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Abstract: This paper presents the architecture of a Convolution Neural Net-
work (CNN) accelerator based on a new processing element (PE) array called a
diagonal cyclic array (DCA). As demonstrated, it can significantly reduce the
burden of repeated memory accesses for feature data and weight parameters
of the CNN models, which maximizes the data reuse rate and improve the
computation speed. Furthermore, an integrated computation architecture has
been implemented for the activation function, max-pooling, and activation
function after convolution calculation, reducing the hardware resource. To
evaluate the effectiveness of the proposed architecture, a CNN accelerator
has been implemented for You Only Look Once version 2 (YOLOv2)-Tiny
consisting of 9 layers. Furthermore, the methodology to optimize the local
buffer size with little sacrifice of inference speed is presented in this work. We
implemented the proposed CNN accelerator using a Xilinx Zynq ZCU102
Ultrascale+ Field Programmable Gate Array (FPGA) and ISE Design Suite.
The FPGA implementation uses 34,336 Look Up Tables (LUTs), 576 Digital
Signal Processing (DSP) blocks, and an on-chip memory of only 58 KB, and
it could achieve accuracies of 57.92% and 56.42% mean Average Precession
@0.5 thresholds for intersection over union (mAP@0.5) using quantized 16-
bit and 8-bit full integer data manipulation with only 0.68% as a loss for 8-
bit version and computation time of 137.9 and 69 ms for each input image
respectively using a clock speed of 200 MHz. These speeds are expected to be
doubled five times using a clock speed of 1 GHz if implemented in a silicon
System on Chip (SoC) using a sub-micron process.
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1 Introduction
1.1 Background

CNNs are among the most popular neural network structures increasingly adopted in deep
learning image recognition and processing. The research on CNNs has enabled countless applications,
and it accomplished phenomenal improvement in accuracy [1]. However, the complexity of modern
CNN structures is rapidly increasing due to the mounting number of arithmetic computations
and memory accesses. Real-time applications of CNNs, especially for mobile applications, require
accelerators with higher execution speeds at lower power consumption. The main challenges for
designing a CNN hardware accelerator are the limited bandwidth and resources [2]. The proposed
DCA could achieve a remarkable reduction regarding memory access. The FPGA-based accelerators
that improve the performance and energy efficiency of the computation-demanding CNN became an
attractive alternative [3]. Enabling the balance of parallel computing while reducing system power
consumption could be achieved by utilizing an innovative kernel partition technique that reduces
feature maps and kernel data repetition [4]. Due to bandwidth issues and small on-chip memory size,
the performance of CNN FPGA-based accelerators is limited. Based on extensive analysis of CNN
models, the convolutional layers are computationally centric. At the same time, accessing is much
more critical in fully connected memory, so in this case, the dynamic-precision data quantization
and an effective hardware design can solve bandwidth issues and improve resource utilization [5].
Furthermore, a hardware-friendly quantization uses only integer arithmetic with power-of-two scale
factors to replace multiplication and division operations with shift operations can be utilized to reduce
the memory footprint and complexity of computations [6].

1.2 Related Work

To improve the speed and efficiency of Convolutional Neural Networks (CNNs), researchers have
proposed various CNN accelerators that utilize specialized hardware architectures. These accelerators
typically consist of numerous parallel Processing Element (PE) units. Each PE comprises a Multiplier
and Accumulator (MAC), which is heavily utilized in implementing CNN operations. The goal of
accelerator design is generally to maximize the utilization of the PEs. The authors in [7] proposed a
configurable (interleaved/elementwise for the input data) vector-wise 1-D 3 × 3 filter CNN accelerator.
This low-area design could achieve 99% hardware utilization for VGG-16. A low latency accelerator
architecture is proposed in [8], with padding skip a fine-grained column-based pipeline could reduce
the pipeline start-up time. Also, to shrink the computational time, they introduced a double signed-
multiplication correcting circuit. Furthermore, a shared buffer for the pooling unit was proposed
to reduce storage costs. As a result, they could minimize accelerator latency to (2.125×∼2.34×)
compared to previous work, increase the DSP efficiency up to 95.2%, and shrink 20.7% for BRAM
consumption, all previous results for the YOLOv2-tiny CNN model. An acceleration for various
types of neural networks was proposed in [9]. In this case, only network description files and input
images are required. They used the dynamic fixed-point for network quantization. For SqueezeNet
accelerating, they got 0.054GOPS/DSP as performance density and 5.24GOPS/W as power efficiency.
Special array architectures have been studied to efficiently utilize PE units. Systolic Array architectures
have been used to reuse the data and weight parameters and reduce repeated memory accesses [10–
13]. Many research works employed this architecture and reported reduced memory access and power
consumption [14–28]. For example, the work [14] used a systolic array without a multiplier to reduce
hardware resources. The work [15] introduced a 3D architecture of a systolic array to reduce memory
accesses. Several studies have proposed architectures for CNN accelerators that aim to minimize
overall latency by propagating data and parameters and accumulated results within the Processing
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Element (PE) units to maximize data reuse [16–18]. There has also been an effort to reduce the on-
chip memory size, such as input data memory size. When conducting convolution operation with a
large input image, upper layers require a large memory due to large input data, but deeper layers
often require smaller memory due to decreasing feature map size. This property causes a problem
of memory size mismatch for most of the architectures reusing the same memory for multiple layers.
Multiple studies have proposed partitioning large input images and feature maps [14–18] to address this
issue. Although this method can reduce the memory size, it requires additional data reloading from
Dynamic Random Access Memory (DRAM), causing a loss of data reuse efficiency. Furthermore,
as the number of needed PEs increases to achieve the speed goal for a given clock speed, the
utilization of PE hardware resources decreases. Most accelerator designs take weight parameters from
the training process conducted by the CNN software model that usually uses floating point (FP)
operations. However, FP operations’ initial weight and feature map data lead to excessive chip size
and power consumption. Therefore, optimal quantization of weight and feature map data is vital for
minimizing the chip size and power consumption. Many research works address quantization methods
for accelerator designs [2–6,16–18,27–29]. In this paper, we proposed some modifications to optimize
Yolov2-tiny. For further optimization, the trained model batch normalization parameters have been
folded into only weights and biases, which facilitate the implementation process. Furthermore, the
flooded floating-point parameters and activations were quantized to an 8-bit integer.

1.3 Paper Contribution

This paper proposes the following architecture components to meet the goal of smaller memory,
fewer repeated memory accesses, and lower hardware resources.

• Diagonal Cyclic Array Architecture is a novel systolic array structure that recycles the data
through diagonal cyclic paths through an array of PEs in a way that maximizes the data reuse
rate and the computation speed.

• In Data Recycle First In First Out (FIFO) Architecture, a group of FIFOs inserts retrieved data
to the next stage FIFO in a rotating position for data recycling. For n × n convolutional kernel,
n − 1 FIFOs and a register are employed. For example, if the kernel size is 3 × 3, 2 FIFOs and
one register are used.

• Integrated Post-Convolution Process, an integrated computation architecture for the activation
function, max-pooling, and scaling function after convolution calculation, further reduces the
hardware resource.

• Hierarchical Iteration Controller, an adaptive iteration controller that allows maximal reuse of
DCA by hierarchical iterations for input channels, feature map slices, and output channels,
offers flexibility to support various CNN.

• Weight Parameter Quantization, to reduce hardware cost and inference execution time, the
trained the 32-bit floating-point model that was optimized by folding its batch normalization
parameters and swapping the max pooling with activation functions. This optimization reduced
75% of all activation operations in the first five layers. The optimized 32-bit floating-point
parameters were quantized into an 8-bit integer.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the overall architecture of
the proposed CNN accelerator, while Section 3 describes Diagonal Cyclic Array and demonstrates
its advantages. Also, it describes Post-Convolution Process and introduces. Section 4 presents the
hierarchical iteration operation of the proposed architecture. Section 5 discusses the methodology



1668 CMC, 2023, vol.76, no.2

for 8-bit weight quantization. Finally, Section 6 demonstrates the implementation and measurement
results, followed by conclusions.

2 Overall Architecture of Proposed Accelerator

Fig. 1 illustrates the overall architecture of the proposed CNN accelerator. It consists of arrays
of Processing Elements (PEs) called DCA, data recycle FIFOs for input buffer, global input buffer
fetching a slice of input data for concurrent input channels Conv-Mem, a memory storing convolution
results integrated Post-Convolution Process (PCP) blocks that calculate Pooling, Normalization,
Activation function, and Output Memories storing the final results for individual output channels.

The accelerator receives data and weight parameters from external DRAM with a DRAM Con-
troller through a 64-bit AXI4 system bus. The accelerator requires only compact on-chip memories,
a global input buffer, and output memories for concurrent output channels, which communicate with
the external DRAM. The flowchart in Fig. 2 explains the proposed accelerator processing steps, and
the proposed accelerator configuration parameters can be found in Table 1.

Figure 1: Proposed accelerator architecture

2.1 The Proposed Diagonal Cyclic Array

This study proposes a novel Systolic Array called DCA. DCA takes sequential input data and
weight parameters from the global input memory. Then it processes Convolution filter calculation
by propagating the weight parameters in the vertical direction and the input data in the horizontal
direction. Inside a DCA, each PE computes a MAC result and propagates it in the diagonal direction
through cyclic paths of the array. In most of the existing systolic array architectures, each PE
implements a complete convolution filter calculation iteratively. In the proposed DCA, in contrast, a
string of PEs formed along each diagonal cyclic path implements each convolution filter calculation in
cooperation. The proposed DCA is composed of two levels of arrays: Upper array represents concur-
rent channel level operations, which consists of M rows × N columns in Fig. 1. Here, M indicates the
number of concurrent output channels calculated simultaneously in one iteration, whereas N denotes
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the number of concurrent input channels processed simultaneously in one iteration. The lower layer
represents kernel-level operations, which comprise a sub-array for each M × N component in the upper
array. A sub-array comprises K × K PEs, where K indicates the convolution kernel size. For example,
suppose the target CNN model needs a (5 × 5) kernel. In that case, we can configure the sub-array to
5 × 5 PEs as illustrated in Fig. 3. In this paper, to demonstrate the structure and operation of DCA,
an implementation example of CNN accelerator for YOLOv2-Tiny which uses 3 × 3 convolutional
kernels in all nine layers leading to a sub-array of size 3 × 3 (K = 3). In the example implementation,
we chose a DCA consisting of 8 rows × 4 columns = 32 kernel-level sub-arrays. The M = 8 rows of
the 32 sub-arrays produce eight concurrent output channels, while the N = 4 columns of the 32 sub-
arrays can take four input channels from the global input memory and compute their convolution
kernels simultaneously. Since the above DCA implementation simultaneously produces eight output
convolution filter results for the concurrent output channels, Conv-Mem consists of eight parallel
local memories to store the eight outputs. For the same reason, PCP Block consists of eight parallel
structures that concurrently calculate pooling, batch normalization, and activation functions for the
eight output channels. The final result of the output Channels is stored in Output Buffer.

Figure 2: Proposed accelerator flowchart

Table 1: The proposed accelerator configuration parameters

CNN model YOLOv2-tiny

PE units 288
DCA units 32

(Continued)
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Table 1 (continued)

CNN model YOLOv2-tiny

Data recycle FIFO units 4
Input buffers units 1
Convolutional memory units 8
Integrated post conv-process
units

8

Output memory units 8

Figure 3: 5 × 5 diagonal cyclic array architecture

2.2 Loading Input Buffers and FIFOs

The host CPU loads Image data and weight parameters to the external DRAM to start a new
inference process. The DRAM also stores Feature MAP (FMAP) data and configuration parameters
for each layer of the target AI network. In order to prevent stalls in pipeline cycles while loading a
burst of data from DRAM to DCA, a common approach is to first store the loaded data in the global
input buffer. This data is then transmitted to the weight memories within the DCA and the registers
in the PCP block.

Each data-recycle FIFO consists of a register and two FIFO, keeping the data from the global
buffer. In the DCA, each of the four columns of sub-arrays has a data-recycle FIFO which is shared
by the eight rows of sub-arrays in each column.

2.3 Iteration of DCA for Input Channels

The four columns of the example DCA take four Input Channel data simultaneously from the
data-recycle FIFOs, while the eight individual rows of the DCA produce eight FMAP data by sharing
the four Input Channel data. DCA then accumulates the partial output FMAP data for each output
channel in on-chip memory Conv-mem. DCA iterates the above accumulation process by taking the
next four input channels until it finishes entire input channels are taken for the current layer. For
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this paper’s running example CNN, YOLOv2-Tiny, the first layer has only three channels, while other
layers grow up to 1024 channels. In this example, CNN DCA needs only 1 iteration to finish the input
channel processing, while other layers require up to 256 iterations.

2.4 Iteration of DCA for Output Channels

Once the input channel iteration is finished for the target output channel in the current layer,
the convolution result accumulated in the corresponding address of Conv-mem is passed to the PCP
block. PCP block conducts pooling, batch normalization, and activation functions, then stores the
results in the on-chip output memory. Since the example of DCA consists of eight rows, it concurrently
accumulates eight partial output channel data in Conv-mem, followed by eight concurrent PCP results.
The eight PCP results are temporarily stored in the on-chip output memory and then moved to DRAM
through the AXI bus. For each layer, if the number of output channels is greater than the DCA’s
concurrent output channels (eight in this example), DCA conducts iterations of the above process,
including the PCP block, until the entire output channels are finished.

2.5 Iteration of DCA for Input Image Slices

For the above DCA process with input and output channel iterations, Conv-mem tends to increase
rapidly as the input image size grows. This is attributed to the nature of Conv-mem that keeps the
output FMAP results for all input channels iteratively. To limit the size of on-chip Conv-mem and
input buffer to an acceptable range for compact and low-power SoC, we introduce a notion of slice–
segmenting the input image to a set of slices of size HS × WS pixels.

3 Operation of the Proposed Architecture

This section describes the proposed accelerator architecture in detail and demonstrates its
advantages. Since the primary goal of this study is to reduce the repetition of data loading from DRAM
and therefore increase the throughput of data processing, a group of novel ideas, DCA Data recycling
FIFO, and post-convolution processes integrated to satisfy this goal in Fig. 4 we can see the block
diagram of the proposed accelerator.

Figure 4: The proposed accelerator bock diagram

3.1 Operation of Diagonal Cyclic Array

For fast Convolution operation, this paper introduces a novel structure of PE array called Diago-
nal Cyclic Array (DCA), which propagates the convolution results through the diagonal direction in a
cyclic fashion. This section describes the structure and operation of the DCA using the above example
DCA implementation for the YOLOv2-Tiny model. Fig. 5 illustrates the structure of one sub-array
of DCA, which consists of 3 × 3 PEs to calculate one kernel, while Fig. 6 gives the detailed internal
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structure of one PE. In the kernel-level sub-array, the input feature map or image data is propagated
through the horizontal direction of each row.

Figure 5: 3 × 3 diagonal cyclic array architecture

Figure 6: 3 × 3 PE architecture

The weight parameters are passed through the vertical direction of each column of the sub-array.
Unlike the conventional PE arrays, DCA has an additional path in the K diagonal directions for a sub-
array implementing a kernel of K × K size. For the example of a 3 × 3 kernel, there are three diagonal
cyclic paths, which progressively propagate the partial accumulation values of the convolution kernel
to the next PE along the three paths until 9 MAC operations for the 3 × 3 convolution kernel are
completed. Each of the three diagonal cyclic paths is denoted by three PE boxes with the same colour
in Fig. 3. For example, a blue path is denoted by three blue PEs connected by blue arrows. Each PE of
each path computes three MACs and propagates the result to the next PE, while the final PE of the path
sends the final 3 × 3 kernel result to Conv-mem. For the red path, for example, PE0 multiplies three
input image data with three weight parameters, accumulates the three MAC results, and propagates
it to PE4 in the red diagonal path. PE4 then accumulates the received value into its 3 MAC results.
Finally, PE8 gets the result from PE4 and accumulates it into its own three MAC results, completing
3 × 3 kernel computation and storing it at Conv-mem. All the PEs in the sub-array, upon completion
of the three MACs, immediately receive the next sequence of 3 input data and corresponding weights
and starts the MACs for the next kernel computation. The controller of DCA reads data from the slice
in the following order. Its read window for 3 × 3 FMAP data starts from the top left corner of the slice
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and moves down to the bottom, then the window shifts to the right by 1 pixel and then moves down.
The above read cycles are repeated until the read pointer reaches the bottom right corner of the slice.

Fig. 7a illustrates an example slice of FMAP of size 6 × 6 using a 3 × 3 kernel. Fig. 7b shows
the sequences of MACs calculated by the 9 PEs in the example sub-array of Fig. 5. As depicted in
Fig. 5b, all PEs operate in a pipelined manner and thus continuously compute MACs for the next
kernel without waiting for the completion of the current kernel. In this example sub-array, up to 7
kernel convolutions are performed simultaneously from conv1 to conv8 in Fig. 7b.

Figure 7: 3 × 3 (a) example slice of input FMAP and a 3 × 3 kernel, (b) timing table of PE’s data input
during DCA convolution

3.2 Operation of Data-Recycle FIFOs

Fig. 8 illustrates the proposed input buffer and data-recycle FIFOs connected to the sub-array
of the 3 × 3 kernel. The proposed input FIFOs substantially reduce repeated loading of the same
data from DRAM, which incurs excessive time and power consumption in conventional architectures.
When convolution of one column is performed, since data transmitted in the vertical and horizontal
directions are used in multiple PEs, there is no need for duplicate input of the input image. However,
for the next column, the same data must be loaded from DRAM up to 3 times because the previously
used two lines must be reused. This study proposes a memory structure that enables the reuse of a single
value multiple times, thus preventing the issue. The register takes input image or FMAP data from the
global input buffer in Fig. 1. The global input buffer receives a burst of input data from DRAM via
the AXI bus and forwards it to the register, which also delivers the data to FIFO2. FIFO2 also passes
its data to FIFO1. The depth of the FIFOs is configured to the column size of the input slice FMAP.
For example, the FIFO depth is set to 6 for the example FMAP size 6 × 6 for the case of Fig. 8.

Figure 8: Input FIFOs and weight buffer for a (3 × 3) sub-array
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Fig. 9 illustrates the operation of data-recycle FIFOs for the example sub-array of a (3 × 3) kernel
in Fig. 7a. When a predefined amount of data is stored in FIFO1 and FIFO2, all sub-arrays of DCA
start their convolution computations. To continuously feed a sequence of input data to the first column
of the sub-array, the three data from the register, FIFO2, and FIFO1, respectively, are also connected
to the neighbouring FIFOs, not only feeding the PEs of the first column. Steps 1 through 6 in Fig. 9
illustrate how data-recycle FIFOs provide the first 3 × 3 input data (highlighted by a red box in Fig. 7a)
to the sub-array. Each step shows how the next three input data and three weights are simultaneously
fed to the first column of the sub-array. The red arrows in Fig. 9 show the forwarding paths from
register to FIFO2 and then to FIFO1 in a way that maximizes data recycling. The dotted boxes in
Fig. 9 indicate the current read pointers that feed three data to the first column of the sub-array: PE0,
PE3, and PE6 in this example. The weights from the weight memory are also continuously fed to
the first row: PE0, PE1, and PE2 in steps 1 through 6. Using the input data and weights fed by the
data-recycle FIFOs and weight memory, the MAC operations conducted by 3 × 3 PEs are illustrated
in Fig. 9 along the cycle time. Initially, it takes a latency of 7 cycles after the first data is fed to PE0
for the first convolution to complete. The following convolution results are continuously completed
without additional latency. The latency can occur only when the (3 × 3) kernels are completed with
the first three columns of the input data slice, and the next three columns are fed. For the small slice
example (a slice of 6 × 6 pixels) in Fig. 7a, the sub-array incurs a latency of two cycles when it starts the
kernel computation for the next three columns indicated by the blue box; See the two empty results on
the bottom row of in Fig. 7b. However, for a larger slice size, the additional latency becomes negligible
in overall computation time.

Figure 9: Data-recycle FIFOs and input data flow for the sub-array of 3 × 3 kernel

Eq. (1) calculates the computation latency (in terms of the number of cycles) incurred when the
data column changes in a slice, while Eq. (2) calculates the computation latency of the convolution for
one slice after the entire data of the slice is fed to the DCA. In Eq. (2), WSlice and HSlice, respectively,
denote the width and height of the slice of input data. Constant 7 in Eq. (2) is the latency for producing
the first convolution result. Eq. (3) reveals that the effect of Eq. (1) on the latency decreases as the size
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of the slice increases. DCA executes its convolution computations while the input data is being loaded
from DRAM. The data loading time from DRAM is estimated by Eq. (4) for the example accelerator
of Fig. 1. Hence, unless the slice FMAP size is 3 × 3, the data loading time is longer than the latency of
convolution. Here, the constant 3 in Eq. (4) represents the three extra cycles for DCA to finish after the
data load is finished. This is because the (3 × 3) kernel in this example uses each data thrice. Therefore,
the above analysis leads to Eq. (5), which concludes that the slice’s height determines the convolution
latency of DCA.

Column Latency = 2 (WSlice − 1) (1)

Conv Latency = (WSlice − 2) × (HSlice − 2) + 2 (WSlice − 1) + 7 (2)

Column latency Ratio = Eq. (1)

Eq. (2)
= 2 (WSlice − 1)

(WSlice − 2) × (HSlice − 2) + 2 (WSlice − 1) + 7
(3)

NumDCA
Load = WSlice × HSlice + 3 (4)

WSlice × HSlice − 2WSlice + 9 < WSlice × HSlice + 3
2HSlice > 6
HSlice > 3

(5)

Fig. 10 compares the number of repeated data loadings for each pixel for GPU-based accelerators
and this work. In conventional accelerators based on GPUs or CPUs, to compute convolution, each
pixel data in an input slice should be repeatedly reloaded nine times for the case of using a 3 × 3 kernel,
as expressed by Eq. (6), which is illustrated in the left image of Fig. 10. However, in the proposed DCA,
as defined by Eq. (4), it can reduce data reloading time by up to nearly nine times.

NumGPU
Load = 9 × (WSlice − 2) × (HSlice − 2) (6)

Figure 10: Comparison of repeated data loadings for each pixel for GPU-based accelerators and this
work

Fig. 11 compares the number of data load cycles incurred by the proposed work with the
conventional implementations based on CPU and GPU, respectively. The proposed work is about
eight times more efficient than the GPU-based implementation, which repeatedly reads all the FMAP
data needed for convolution calculations. Furthermore, it is about 56 times more efficient than the
CPU-based implementation that frequently loads data again from DRAM for every MAC operation.
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Figure 11: Comparison of the number of data load times from DRAM: (a) Linear scale plot, (b) log
scale plot

3.3 Accumulation Operation

Through the DCA structure, it was confirmed that the slice size of FMAP determines the
convolution latency. However, since one set of DCA structures can calculate one FMAP, it takes a lot
of time to calculate all convolutions. To compensate for this, several DCAs implemented in parallel to
calculate various channels simultaneously. One approach to increasing the number of parallel input
channels is to add the DCAs to the column path. To increase the parallel output channel, again DCAs
were added, but in this case, to row way. The example DCA showed in Fig. 1 consists of 8 Rows × 4
Columns which give 32 sub-arrays leading to 288 PEs. To accumulate the convolution results of sub-
arrays in the same row, we added an adder to each sub-array which is chained through all sub-arrays
in the same row. The accumulated data from these adders in each row is stored in Conv-mem. The
output of Conv-mem is passed to the Integrated PCP block, which processes the data concurrently in
each row.

3.4 Integrated Post-Convolution Process

To reduce the number of memory accesses for pooling, batch normalization, and activation
functions and to reduce overall latency, the PCP block is integrated into a pipelined circuit. Fig. 12
illustrates the pipeline circuit. In conventional architectures, pooling is performed after batch normal-
ization and activation function, which incurs problems of unnecessarily high computation overhead
and power consumption. To prevent this problem, we change the operation order. Our architecture
conducts first pooling followed by Batch Normalization and Activation functions, significantly
reducing computation overhead because the pooling reduces the feature map by four times. We
implement a 2 × 2 Max Pooling circuit with one Max register. Max register takes the first data and then
compares this data with the following data one by one. If the following data is bigger than the previous
data, the next data replaces the maximum register’s value. The pooling stage is bypassed for the layers
that do not need pooling. For the layers that do not need pooling, the pooling stage is bypassed.
Leaky ReLU is an activation function modified from ReLU by adding a small slope coefficient for the
negative values. While YOLOv2 tiny model commonly uses 0.1 for the slope coefficient, the proposed
accelerator employs a variable slope coefficient that can be configured to facilitate improving the
accuracy performance. The proposed CNN accelerator applies quantization to weight parameters and
FMAP data. For the example YOLOv2-tiny model, we used 8-bit quantization.
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Figure 12: Pipeline architecture, (a) max pooling (b), bias addition (c), activation function, and (d)
scale function

The quantization requires a scaling process to recover the original range of the floating-point
values. After the activation function, we scale down the output FMAP data by dividing the values
by the scale factor in each layer. In most CNN models, padding is added around the input FMAP
to calculate convolutions accurately, even at the edges around the FMAP. To reduce on-chip memory
size, our padding controller inserts a 0 value instead of reading it from the memory when padding is
needed.

4 Hierarchical Iterations

The 32 sub-arrays of DCA of the example accelerator implement a small array of 8 rows × 4
columns, which can compute eight output channels with four input channels at the same time. This
can cover only a small portion compared to the convolution calculations needed to complete the target
CNN model. Therefore, DCA iterates over the input channels that exceed four channels and repeats
over the output channels that exceed eight channels in each layer. In each iteration, the temporary
convolution results are accumulated into Conv-Mem. The convolution process of each consists of
three hierarchical iterations, iterations for covering all input channels, iterations for scanning the entire
FMAP by shifting the slice, and iterations for covering all output channels.

Fig. 13 illustrates the three hierarchical iterations assuming that the current layer has 16 input
channels, an FMAP size of 54 × 52, and 32 output channels. Since the example DCA has four columns,
it can cover the 16 input channels in 4 input iterations. Assuming the slice size of 26 × 26, it can cover
the FMAP in four iterations. Since the DCA has eight rows, it can cover the 32 output channels in
four output iterations, and to cover the FMAP data in the slice, it requires four slice iterations. The
iteration parameters are programmable depending on the target CNN model. Among the three levels
of hierarchical iterations, the number of input iterations is calculated by Eq. (7).

I = Ceiling
(

The Num of total Input channels
The number of concurrent input channels

)
(7)
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Figure 13: Scanning the input FMAP by shifting the slice vertically over the input FMAP

For the example accelerator of Fig. 1, which has four concurrent input channels, each group of
four input channels concurrently produces their partial FMAPs in each iteration. The input iterations
continue until the current CNN layer input channels are covered. Fig. 14 shows the on-chip memory
occupancy ratio for each block in the accelerator example of Fig. 1. Conv-mem occupies 75% of
the total on-chip memory, as shown in Fig. 14. The size of the Conv-Mem increases as the size of
FMAP of the layer increases. However, since the size of the FMAP usually becomes smaller for deeper
layers, Conv-Mem can be well-spent if too large Conv-Mem is chosen. In order to decrease the size
of Conv-Mem, this paper proposes dividing the input image into smaller slices, performing iterative
convolutions on each slice, and generating a slice of the output feature map for each output channel.
Once all slice iterations are finished, the slice is vertically moved to the next slice in the input FMAP;
See Fig. 15.

Figure 14: On-chip memory occupancy ratio

When the slice moves, there is overlapped data between the previous slice and the current slice,
which is read multiple times (reading two times on the edges and four times on the corners) speed in
frames per second (FPS). However, Fig. 16 shows the changes in the required on-chip memory size
and the inference speed over increasing slice size. For example, if we compared the slice of 26 × 26
against the slice of 416 × 416, the on-chip memory is substantially reduced by 32 times while the
inference speed is marginally dropped only by 3%. This analysis leads to an important design decision.
The smallest slice (e.g., 26 × 26) is the best choice since the smallest slice incurs almost no loss in
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the inference speed while providing minimum on-chip memory. Eq. (8) denotes the number of slice
iterations S required to cover the entire input FMAP.

S = Input FMAP size
Slice FMAP size

(8)

Figure 15: On-chip memory occupancy ratio

Figure 16: The impact of increasing the number of PEs on (a) inference latency and (b) required
memory size

The 3rd level of the hierarchical iterations and the output iteration is conducted as follows. The
input and slice iterations are conducted over eight concurrent output channels, for example, DCA
of Fig. 1. After the input and slice iterations are completed for the current eight output channels, the
DCA starts new input and slice iterations for the following eight output channels. The output iterations
continue the above process until all output channels are covered. Eq. (9) shows how to calculate the
number of output iterations.

O = Ceiling
(

The Num of total Output Channels
The number of concurrent output channels

)
(9)

The proposed DCA can configure the number of iterations in the hierarchical iterations for a
different number of input and output channels and varying FMAP sizes in each layer. To reduce the
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on-chip memory size of the accelerator of Fig. 1, we chose a slice of 26-26, which incurs the minimum
cost at little loss of inference speed based on the analysis of Fig. 16a. Table 2 summarizes the number
of hierarchical iterations in each layer of YOLOv2-tiny implemented using the accelerator of Fig. 1.
Each column of Table 2 indicates the size of input FMAP data, the total number of input and output
channels, the input iterations, slice iterations, output iterations followed by the total number of all
iterations in each layer. The slice iteration affects the size of on-chip memory and the inference latency.
Reducing the number of iterations is necessary to decrease the inference latency. There are two ways to
minimize the total number of iterations; the first is to increase the number of parallel input channels
to reduce the input iterations. However, increasing the parallel data load from the input memory leads
to higher hardware costs.

Table 2: Parameter option of YOLOv2-tiny for this work

Layer name FMAP size Input channel Output channel I (in) S (slice) O (out) Total
iteration

L1 416∗416 3 16 1 256 2 512
L2 208∗208 16 32 4 64 4 1024
L3 104∗104 32 64 8 16 8 1024
L4 52∗52 64 128 16 4 16 1024
L5 26∗26 128 256 32 1 32 1024
L6 13∗13 256 512 64 1 64 4096
L7 13∗13 512 1024 128 1 128 16384
L8 13∗13 1024 1024 256 1 128 16384
L9 13∗13 1024 125 256 1 16 640

The second method is to increase the number of parallel output channels to reduce output
iterations. However, this method dramatically increases the size of on-chip memories, specifically,
Conv-Mem and output buff. Figs. 16a and 16b show the changes in inference latency and required
memory size when growing the number of PEs by two approaches: first, by increasing the number of
parallel input channels and second, by increasing the number of parallel output channels. Table 3(a)
shows the first approach with eight parallel output channels, while Table 3(b) shows the second
approach with four parallel output channels. For both approaches, the inference latency decreases
similarly in Fig. 16b. In contrast, the required memory increase rate drastically differs between the
two approaches. Therefore, Figs. 16a and 16b reveal that the better design decision is to increase the
number of parallel input channels rather than output channels to reduce the inference latency.

Table 3: Hardware channel options

(a) When input channel increase
PE 144 288 576 1152 2304 4608 9216 18432
Input 2 4 8 16 32 64 128 256
Output 8 8 8 8 8 8 8 8

(Continued)
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Table 3 (continued)

(b) When output channel increase
PE 144 288 576 1152 2304 4608 9216 18432
Input 4 4 4 4 4 4 4 4
Output 4 8 16 32 64 128 256 512

5 Post Training Quantization

In this work, we propose a network optimization method which includes modifying the DNN
model architecture and a straightforward, simple, yet post-training quantization methodology for
the object detection tasks. The proposed methodology can be applied to various CNN models. In
the network optimization, we use batch normalization folding to reduce computation complexity, as
shown in Eq. (10). In Eq. (10), Xconv indicates the output of the convolutional filter, E (x) represents
the mean, Var (x) is the variance, ρ is the batch normalization scaling factor, β represents shift factor
(bias) and epsilon (ε) is added for numerical stability [30].

Y = Xconv − E (x)√
Var (x) + ε

× ρ + β (10)

While the training process determines these parameters, they are constants in the inference process
[26,29]. Therefore, we can fold the batch normalization parameters (E (x), Var (x), ρ and β) into
weights and biases using Eqs. (11) and (12), which significantly reduces the hardware cost.

W ′ = W × ρ√
Var (x) + ε

(11)

To further optimize the model, we merge convolutional and batch normalization processes in one
process described by Eqs. (12) and (13).

β ′ = −E (x) × ρ√
Var (x) + ε

+ β (12)

Y =
∑

(W ′ ∗ XFMAP) + β ′ (13)

The proposed quantization method is applied to the model obtained by the folding process, and
the following steps describe the quantization method.

5.1 Data Calibration

We analyze the max/min values of each layer’s output features to determine the ranges and the
required bit-width of feature values. Then we determine the scaling factors to represent the output
feature values. For the target model, YOLOv2-Tiny, we selected a 750-input image from the Visual
Object Classes (VOC) 2007 dataset as a calibration dataset.

5.2 Outlier Removing

For the range determined above, we remove outlier weights that are out of the range. Then, we
adjust the range to keep the Mean Squared Error (MSE) for the weights obtained after the outlier
removal under a specified limit. We observed that applying this outlier-removing step before the
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quantization process could keep the performance degradation below 1% in the case of 8-bit full integer
quantization.

5.3 Model Parameters Quantization

In this step, we convert the weights and biases of the model from a 32-bit floating-point to an 8-bit
integer and calculate the corresponding scaling factors. Eqs. (14) and (15) determine the scaling factor
and quantized parameters, respectively, where n represents the number of bits, xflaot the floating-point
values, qx the per-layer scaling factor and xint the quantized integer value.

qx = (2n − 1)

max(abs(xflaot)) × 2
(14)

xint = round
(
xfloat × qx

)
(15)

5.4 Feature Data Quantization

Eq. (16) and Fig. 17 show how quantized integer feature data are determined for each layer.
Although the activation function (Leak ReLU for YOLOv2) and the scaling function (Divider)
produce fractional numbers, the fraction portion is truncated to make them integer values for
simplicity with little or no sacrifice of the accuracy. This step completes the quantization process of all
feature data and parameters, ensuring the resulting datapath hardware only needs integer operators.

Yout =
⌊

Act.
(∑

(Wint ∗ Yin) + Scaleβ × βint

)
÷ ScaleFmap

⌋
(16)

Yout =
⌊(∑

(Wint ∗ Yint) + Scaleβ × βint

)
ScaleFmap

⌋
(17)

ScaleFmap = qFmap_in × qw

qFmap_out

(18)

Scaleβ = qFmap_in × qw

qβ

(19)

(a) (b) (c)

Figure 17: Overview of full 8-bit integer quantization: (a) layers 1∼6; (b) layers 7 and 8; (c) layer 9

6 Implementation Results

To demonstrate the advantages of the proposed accelerator, we implemented the proposed
accelerator of Fig. 1 using the Xilinx Zynq ZCU102 Ultrascale+ FPGA platform. We implemented
the proposed accelerator based on the example DCA described in Fig. 1, consisting of 288 PEs. We
designed the controller for the accelerator using a compact micro-code execution unit, which offers
high programmability at a minuscule-hardware cost compared with conventional CPU cores. For the
proposed CNN accelerator, we configured the implemented accelerator for the YOLOv2-tiny model
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that was trained using the PASCAL VOC dataset. Its weight parameters and output FMAP (activation
data) are quantized into 16-bit and 8-bit integers. This model’s accuracy (mAP 0.5) evaluated in the
software framework is 57.92% and 56.42%. It was confirmed that the FPGA implementation shows
the same accuracy as the software framework in both cases. Fig. 18 shows the FPGA platform, where
the FPGA board receives image data from a Host PC, computes object detection CNN and sends
the detection result back to the Host PC. The FPGA implementation occupies 34336 LUTs, 58 kB
BRAMs, and 576 DSPs. The inference computation time for one image is 137.9 ms at an FPGA clock
frequency of 200 MHz, corresponding to 7.3 frames per second (FPS). Table 4 compares our FPGA
implementation result with prior works [8,31–33], which implement the same CNN model YOLOv2-
Tiny. The most prominent advantage of our work is that it requires minimal on-chip memory. The on-
chip SRAM (BRAM) used by our FPGA implementation are 4.4, 28.2, 37.2, and 39.8 times smaller
than the BRAM required by the work of [8,31–33], respectively. In addition, the FPGA logic size in
terms of LUT count used by our implementation is 2.45, 3.3, 2.8, and 2.5 times smaller than the works
of [8,31–33], respectively.

Figure 18: FPGA board setup and inference output of (a) VOC 2007 dataset and (b) mask/no mask
dataset

Table 4: Comparison of FPGA-based implementation

[8] [31] [32] [33] This work

Device ZC706 VC707 ZCU102 Cyclone V
PCIe

ZCU102

Frequency (MHz) 200 200 300 117 200
mAP (IoT > 0.5) (%) - 51.38 - about 1%

loss
57.92
(+0.82%)

56.42
(−0.68%)

LUT 84k 86k 95k 113k 34.3k 73.85k
DSP 900 168 609 122 576 3
BRAM (kB) 256 2308 2160 1638.4 58 37
FPS 37.04 66.56 13.9 2.94 7.3 9.65
GOPs 464.5 464.7 85.8 21.6 128 128

(Continued)
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Table 4 (continued)

[8] [31] [32] [33] This work

Parameter 8-bit Variable
bit width

16-bit fixed 16-bit
fixed

16-bit (Full
integer)

8-bit
(Full
integer)

Model YOLOv2-tiny

CMOS chip/SRAM -/- -/- -/- -/- 3.84 mm2/41.47
KB

-/-

After verifying the proposed accelerator design using FPGA, we implemented it in an SoC silicon
using the Taiwan Semiconductor Manufacturing Company (TSMC) 55 nm Complementary Metal
Oxide Semiconductor (CMOS) process. The chip area is 1.6 mm ×2.4 mm = 3.84 mm2, including on-
chip SRAM of 41.47 KB. Fig. 19 shows the complete chip layout of the SoC, where red boxes mark
SRAM blocks.

Figure 19: Full chip layout implemented in 55 nm process

7 Conclusion

This paper proposes a CNN accelerator that employs a novel architecture based on the diagonal
cyclic array (DCA), Data Recycle FIFO. An optimization of the neural network was proposed, includ-
ing modification of network architecture and integer-only quantization method that can quantize all
internal computation as well as the parameters in the memory to reduce resource consumption. While
most previous quantization methods can handle simpler models like image classification CNNs and
not a pure integer, the proposed quantization method can handle more complex models, including
object detection CNNs with only integer operations, which facilitate the data manipulation processes
with minor performance loss. The proposed architecture can substantially reduce the on-chip memory
and minimize the repeated accesses to external DRAM by maximizing data reuse, which can be
suitable for real applications such as autonomous vehicles and allowing the implementation of CNN
on resource-constrained devices like modern IoT and mobile devices. Our thorough analysis of the
accelerator confirmed that increasing its parallel input channels is more effective than increasing the
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output channels to obtain higher speeds while minimizing the memory overhead. To demonstrate
the performance of the proposed accelerator architecture, we implemented an accelerator with a
DCA of 288 PEs employing four parallel input channels and eight parallel output channels. We
verified the accelerator design using FPGA implementation for both 8-bit and 16-bit versions and
then implemented it in an SoC silicon using a CMOS 55 nm process. Comparison with prior works
unveiled that the proposed accelerator significantly reduces on-chip memory by 28.2∼39.8 times and
FPGA logic size (LUTs) by 3.3∼2.5 times.
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