold
tree was constructed according to attribute weight. This method saved the
computing time for decryption while ensuring security and on-demand access
to information for users. In addition, with the help of computing power in the
cloud, two-step decryption was used to complete the access, which relieved the
computing and storage burden on the client side. Finally, we simulated and
tested the scheme based on CP-ABE, and selected different security levels to
test its performance. The security proof and the experimental simulation result
show that the proposed scheme has high efficiency and good performance, and
the solution implements hierarchical access to the shared message.

Keywords: Attribute-based encryption; cloud security; message hierarchy;
attribute weight; access control

1 Introduction

The development of big data, cloud environment, and multi-user ecological environment makes
the traditional access control and encryption system no longer applicable, and ABE came into being.
ABE is an extension of the traditional public key encryption system, and it was originally proposed
by Sahai and Waters in 2005. ABE is a new way to achieve access control on ciphertext, it has access
control capability and enhances the flexibility of access control, and has been applied in building a
variety of security systems.
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ABE is different from conventional access control, its characteristics are as follows: 1) the
information processed in the ABE is always stored in ciphertext, and they can be used in a completely
dangerous hostile environment, even if attacked, and the information will not be obtained. 2) The data
owner encrypts information according to attributes, and it restricts the users’ access and decryption
capabilities to ciphertext through access policies, ensuring the flexibility of data sharing. 3) In ABE,
the user keys are related to the random polynomials, and it effectively prevents collusion attacks.

At present, ABE is widely used in the field of access control, which greatly guarantees the
confidentiality, integrity, availability, and sharing security of data in cloud storage. However, there
are still the following disadvantages: 1) Low efficiency: A large number of bilinear mappings are
used in ABE, and it is time-consuming; 2) No accountability: The decryption key is not uniquely
associated with personal identification information. Since multiple users share the same attributes, if
the decryption key is maliciously sold, ABE is unable to achieve accountability for the user; 3) Heavy
burden on users: The general ABE scheme has a large amount of computation, and the authorized
user downloads the ciphertext to the local for decryption, which is a burden for the user. 4) Ignore the
hierarchy of shared messages: Most of the current solutions focus on access control, but the shared
messages have the multilevel hierarchy characteristic, the hierarchy structure hasn’t been explored
in ABE.

Given the above problems in ABE, in this work, we provide a message security hierarchy ABE
scheme based on attribute weight, which not only considers the efficiency, accountability, and the
user’s computing power but also considers the fine-grained access needs of the message itself.

Its main contributions are as follows:

(1) Propose a new ABE scheme for the scenario where the shared message requires hierarchical
access.

(2) Construct an access structure based on a threshold tree and attribute weight.
(3) Provide a two-stage decryption approach. It greatly reduces the burden on users.
(4) Design a series of experiments to test its performance.

Organization: The rest of the paper is organized as follows. Section 2 is the related work.
Section 3 is the preliminaries. Section 4 describes the construction, and then the implementation and
performance are shown in Section 5. Finally, we conclude in Section 6.

2 Related Work
2.1 Related Research of ABE

In literature [1], Shamir first proposed Identity-Based Encryption (IBE), it is assumed that there is
a trusted key generation center to perform the work of issuing and verifying the legal identity of users.
Later, people use biometrics to represent IBE’s functions, but existing IBE cannot be used due to noise
issues, so in 2005, Sahai and Waters proposed the vague concept of IBE, named Fuzzy Identity-Based
Encryption (FIBE) [2,3], and this paper proposed the concept of ABE for the first time. In FIBE, the
identity is regarded as a set of attributes, the idea of a threshold scheme is introduced, and multiple
public keys of users are constructed into a threshold structure with a logical relationship. It has strong
fault-tolerance and anti-collusion attack abilities.

As the research goes deeper, Sahai and Waters further clarified and divided the ABE into Key
Policy ABE (KP-ABE) and Ciphertext Policy ABE (CP-ABE). In 2007, Bethencourt, Sahai, and
Waters proposed attribute encryption based on ciphertext strategy for the first time [4] (named CP-
ABE). In this scheme, the structure of the access tree was used to hide the key of source data. The



CMC, 2023, vol.76, no.2 1931

attributes and attribute values set by the leaf node for the data owner, as well as the secret values
passed to the node by the parent node, are encrypted and processed. Users need to have the specific
attributes of the leaf node to get the secret value S of this node. The non-leaf node is the threshold
node, and the user needs to have the minimum attribute set that meets the threshold to decrypt the
secret value of the threshold node. CP-ABE has a wide application that is generally used for encrypted
data storage and fine-grained sharing on public clouds. The schemes or models based on CP-ABE
include the CP-ABE model of the hidden access structure, ABE scheme with multiple authorization
centers, ABEs that can be held accountable: white-box ABEs and black-box ABEs, etc. [5]. In KP-
ABE scheme [6], ciphertexts are associated with sets of attributes, and private keys are associated with
access structures.

Next, in 2012, Bonch proposed the concept of Functional Encryption (FE) [7], FE is an extension
of traditional encryption, which allows a third party to calculate the function value of the output
plaintext without decrypting the ciphertext. In literature [8], Garg used indistinguishable obfuscator
early enough for general FE; later, many schemes improved the efficiency of FE: Abdalla first
proposed a public key-based inner product function encryption scheme, and Boneh proposed the
Order Revealing Encryption (ORE) system. Deng proposed Process Based Encryption (PBE) [9].

At present, almost all algorithms of ABE focus on access control of the user [10,11], but the
decryption process of the ABE algorithm is coarse-grained control, and the user can either decrypt it,
or cannot decrypt it at all. In practical applications, we always focus on the access control of the files,
and need to perform fine-grained control over the decryption process, in recent years, some scholars
have shifted the focus to access control of the shared messages, because the message is the purpose of
users.

In 2012, Hierarchical Attribute-Set-Based Encryption (HASBE) was proposed by extending CP-
ABE scheme with a hierarchical structure. This scheme employs multiple value assignments for access
expiration time to deal with user revocation more efficiently than existing schemes. In 2013, Rouselakis
and Waters proposed two large-scale ABE structures. This is a new large-scale ciphertext policy
attribute encryption scheme on first-order bilinear groups, and significantly improves the efficiency
of the KP-ABE system. It brings “program and cancel” techniques to address this problem, aiming to
provide practical large-scale implementations of attribute encryption.

In 2016, File Hierarchy CP-ABE (FH-CP-ABE) [12] scheme is proposed. In this scheme, at
different access levels, the shared messages are divided into many hierarchy subgroups, and the layered
access structures are integrated and encrypted with the integrated access structure. The messages in the
same hierarchical structure could be encrypted by an integrated access structure. In 2021, Extended
File Hierarchy CP-ABE (EFH-CP-ABE) scheme [13] is proposed, which can encrypt multiple files
on the same access level in the existing FH-CP-ABE scheme. It greatly saves storage space and
computation costs on the cloud servers.

2.2 The Existing Problem

Throughout the development process of ABE, it has experienced a series of upgrades and
improvements [14–17]. But access control for shared files is popular from a practical standpoint,
especially since it is suitable for those big institutions or companies which have many hierarchical
sectors.

At present, although the existing file hierarchy ABE schemes have saved time for encryption and
decryption, and reduced the burden of storage, there are still some important factors not taken into
account. For example, 1) Lack of accountability. If the decryption key is maliciously sold, ABE is
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unable to achieve accountability for the user. 2) Low efficiency. At present, the biggest burden of ABE
is on the user. When the ciphertext files become larger and larger, ciphertext files must be downloaded
to the user for decryption, which meets a challenge to the storage and computing power of the user.
All of these are lack of in the above file hierarchy ABE. So, in this paper, we propose a new message
hierarchy ABE scheme.

In this work, a new ABE scheme was proposed for the application scenario where the shared
message requires hierarchical access. It makes up for the shortcomings of previous ABE programs.

3 Basic Theoretical Knowledge

To elaborate the proposed scheme in this paper, some relevant knowledge will be introduced.

3.1 Hash Function

A hash function is any function that converts an input of any length into a fixed-length output,
and the output is the hash value. The values are called hash values, hash codes, checksums, or simply
hashes. This transformation is a compression map. Some famous hash algorithms are MD5, SHA-256,
SHA-512, et al.

3.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is the theoretical basis of bilinear pairing. Generally, an
elliptic curve refers to the curve determined by the Weierstrass equation. In cryptography, the elliptic
curve on the finite field is used, that is, the variables and coefficients are all elements on the finite field,
and the elliptic curve satisfies Eq. (1):

y2 = x3 + ax + b (mod p) (1)

All points (x, y) satisfied the Eq. (1), plus an infinite point O constitutes a set, where a, b, x, y are
all on the finite field GF(p), and p is a prime number. Here the elliptic curve is denoted as: Ep(a, b).
The elliptic curve has a finite number of points.

While 4a3 + 27b2 �= 0, based on the set Ep(a, b), it can define an Able groups. Assume that: P, Q ∈
Ep(a, b), then: P + O = P; If P = (x, y), then (x, y) + (x,−y) = O, that point (x,−y) is the additive inverse
of P’s, which means −P.

Assume that P = (x1, y1) and Q = (x2, y2), P is not equal to Q, S = P + Q = (x3, y3), the value of
S is determined by the following rules:

x3 ≡ λ2 − x1 − x2 (mod p)

y3 ≡ λ (x1 − x3) − y1 (mod p)

λ ≡

⎧⎪⎪⎨
⎪⎪⎩

y2 − y1

x2 − x1

(mod p) , P �= Q

3x1
2 + a

2y1

(mod p) , P = Q

Point doubling operation is defined as repeated addition, for example, 3P = P + P + P.
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3.3 Weil Pairing

The definition of Weil pairing: Suppose E (Fq) is an elliptic curve defined in a finite field Fq,
P ∈ E(Fq) and Q ∈ E(Fq), there is a function that satisfies div(fQ) = nDQ, then the definition of P and
Q’s Weil pairing is Eq. (2). Here, div(fQ) is the divisor of function fQ.

∧
e (P, Q) = fP(DQ)

fQ(DP)
(2)

3.4 Bilinear Maps

The bilinear map is e : G0 × G0 → G1 implemented via the Weil pairing or Tate pairing. Suppose
that k is the secure parameter, and prime order p is k-bits long. Let G0 and G1 be two multiplicative
cyclic groups of prime order p, and let g be a generator of G0.

A map e : G0×G0 → G1 is an admissible bilinear map if it satisfies the three following properties:

• Computable. ∀P, Q ∈ G0, there exists an efficient algorithm to compute e(P, Q);
• Bilinearity. For all a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab.
• Non-degeneracy. The map is non-degenerate, it must be e(g, g) �= 1.

3.5 Shamir’s Secret Share

Secret distribution: first, the secret sharer needs to construct a t − 1th polynomial, assuming that
the secret value to be shared is s. The polynomial f (x) = s + a1x + a2x2 + · · · anxn−1 is constructed by
randomly selecting t − 1 elements a1, a2, . . . at−1, and then the secret sharer calculates the secret share
si = f (i) (mod p), i = 1, 2, . . . n, and sends it to the n participants. If a user has t secret shares at least,
then he can calculate the shared secret value s.

Secret reconstruction: Assume that Dn = {0, 1, . . . , n−1}, we define the Lagrange coefficient pk(x)

in Eq. (3):

pk (x) = �
i∈Bk

x − xi

xk − xi

(3)

Here, Bk = {i|i �= k, i ∈ Dn}, pk(x) is a polynomial of n − 1 degree, which is satisfied ∀m ∈
Bk, pk(xm) = 0 and pk(xk) = 1. At last, we can get the Lagrange interpolation polynomial formula (5)
and the expansion of Lagrange interpolation polynomial Eq. (4):

f (x) =
n−1∑
j=0

yjpj (x) (4)

fn (x) = yi ∗ (x − x2)(x − x3) . . . (x − xn)

(x1 − x2)(x1 − x3) . . . (x1 − xn+1)
(5)

Using Eq. (5), the secret value can be calculated, here s = f (0).

4 Access Control Policy and Model

The access policy, named access structure, is the core of ABE, which is exactly a set of data elements
authorized to access. In pieces of ABE literature [18–22], it was introduced. To summarize, access
structure is mainly divided into the following categories.
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4.1 Simple Attribute Set

Assume that S is the attribute set and the threshold value is 2, if someone owns the set S1, if
S1∩S >= threshold, then the person can access this document. For example, S = {Computer, Professor,
High-eve}, threshold is 2. S1 = {Computer, Professor}, S1 ∩S = |{Computer, Professor}|= 2. This value
is satisfied the threshold, so the person can decrypt the document. But in practical application, this
solution based on preset thresholds is not universal.

4.2 Bool Algebra

The access control policy is expressed by Boolean algebra, policies are AND-OR relationships
between these attributes. A policy is a logical expression consisting of attributes and their relationships.
For example, S = ((A and B) and (C or D or E) and (F and G), S1 = {A, B, D, F, G}. S1 meets
the conditions of access control policy S, so the person with attribute S1 has the right to access the
document.

4.3 Access Tree

In this model, access control policy is represented by an access tree. Therefore, an access tree
implies an authorization set.

(1) Access tree = threshold nodes + leaf nodes.

An access tree is used to represent an authorization set. The leaf nodes are the attribute values,
and the non-leaf nodes are the threshold nodes. The user needs to meet the minimum value of this
threshold. For example, if the threshold is (3, 2) and the node has 3 children, the user needs to satisfy
at least 2 children. For example 3: According to the access tree in Fig. 1. The attribute set S1 = {A, C,
D, I, J}, it satisfies the conditions of the access tree, so this user with this set of attributes meets the
access conditions.

Figure 1: Access tree with threshold node

(2) Linear Secret Sharing Scheme

Linear Secret Sharing Scheme (LSSS) is a rule for transforming the access threshold tree,
and the access tree can be transformed into a matrix. The conversion method is for each non-
leaf node starting from the root node, the nodes are numbered by top-down hierarchical traversal,
in order of 0, 1, 2 . . . ; For each leaf node from left to right, top to bottom, numbered from
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−1, in order of −1, −2 . . . ; Each row of the matrix is used to store the threshold information and
child node numbers of non-leaf nodes. The non-leaf node is stored sequentially in the top-down
hierarchical traversal order. To satisfy the neatness of the matrix, insufficient information is filled with
0 to supplement.

For example 4: take Fig. 1 as an example. In this tree, it has 5 non-leaf nodes, (3, 3) is number 0, (3,
2) is number 1, . . . (4, 3) is number 4, and it has 11 leaf nodes, their numbers are A (−1), B (−2), C (−3)
. . . J(−10). The corresponding LSSS matrix of Fig. 1 is below. According to the conversion method,
the first row represents the root node: its threshold information (3, 3) and its children’s numbers: 1, 2,
3, and so on. The second row is the non-leaf node (3, 2), and its children’s numbers are −1, −2, −3.⎡
⎢⎢⎢⎢⎣

3 3 1 2 3 0
3 2 −1 −2 −3 0
2 1 −4 4 0 0
3 2 −9 −10 0 0
4 3 −5 −6 −7 −8

⎤
⎥⎥⎥⎥⎦

(3) Access tree = threshold nodes + leaf nodes + polynomials

Neither the above access tree nor the access tree represented by the LSSS matrix is resistant to user
collusion attacks. Here, the introduction of random polynomials solves the collusion attack problem.
Shamir’s secret sharing cannot solve the collusion attack problem, so it must resort to bilinear mapping
and cryptography.

For each threshold node, we construct a random polynomial, use a secret sharing scheme to
distribute the encryption key layer by layer, and finally go to the leaf node. When accessing, as long
as the attribute set makes the root node satisfy the conditions, it can be decrypted. Here, the number
of the random polynomial is determined by t in (s, t). For example, for a node with a threshold (3, 2),
the number of randomly assigned polynomial terms is 2. For example: Assume the encryption key is
5. For a user, according to the access tree in Fig. 2.

Figure 2: Access tree with threshold and polynomial

Four polynomials f0, f1, f3 and f4 are generated at random. Assume that the corresponding
thresholds and polynomials are shown in Table 1.
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Table 1: Threshold, polynomial and secret shares

Threshold nodes The random polynomial of the node The secret shares of node

(3, 3) f0(x) = 5 + 7x + 2x2 f0(1) = 14 f0(2) = 27 f0(3) = 44
(3, 2) f1(x) = f0(1) + 3x = 14 + 3x f1(1) = 17 f1(2) = 20 f1(3) = 23
(2, 1) f2(x) = f0(2) = 27 f2(1) = 27 f2(2) = 27
(2, 2) f3(x) = f0(3) + 4x = 44 + 4x f3(1) = 48 f3(2) = 52
(4, 3) f4(x) = f2(2)+6x+3x2 = 27+6x+3x2 f4(1) = 36 f4(2) = 51 f4(3) = 72

f4(4) = 99

For different users, the root encryption key is the same key (the root secret value is 5), but the
polynomial is random. For example, in Table 1, the user’s random polynomial is f0(x) = 5 + 7x + 2x2,
and another user has a different random polynomial f0(x) = 5+3x+4x2. Although they have the same
root secret value, they each have different polynomials, and naturally, their secret share is distributed
differently from the top to down. So, the different user has different private key components. Since the
private key components are bound to random polynomials, users cannot implement collusion attacks.

4.4 Selective-Set Model for ABE

Init. Define the adversary A and the challenger B. A declares the attribute set S.

Phase 1. A sends the queries for many access structures Aj, where S /∈ Aj for all j.

Challenge. A submits two messages M0 and M1 with equal length. B flips a random coin b, and
encrypts Mb with S. The ciphertext is passed to A.

Phase 2. Phase 1 is repeated.

Guess. A outputs a guess b0 of b. The advantage of A is defined as Pr [b0 = b] − 1/2.

5 ABE Scheme with Message Hierarchy

In practice, the message has different levels of security, and users with different attributes are
expected to have different access rights. Here, an ABE scheme with a message security hierarchy was
proposed. A message is divided into many blocks according to the security level, and the users with
different attribute set keys can decrypt the part of the message with different security levels by access
policies.

5.1 Access Structure

In this part, a new access structure based on a threshold tree and attribute hierarchy was proposed.
The threshold tree is similar to the Huffman tree, and the difference is that it allows each node to have
many children greater than 2, and each threshold node saves the corresponding key of encrypting every
message block. The higher the level of the threshold node in the tree, the higher the security level of
the message block encrypted with it. The structure of child nodes from left to right is the threshold
node with message level n − 1, attribute 1, attribute 2, . . . The detailed access tree is shown in Fig. 3.
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Figure 3: Threshold tree structure for multiple security levels

Similar to the access tree with threshold node and polynomial, this kind of access structure is
also resistant to collusion attacks by assigning different random polynomials to users with the help of
thresholds and polynomials. To achieve this access with hierarchy, it is necessary to sort the attributes
by weight. According to Fig. 3, the weight set is shown in Table 2. The higher the weight value of the
attribute set, the lower its privilege.

Table 2: The attribute set and their weights

The weight Threshold node Attribute set Attribute group

1 (n1, t1) a1, a2, . . . an1 U1

2 (n2, t2) b1, b2, . . . bn2 U2

. . . . . . . . . . . .

m − 1 (nm − 1, tm − 1) . . . Um − 1

m (nm, tm) m1, m2, . . . mnm Um

5.2 The Design and Construction

In our construction, the architecture of the hierarchy ABE is shown in Fig. 4.

• Data Owner (DO): The data owner is the one who stores and shares the data in the ciphertext
in the cloud server environment. It is responsible for defining the access structure, encrypting,
and uploading the generated ciphertext to the cloud server.

• Key Generating Center (KGC): It is a fully trusted entity and can provide the registration of
users. He can also perform a series of initialization operations, generate the secret key and save
critical information.

• Cloud Server: It is a not fully trusted entity that can only perform the tasks assigned to him and
return the corresponding results. It has computing and storage resources and can be responsible
for providing partial decryption for the user.

• Data Users (DU): The users are the people who access the cloud server to download and decrypt
the interested ciphertext from the cloud server.
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Figure 4: The architecture of the CP-ABE and data flow

5.3 Security Model

(1) DefineAS (U)

For the data owners, the important task is to define an access structure that explicitly shows the
attributes available to users who have access rights. More specifically, first, associating the specified
weight to an attribute based on its importance. Second, dividing the attribute set U into several
attribute groups U1, U2 . . . and Um according to their weights, the result shows in Table 1. Finally,
completing the creation of an access structure A with threshold and multiple security levels. The
detailed access tree is shown in Fig. 3.

(2) Setup(1λ, U)

For the trusted KGC, first, enter security parameter λ and attribute set U, the set U is related to the
attribute groups U1, U2 . . . and access structure. The setup algorithm will choose a bilinear group G1

of prime order p with generator g. The size of the bilinear group G0 determines the security parameter
λ. In addition, let e : G0 × G0 → G1 denote the bilinear map, it has the properties of bilinearity and
non-degeneracy, as described in Section 3.

In this algorithm, it chooses α, β at random, α, β ∈ Zp. It outputs the Public Key (PK) and
a Master Secret Key (MSK). Here, PK is public, and MSK is kept secret, which is used when
productizing the user attribute group key.

Setup(1λ, U) → PK,MSK PK : G0, g, e(g, g),α gβ MSK : gα, β

(3) KeyGen (PK, MSK, S)

In this phase, the system will generate the user’s decryption key SKs. This algorithm takes as input
the public parameters PK, the master secret key MSK and a set of attributes S. It outputs the user’s
secret key SKs. The steps of key generation and distribution are as follows:

First, according to the user’s attribute set S, the system provides its group GIDi based on its
attribute weight. And then choose a polynomial for each threshold node tx in the tree, sending the
degree dx of the polynomial qx to be one less than the threshold value tx of that node, that is, dx = tx − 1.
Then, start with the root node R(n1, t1), choose a random value y, and set qR(0) = y. It chooses dR

other nodes of the polynomial qR randomly to define it completely. For node x, it sets qx(0) = qparent(x)

(index(x)) and chooses dx other nodes randomly to completely define qx. Next, choose a random value
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r for the user DUi with attribute set S, and then choose a random rj for each valid attribute of this user.
At last it computes the key set SK ′

S as Eq. (6):

SK
′
S =

(
D = g

α
β g

r
β , ∀j ∈ S, Dj = gr · H (att (j))rj , D

′
j = grj

)
(6)

In this part, and then, designing an embedding algorithm. It takes SK ′
S and GIDi as the input

parameters, and the final secret keys SKS are formed.

Package(SK
′
S, GIDi) → SKS

Finally, the system will distribute the key SKs to the user DUi.

(4) Encrypt (PK, M, A)

This algorithm takes the PK (public parameters), M (shared message), and A (an access structure)
as the input parameters, and it outputs the ciphertext CT. Encryption with PK and M proceeds as
follows. First, to prevent information leakage in access structure A, the group keys GID are integrated
into the access structure. In this way, it not only achieves a hidden access structure but also carries the
group key to complete the secondary decryption by the user. Then, a random value t is chosen, and
let attribute set U be the set of leaf nodes in source access structure A. The ciphertext constructed by
giving the tree access structure A’ is published below Eq. (7):

Package(A, GID) → A′ Package(M, GID) → M ′

CT = (
A′, C̃ = M ′e (g, g)

αt, C = gβt, ∀x ∈ U , Cx = gqx(0) , C ′
x = H (att (x))

qx(0)
)

(7)

(5) Decrypt (PK, CT, SKs)

The decryption algorithm consists of two sub-algorithms, one runs in the cloud server, and it
completes the partial decryption of the ciphertext, and the other runs in the DU, and decrypts the
whole by the users. It takes as input the public parameters PK, a secret key SKs and a ciphertext CT.
It outputs the message M’. If the attribute set S satisfies the access structure A, then Decrypt (PK, CT,
SKs)→M’. Otherwise, with overwhelming probability, Decrypt (.) outputs a random message. In this
phase: the decryption user gets the corresponding ciphertext, and the user decrypts it with his own key
SKs to get the plaintext message M.

For the overall encryption process, we first choose an arbitrary d-element subset. In Fig. 3, assume
that: the threshold of node A is n1 = 5 and t1 = 3, that is A (5, 3). We assume that the user’s attribute key
set contains the keys for attribute nodes a1, a2 and a4, which means that we can compute: e(g, g)rqa1(0),
e(g, g)rqa2(0) and e(g, g)rqa4(0).

Further, based on the secret sharing and the bilinear map operation, we know that Eqs. (8)–(10):

e(g, g)rqa1(0) = e(g, g)rqA(1) (8)

e(g, g)rqa2(0) = e(g, g)rqA(2) (9)

e(g, g)rqa4(0) = e(g, g)rqA(4) (10)



1940 CMC, 2023, vol.76, no.2

Suppose Lagrange coefficients of node A at x = 1 and x = 2 are �1(x), �2(x) and �4(x), then the
Eq. (11) is below:

�1 (x) = x − 2
1 − 2

· x − 4
1 − 4

�2 (x) = x − 1
2 − 1

· x − 4
2 − 4

�4 (x) = x − 1
4 − 1

· x − 2
4 − 2

(11)

Based on the Lagrange interpolation polynomial (5), we can get Eq. (12):

qA(x) = qA(1)�1(x) + qA(2)�2(x) + qA(4)�4(x) (12)

Then put x = 0 into the above equation, and the result is Eq. (13):

qA(0) = qA(1)�1(0) + qA(2)�2(0) + qA(4)�4(0) (13)

Therefore, Eq. (14) is

(e(g, g)rqA(1))�1(0) · (e(g, g)rqA(2))�2(0) · (e(g, g)rqA(4))�4(0)

= e(g, g)rqA(1)�1(0)+rqA(2)�2(0)+rqA(4)�4(0)

= e(g, g)rqA(0)

= e(g, g)s

(14)

Next step:

UnPackage(A′) → A, GID

UnPackage(SKS) → GIDi

Separating the GIDi from the user group key SKS, if GIDi /∈ GID, then the decryption is
terminated, otherwise using the secret value y of root node and access structure A, take C, D and
A into the Eq. (15), we can get M’ according to Eq. (16).

C̃/ (e (C, D) /

(∏
i∈Sx

(
e (Cx, Di) /e

(
C ′

x, D′
i

))�i ,s(0)

)

= C̃/ (e (C, D) /

(∏
i∈Sx

(e (gqx(0) , gr · H (att (x))
ri) /e (H (att (x))

qx(0), gri))
�i ,s(0)

)

= C̃/ (e (C, D) /

(∏
i∈Sx

(e (gqx(0) , gr) · e (gqx(0) , H (att (x))
ri) /e (H (att (x))

qx(0), gri))
�i ,s(0)

)

= C̃/ (e (C, D) /

(∏
i∈Sx

(e (gqx(0) , gr) · e (gqx(0) , H (att (x))
ri) /e (gqx(0) , H (att (x))

ri))
�i ,s(0)

)

= C̃/ (e (C, D) /

(∏
i∈Sx

e (g, g)
r·qx(0)·�i ,s(0)

)
= (

C̃/ (e (C, D)) · e (g, g)
rqx(0)

) = (
C̃/ (e (C, D)) · e (g, g)

rs
)

= C̃ · e (g, g)
rs

e (C, D)

(15)
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C̃ · e (g, g)
rs

e (C, D)

= M ′e(g, g)αs · e(g, g)rs

e
(

gβs, g
α
β g

r
β

)
= M ′e(g, g)αs · e(g, g)rs

e
(

gβs, g
α+r
β

)
= M ′e(g, g)αs · e(g, g)rs

e (g, g)
βs· α+r

β

= M ′e(g, g)αs · e(g, g)rs

e(g, g)αs · e(g, g)rs

= M ′

(16)

At last, Message M ′ is sent to the user DUi, by his group secret key SKS, the unpacked and
decryption function is used, and he can get the corresponding plaintext message Mi.

UnPackage(SKS) → GIDi

Decrypt(M ′, GIDi) → Mi

In the tradition ABE decryption algorithm, using the secret value y of the root node and access
structure A, take C, D and A to decrypt the ciphertext, it needs to distinguish different nodes. If
node x is a leaf node, then we can decrypt the nodes by Eq. (15), if x is a non-leaf node, it calls a
recursive decryption algorithm to proceed with the process. For all nodes z that are children of x, it
calls DecrptNode(CT, SK, z) and stores the output as Fz.

5.4 Proof of Security

In this section, we prove the security of our scheme. The security game is between a simulator W
and an adversary P, the game proceeds as follows:

Init. W runs the algorithm and P chooses the attribute set S. This challenge is divided into two
phases: one is the acquisition of legitimate GIDs, and the other is the access structure. Assume that
the system provides the adversary the attribute group GIDs based on its attribute weight, and satisfied
Pr[GIDs ∈ GID] = 1/2.

Setup. The simulator assigns the public key parameters as follows. It chooses random α, β ∈ Zp,
which we associate with the integers from 0 to p − 1, (p is the prime order of the bilinear group G0 with
generator g), and the public parameter Y = e(g, g)a, gβ are sent to the adversary. From the view P all
parameters are chosen at random as in the construction.

When the adversary P calls for the evaluation of H (attri). (Hash on any attribute string attri), a
new random value ti ∈ Zp is chosen, the simulator uses gti to response the H (attri).

Phase 1. When the adversary makes its jth key generation query for the set Sj of attributes, a new
random value r(j) is chosen from Zp and for every i < Sj, new random values r(j)

i are chosen from Zp.

The simulator computes: D = g
α
β g

r(j)
β and for each i < Sj, we have Di = gr(j) .gti .ri

(j) and D′
i = gri

(j) , these
values are passed onto the adversary.
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Suppose P makes a request for an access structure T where T(S) = 0. To generate the secret key,
W needs to assign a polynomial Qx of degree dx for every node in T. We define two function Satisfy
and Unsatisfied. Satisfy (Tx, S, λx) sets up the polynomials for the nodes of an access sub-tree with
satisfied root node, that is, Tx(S) = 1; Unsatisfy (Tx, S, gλx) sets up the polynomials for the nodes of an
access tree with unsatisfied root node, that is, Tx(S) = 0.

For each child node x’ of x, the algorithm calls: Satisfy (Tx’, S, qx(index(x’))), if x’ is a satisfied
node. Unsatify (Tx, S, gqx(index(x′))), if x’ is not a satisfied node. To give keys for access structure T, the
simulator runs Unsatify (T, S, P) to define a polynomial qx for each node x of T. For each leaf node x
of T, we know qx completely if x is satisfied, if x is not satisfied, then at least gqx(0) is known.

Simulator now defines the final polynomial Qx(·) = bqx(·) for each node x of T . Notice that this
sets y = Qs(0) = ab. The key corresponding to each leaf node is given using its polynomial as follows.
Let i = att(x).

If i ∈ S, Dx = g
Qx(0)

ti = g
bqx(0)

ti , and if i /∈ S, Dx = g
Qx(0)

ti = g
bqx(0)

bβi = g
qx(0)

βi .

Here, constructing the private keys for the access structure T and distributing the private keys for
T are identical to that in the original scheme.

Challenge. The adversary P submits two equal length messages m1, m0 to the simulator W. The
simulator flips a fair binary coin v, and encrypts mv. The ciphertext is passed to P.

Phase 2. The simulator repeated it as in Phase1.

Guess. Assume that the adversary’s advantage in this situation is ε. A submits a guess v’ of v. If
v’= v the simulator outputs u’= 0, otherwise output μ’= 1. The probability analysis under different
circumstances is shown in Table 3.

Table 3: The probability analysis

The probability in different cases The description

Pr [v �= v′ |u = 1] = 1
2

The adversary gains nothing about v where u = 1

Pr [u′ = u |u = 1] = 1
2

The simulator guesses u’= 1 when v �= v′

Pr [v = v′ |u = 0] = 1
2

+ ε The adversary sees an encryption of mν where u = 0

Pr [u′ = u |u = 0] = 1
2

+ ε The simulator guesses u’= 0 when v = v′

Synthesize the above conditions, in the second phase, the advantage of the simulator is(
1
2

Pr [u′ = u |u = 0] + 1
2

Pr

[
u′ = u |u = 1] − 1

2

)
= ε

2
. So in two-stage process, the overall advantage

of the simulator in the game is
1
2

∗
(

1
2

Pr [u′ = u |u = 0] + 1
2

Pr

[
u′ = u |u = 1] − 1

2

)
= 1

2
∗ ε

2
= ε

4
.

5.5 Experimental Results and Discussion

To evaluate the performance, this paper implements it based on CP-ABE, and selects different
security levels to test. The test was conducted on a computer with Inter (R) Core (TM) i5-6500 CPU
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3.20 GHz and 16 GB of RAM. We use IntelliJ IDEA as the integrated development environment. Java
is used as the programming language, and JPBC libraries are used to implement the operation (https://
crypto.stanford.edu/pbc/). PBC library classifies the pairs into type A, B∼G seven categories, and we
use an elliptic curve group constructed on the curve y2 = x3 + x based on type A.

Here, the safety coefficient is 80, 160, and 320 bits, respectively, and the prime order of base
point is 256, 512, and 512 bits, respectively, so there are three groups to test the performance: type
A-80-256, type A-160-512, type A-320-512. The hash function is implemented using SHA-256. The
number of given attributes (according to the attribute weight, the message hierarchy was set from 1 to
5) increases from 1 to 10. The testing went through 20 rounds, and the average value was as the final
time consumption.

(1) Key generation time at different security levels

In this experiment, we set the access policy as below: set the message hierarchy as 5, in every level,
its number of attributes changed from 1 to 10, and all the threshold is AND gate.

1© Testing the setup time in different security conditions. From the test result we know that when
we select type A, the safety coefficient is 80, and the prime order is 256 bits, its setup time is 24.442 ms,
when we select type A-160-512, the setup time is 51.754 ms, and when we select type A-320-512, the
setup time is 83.008 ms. With the increase in security level, its setup time is increasing.

2© Testing the key generated time in different conditions. We set an access policy with 5 message
hierarchies, and each message hierarchy has the same number of attributes. When each message level
has 1 attribute node, its key generation time is 20.362 ms in type A-80-256, and when each message
level has 2 attribute nodes, its key generation time is 27.405. With the increase of attribute number
in every message hierarchy, the key generation time is gradually linear increasing. In the same way,
at different security levels, the key generation time is different, the detailed information is shown in
Table 4.

Table 4: The key generation time at different security levels (Unit: ms)

Type A-80-256 Round: 10 AttrNum: 1∼10 Message Hierarchy: 5 Setup Time: 24.442

AttrNum: 1 2 3 4 5 6 7 8 9 10

KeyGen: 20.362 27.405 34.069 38.865 45.935 59.181 61.702 70.614 74.719 88.098

Type A-160-512 Round: 10 AttrNum: 1∼10 Message Hierarchy: 5 Setup Time: 51.754

KeyGen: 84.851 114.612 152.53 183.073 211.231 235.377 267.201 298.64 331.617 357.655

Type A-320-512 Round: 10 AttrNum: 1∼10 Message Hierarchy: 5 Setup Time: 83.008

KeyGen: 171.155 241.394 307.382 369.148 418.004 488.687 557.75 607.175 674.613 750.113

(2) Encryption time at different security levels

In this part, we set the encryption time under different conditions. Similar to test (1), the setup
time has not changed. We set an access policy with 5 message hierarchies, and each message hierarchy
has the same number of attributes. When each message level has 1 attribute node, its encryption time
is 43.567 ms in A-80-256, and when each message level has 2 attribute nodes, its key generation time
is 49.414 ms. With the increase of attribute number, the encryption time is gradually linear increasing.

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
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In the same way, at different security levels, the encryption time is different, the information is shown
in Table 5.

Table 5: The encryption time at different security levels (Unit: ms)

Type A-80-256 Round: 10 AttrNum: 1∼10 Message Hierarchy: 5 Setup Time: 24.442

AttrNum: 1 2 3 4 5 6 7 8 9 10

Encryp: 43.567 49.414 58.535 67.676 82.834 88.687 99.37 113.079 121.547 131.383

Type A-160-512 Round: 10 AttrNum: 1∼10 Message Hierarchy: 5 Setup Time: 51.754

Encryp: 131.594 185.984 233.809 286.286 342.525 390.447 441.926 497.866 547.624 602.87

Type A-320-512 Round: 10 AttrNum: 1∼10 Message Hierarchy: 5 Setup Time: 83.008

Encryp: 260.584 356.987 462.901 573.861 675.184 818.616 897.834 997.635 1102.793 1209.286

(3) Decryption time cost at different security levels

In this part, we set the decryption time in different conditions. Similar to test (1), the setup time
hasn’t changed. We set an access policy with 5 message hierarchies, and each message hierarchy has
the same number of attributes. When each message level has 1 attribute node, its decryption time is
39.388 ms in A-80-256, and when each message level has 2 attribute nodes, its key generation time is
47.935 ms. With the increase of attribute number, the decryption time is gradually linear increasing.
In the same way, at different security levels, the decryption time is different, the detailed information
is shown in Table 6.

Table 6: The decryption time cost at different security levels

Type A-80-256 ROUND = 10 AttrNum: 1∼10 Setup Time: 24.442

AttrNum: 1 2 3 4 5 6 7 8 9 10

Decryp: 39.388 47.935 65.861 75.386 85.688 94.269 103.679 114.23 125.317 135.518

Type A-160-512 ROUND = 10 AttrNum: 1∼10 Setup Time: 51.754

Decryp: 126.711 184.562 234.718 285.666 337.22 387.277 439.88 495.73 553.984 601.351

Type A-320-512 ROUND = 10 AttrNum: 1∼10 Setup Time: 83.008

Decryp: 233.498 343.713 446.327 548.966 652.82 740.344 840.409 946.32 1064.088 1155.175

(4) The discussion of the solution

In this part, we discuss the dataset, number of users, key size, and computation time. In the ABE
scenario, the size of the data set is associated with the shared message, which mainly comes from the
data owner, and the number of users is linked with the attribute set. In our scheme, the access rights
are refined so that users have different access perspectives to the same shared message. Regarding
ciphertext size and private key size, let G0 and G1 be two multiplicative cyclic groups of prime order
p. Let g be a generator of G0, Zp be the group {0, 1, . . . , p − 1}, and the attributes can be denoted
as {AU1, AU2, . . . AUm}. Assume that L∗ is the bit-length of the element in ∗, then the size of PK is
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3LG0 + LG1, the size of MSK is Lzp + LG0, and the length of the user key SKUi is |AUi| ∗ LG0 + LGid. The
number of group elements grows linearly with the number of attributes associated with her identity.
In terms of time complexity, attributes were grouped and weighted according to their importance of
attributes, and the access structure based on a threshold tree was constructed according to attribute
weight. Suppose there are n threshold nodes in the access structure tree, and the average operation
time to compute a threshold node is t, then in the previous ABE, the time to decrypt the root node is
n ∗ t, while in our scheme, the decryption time is t. So there is a significant improvement in the process
of getting the decryption key.

6 Conclusion

At present, CP-ABE is considered to be the ideal high-security data protection solution with pro-
tection against collusion or malicious attacks in a shared environment. But in practical applications,
the shared message needs different access perspectives for users with different permissions, for this
scenario, we proposed a lightweight new ABE scheme.

First, we presented our construction of a message security hierarchy CP-ABE scheme that uses
attribute weight as the access rank of the message, which makes the users get different levels of
messages. And then, the two-step decryption method is used in this scheme, which reduces the
computational and storage burden of the users by leveraging the computing power of the cloud. In
addition, in this scheme, the introduction of the group ID and user ID makes it possible for the audit
to track malicious users. Finally, the security proof and the experiment result show that this scheme
has good performance. ABE schemes in cloud environments have broad prospects for development
[23,24], therefore, we will continue to study how to better play the role of ABE in different application
scenarios.
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