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Abstract: With the rapid development of technology, processing the explo-
sive growth of meteorological data on traditional standalone computing has
become increasingly time-consuming, which cannot meet the demands of
scientific research and business. Therefore, this paper proposes the implemen-
tation of the parallel Clustering Large Application based upon RANdomized
Search (CLARANS) clustering algorithm on the Spark cloud computing plat-
form to cluster China’s climate regions using meteorological data from 1988 to
2018. The aim is to address the challenge of applying clustering algorithms to
large datasets. In this paper, the morphological similarity distance is adopted
as the similarity measurement standard instead of Euclidean distance, which
improves clustering accuracy. Furthermore, the issue of local optima caused
by an improper selection of initial clustering centers is addressed by utilizing
the max-distance criterion. Compared to the k-means clustering algorithm
already implemented in the Spark platform, the proposed algorithm has
strong robustness, can reduce the interference of outliers in the dataset on
clustering results, and has higher parallel performance than the frequently
used serial algorithms, thus improving the efficiency of big data analysis.
This experiment compares the clustered centroid data with the annual average
meteorological data of representative cities in the five typical meteorological
regions that exist in China, and the results show that the clustering results are
in good agreement with the meteorological data obtained from the National
Meteorological Science Data Center. This algorithm has a positive effect on
the clustering analysis of massive meteorological data and deserves attention
in scientific research activities.
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1 Introduction

In recent years, the volume of meteorological data generated and collected in operations and
research has grown exponentially. Analyzing and processing this data to extract valuable information
has become a key issue. Given the time required for large-scale data processing in the traditional
computing model, the development of big data technology has been rapid.
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Big data is defined as a collection of data that cannot be collected, managed, and analyzed by
conventional tools within a certain time frame. To handle such data, distributed clusters are used
instead of traditional stand-alone processing. Hadoop, a distributed system architecture developed
by the Apache Foundation, is mainly used to store massive data and analyze and compute data.
MapReduce, a programming model, is the core of Hadoop’s distributed computing model [1–3].
However, MapReduce is not designed to handle cyclic iterative data flow problems, which leads
to computational efficiency problems in data parallel reusable scenarios such as machine learning
and graph mining algorithms. Spark, as shown in Fig. 1, is mainly composed of Spark Core, Spark
Structured Query Language (SQL), Spark Streaming, Spark Machine Learning library (MLlib), and
Spark GraphX as core modules. Spark is a Resilient Distributed Dataset (RDD) computing model
based on the traditional MapReduce computing framework, which is more suitable for handling
distributed parallel computing and data reuse. Therefore, it significantly improves the operational
efficiency of data reading, writing, analysis, and mining [4,5].

Figure 1: Spark core module

In meteorology data mining, common analysis methods include regression analysis, cluster
analysis, classification analysis, and time series analysis [6]. Using the corresponding data mining
techniques can help us transform data into organized knowledge and facilitate us to mine knowledge
from the data. Data mining has contributed and will continue to contribute in our great stride from
the data age into the information age.

The work in this paper is to implement the parallelized CLARANS clustering algorithm in Spark
and select the dataset of daily values of Chinese terrestrial climate data from 1998–2018 for national
climate region classification. The obtained results have good consistency compared with previous
classifications.

2 Related Research Progress
2.1 Current Research Status of Big Data Processing Technology

Big data processing technology is a new technology that has received a lot of attention in recent
years. Among them, big data processing technologies and system platforms represented by Apache
Hadoop and Apache Spark are favored by many enterprises.

In 2004, the American company Google published a paper entitled “MapReduce: Simplified Data
Processing on Large Cluster” at the OSDI conference [7], introducing a novel parallel computing
model and technology for massive data processing. The design of MapReduce aimed to address
the parallelization of indexing and ranking of large-scale web data in search engines. In 2007, the
technical team at Apache Corporation released the first open-source version of Apache Hadoop, a
MapReduce parallel computing framework based on the Java programming language. Additionally,
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Apache Hadoop developed an open-source Hadoop Distributed File System (HDFS) based on
Google’s File System (GFS) [8], enabling the distributed storage of massive data across various nodes
in a cluster. Hadoop MapReduce’s programming model is simple and user-friendly, allowing users to
conveniently write parallelized applications for processing large data tasks using MapReduce.

Because, Since MapReduce [9] was originally designed for offline batch processing tasks, it
is not highly efficient when it comes to processing real-time tasks and large-scale problems that
require multiple iterations. As a result, academia and industry have continuously conducted research
and introduced other big data computing models. In 2013, the UC Berkeley AMP lab developed a
general-purpose parallel distributed computing framework called Spark [10]. Based on an in-memory
computing framework, Spark is 100 times faster than MapReduce in applications such as iterative
algorithms and interactive data analysis [11].

2.2 Status of Research on Parallelization of Clustering Algorithms

Currently, Spark’s MLlib library has implemented several clustering algorithms, including K-
means [12], Latent Dirichlet Allocation [13] (LDA), Power Iteration Clustering [14] (PIC), and
Gaussian Mixture Model [15] (GMM), in parallel on the Spark platform. In addition, some scholars
have conducted research on the parallelization of clustering algorithms on the Spark platform.

Mohamed Iqbal [16] proposed a Spark-based Naive Bayes training technique; unlike prior
research, this algorithm does not require any disk access. Millions of tweets have been classified using
this trained model. Experiments with clusters of various sizes reveal that the suggested strategy is
extremely scalable and cost-effective for larger data sets. It is nearly 12 times quicker than the Map
Reduce-based model and nearly 21 times faster than the Naive Bayes Classifier in Apache Mahout.
It is challenging for complex urban transportation networks to recommend taxi waiting spots for
mobile passengers because the traditional centralized mining platform cannot address the storage and
calculation problems of GPS trajectory big data. Xia et al. [17] proposed a parallel Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) optimization algorithm with the silhouette
coefficient and the pickup rate on Spark. The algorithm is named SP-DBSCAN, and it allows users
to input only one parameter to complete the distributed recommendation of the best waiting spot.
Alazzam et al. [18] proposed a parallel A∗ algorithm that uses Apache Spark to find the optimal path.
The proposed algorithm is evaluated in terms of runtime, speedup, efficiency, and cost on generated
datasets with different sizes. The generated datasets consider real terrain challenges, such as slopes
and obstacles. Hadoop Insight cluster provided by Azure has been used to run the application. The
proposed algorithm reached a speedup up to 4.85 running on six worker nodes.

There is currently limited research on the parallelization of clustering algorithms on the Spark
platform. This article focuses on the parallelization of the CLARANS clustering algorithm based on
partitioning on the Spark platform.

3 Cluster Analysis

Clustering analysis is a process of grouping a collection of data into multiple subsets consisting of
different similar objects [19–21]. Cluster analysis is used to measure the similarity between different
data and has been widely developed in mathematics, biology, meteorology, etc.
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3.1 Nearest Neighbor Measure for Cluster Analysis

The core problem in clustering methods is to measure the degree of similarity and dissimilarity
between data. We select distance measures that are widely used to calculate the dissimilarity of objects
inscribed by numerical attributes, including Euclidean distance, Manhattan distance, Minkowski
distance, and morphological similarity distance.

i = (xi1,xi2, . . . ,xip), j = (xj1,xj2, . . . ,xjp) is denoted as two objects described by p numerical
attributes. Then the distance between object i and object j can be expressed mathematically as Eqs. (1)–
(5).

(1) Euclidean distance

d (i, j) =
√(

xi1 − xj1

)2 + · · · + (
xip − xjp

)2
(1)

(2) Manhattan distance

d (i, j) = ∣∣xi1 − xj1

∣∣ + · · · + ∣∣xip − xjp

∣∣ (2)

(3) Minkowski distance

d (i, j) = h

√∣∣∣xi1 − xj1

∣∣h + · · · +
∣∣∣xip − xjp

∣∣h
(3)

The Minkowski distance is a generalization of the Euclidean distance and the Manhattan distance,
where h is a real number, and h ≥ 1. It denotes the Manhattan distance when p = 1 and the Euclidean
distance when p = 2.

(4) Morphological similarity distance

d (i, j) = (2 − ASD/SAD) × ED (4)

ASD =
∣∣∣∑p

m=1

(
xim − xym

)∣∣∣ (5)

As Eq. (4), SAD represents the Manhattan distance, and ED represents the Euclidean distance.
Eq. (5) represents the absolute value of the sum of the differences between the two vectors’ attributes.
It can be seen that when SAD/ASD = 1, that is, when the ASD distance is equal to the Manhattan
distance, the MSD distance is the Euclidean distance.

3.2 Max-Distance Criterion

The max-distance criterion is an improvement of the maximum-minimum distance algorithm,
which selects initial clustering centers based on the principle of maximum distance.

The algorithm process is shown in Fig. 2.

Step 1: Select a point near the boundary from the dataset as the initial clustering center C1, and
add it to the clustering center set C.

Step 2: Select the data point farthest from the initial clustering center C1 as the second clustering
center C2.
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Step 3: Calculate the distances between all other data points and the clustering centers C1 and C2

as shown in Eqs. (6) and (7), and obtain the minimum value among these distances.

dxy = ∥∥nx − ny

∥∥ , y = 1, 2 (6)

dx = min [dx1, dx2] , x = 1, 2 · · · , n (7)

Step 4: Select the sample with the maximum distance from Step 3, and substitute it into Eq. (8),
where θ is the determining parameter [22]. If the condition is satisfied, the corresponding sample nl is
selected as the third clustering center C3.

dl = max
x

[min [dx1, dx2]] > θ ∗ ‖n1 − n2‖ (8)

Step 5: If there are k clustering centers, calculate the distances between each sample point and the
clustering centers dxy, and check whether the condition in Eq. (9) is satisfied.

dl = max
x

[
min

[
dxy, dxz

]]
> θ ∗ ∥∥ny − nz

∥∥ (9)

Figure 2: Max-distance criterion

3.3 CLARANS Clustering Algorithm

Clustering algorithms are generally classified into two types: k-means and k-centroids. The
accuracy of the k-means clustering is often impacted by outliers, which can significantly alter the
mean values within clusters and, in turn, affect the classification of other objects in the cluster [23,24].

To address the sensitivity of the k-means algorithm to outlier points, the k-centroid algorithm
proposes that real data objects in the dataset can be used as the representative points of clusters, and
each cluster contains one representative object. The rest of the data objects in the dataset are divided
into clusters in which the representative objects are most similar to them according to the division
principle. The absolute error criterion is generally used as the partitioning principle, which is defined
as Eq. (10).

E =
k∑

i=1

∑
p∈Cj

dist (p, oi) (10)
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where E is the sum of the absolute errors of all objects p in the dataset and the representative object Oi of
Cj. The k-centroid clustering algorithm divides all objects in the dataset into k clusters by minimizing
the absolute errors.

The CLARANS algorithm is expressed as the process of finding k-centroids from a dataset of n
data objects [25]. Let {Om1, . . . ,Omi} be the set of k-centroids, as a potential solution of the CLARANS
algorithm, form a graph Gn,k of all potential solutions. Any two nodes in the graph, if only one
centroid is different, can be regarded as neighbors, and each node has k(n-k) neighbors. CLARANS
is constantly searching for a better neighbor node to replace the current node [26,27].

Assuming that the non-center point Or will replace the current center point Oj (1 ≤ j ≤ k), p is
the other non-center point and Oi denotes the nearest center point to p except Oj, the replacement will
result in the following four cost cases as shown in Fig. 3.

Figure 3: Four cases of clustering cost

(1) P belongs to the cluster represented by the centroid Oj, when dist (p, Or) ≥ dist(p, Oi), then if
the non-centroid Or replaces Oj as the centroid, p will be divided into the cluster represented by the
centroid Oi, resulting in the following cost:

Crjp = dist (p, oi) − dist
(
p, oj

)
(11)

(2) P belongs to the cluster represented by the centroid Oj, when dist (p, Or) < dist(p, Oi), then if
the non-centroid Or replaces Oj as the centroid, p will be divided into the cluster represented by the
centroid Or, resulting in the following cost:

Crjp = dist (p, or) − dist
(
p, oj

)
(12)
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(3) P belongs to the cluster represented by the centroid Oi, when dist (p, Or) ≥ dist(p, Oi), then p
does not change after the replacement and the resulting cost is as follows:

Crjp = 0 (13)

(4) P belongs to the cluster represented by the centroid Oi, when dist (p, Or) < dist(p, Oi), then
after the replacement p is divided into the cluster represented by Or, resulting in the following cost:

Crjp = dist (p, or) − dist (p, oi) (14)

In summary, the total cost incurred by replacing the current center point Oj with the non-center
point Or would be defined as Eq. (15).

C =
∑

m

Crjp (15)

The exact flow of the algorithm is shown in Fig. 4.

Figure 4: Flow chart of CLARANS algorithm

The maximum number of search neighbors (maxNeighbor) and the number of local optimal
solutions searched (numLocal) are the two input parameters of the CLARANS algorithm. The larger
the maxNeighbor, the longer the search time of the algorithm and the highest quality of the local
optimal solution. From the literature [28], it is known that the maxNeighbor is generally set between
1.25–1.5% and the numLocal is set to 2, which can achieve better clustering quality and shorter
clustering time. Therefore, the maxNeighbor is set to 1.5% of k(n-k) in this paper.

4 Experiments and Analysis of Results
4.1 Experimental Environment Construction

A private cloud cluster was built on a physical host using VMware Workstation Pro virtual
machine software, consisting of three Linux virtual machines, including one Master node and two
Worker nodes. The Master node is configured with 4 GB of RAM, 8 cores, and 50 GB of hard disk
space, and each Worker node is configured identically with 2 GB of RAM, 8 cores, and 50 GB of



2434 CMC, 2023, vol.76, no.2

hard disk space. Each node is assigned a dynamic IP address for configuration and identification. In
addition, the nodes are linked ssh-free, so that Hadoop can execute applications for each node and
start or shut down various processes. For better stability of the cluster, the major software version
numbers of each node are shown in Table 1.

Table 1: Cluster node software environment configuration

Software Version

OS CentOS 7
Java environment 1.8.0_212
Hadoop 3.0.2
Scala 2.11.8
Spark 2.3.0

4.2 Implementing Algorithm Parallelization in Spark Platform

Due to the high time complexity of the traditional CLARANS algorithm, it takes a lot of
time to process large-scale datasets. If the parallelized CLARANS algorithm can be implemented,
it can significantly reduce the algorithm running time. In this paper, we choose to develop an IDEA
environment with a Scala plug-in installed to parallelize the CLARANS algorithm. The dependencies
required by the algorithm are automatically imported through the project management tool Maven.

Compared with the stand-alone algorithm, the distributed algorithm needs to compute on
multiple machines and store the data to be processed in the distributed file system HDFS. Then
the data is preprocessed using the map and glom operators in the Spark platform. The initial cluster
centroids are randomly generated in the dataset using the sample operator, and then the initial set of
centroids is collected by the collect operator and packed into broadcast variables so that each node in
the cluster has a copy of the data backup [29,30]. The cost incurred after replacing the cluster centroids
is calculated using the mapPartitions operator partitioning, and an accumulator is used to determine
whether to perform the replacement operation.

To address the problem of local optima in clustering results caused by the selection of initial
centers and to reduce redundant computations and improve parallel efficiency, this paper proposes
the following optimizations. The paper uses morphological similarity distance as the measurement
distance and assumes an original data set dataset = {x1,x2, . . . ,xn}, where n represents the number
of original data sets, and xi represents a d-dimensional vector. First, K initial clustering centers are
selected according to the Max-distance criterion, and then the CLARANS clustering algorithm is
used to calculate the positional relationship between data points and K clustering centers, assigning
each data point to its nearest center. Next, the K centers and network spatial information are updated,
and this process is repeated until the clustering centers no longer change or the specified number of
iterations is reached.

4.3 Experimental Analysis
4.3.1 Experimental Data

According to the IPCC, 30 years is generally used as the base year for the analysis of the current
situation in climate change research. The analysis of 30 years of meteorological data can reflect the
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current climate situation well, understand the causes of climate change in the past 30 years, and provide
a scientific and reliable basis for future climate change research.

The data selected for this paper were downloaded from the China Meteorological Science Data
Sharing Network for the daily value dataset of Chinese surface climate information for 752 stations
nationwide from January 1, 1988, to December 31, 2018, where the data format was: zone station
number, year, month, day, precipitation at 20–20 h, average wind speed, maximum wind speed,
minimum wind speed, great wind speed, the wind direction of great wind speed, average home
station barometric pressure The average surface temperature, average temperature, maximum daily
temperature, minimum daily temperature, sunshine hours, average relative humidity, minimum relative
humidity.

Import all weather data into HDFS.

4.3.2 Analysis of Clustering Effects

To investigate the performance of the parallel CLARANS clustering algorithm, the datasets from
2011–2018 were used as test data and they were divided into four datasets of proportional size, as
shown in Table 2, and the data in the datasets were planned to be divided into five clusters.

Table 2: Test data set

DataSet Sample size maxNeighbor Capacity Year

DataSet1 30 million 4500 58M 1
DataSet2 60 million 9000 132M 2
DataSet3 120 million 18000 280M 4
DataSet4 240 million 36000 578M 8

The CLARANS, k-means, k-means++, and Partitioning Around Medoid (PAM) algorithms are
run 10 times on DataSet1-DataSet4, and the obtained clustering results are shown in Fig. 5 and are
analyzed for comparison. The k-means++ algorithm improves the selection of initial centroids, and
the main optimization method is to ensure that the initial cluster centroids are as far apart as possible.
The PAM algorithm is a kind of k-medoid algorithm, which has the advantages of clustering under
different distance metrics and dealing with noise and outliers. The disadvantage is that the algorithm
complexity is high, and it requires a lot of computation and storage space.

From the clustering cost distribution graph shown above, we can see that the clustering effect of the
CLARANS algorithm implemented in this paper is close to the k-means algorithm implemented on
Spark MLlib itself, and thus we can conclude that the CLARANS algorithm implemented in this paper
is effective. From the analysis of the experimental results, it can be concluded that the CLARANS
algorithm has the best clustering effect among the four algorithms mentioned above, in addition, it
has a better clustering effect on large datasets [31], is more robust, and is not affected by outlier points
or other extreme values in the data set. However, due to the random nature of the initial centroid
selection, the clustering cost results of the CLARANS algorithm fluctuate up and down each time.
Therefore, the algorithm needs to be run several times for clustering to take the average value.
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Figure 5: Distribution of clustering cost for different data sets

4.3.3 Parallel Performance Analysis

To verify the parallelization performance of the CLARANS algorithm, this section uses DataSet1-
DataSet3 to run in Spark clusters with a different number of active nodes and records the clustering
time and clustering cost of each algorithm. The results are shown in Table 3. The clustering time units
in the table in this paper are all in seconds.

Table 3: Results of the algorithm

Nodes 3 4 5

Data set Cost Time Cost Time Cost Time

DataSet1 2.19E+09 479 2.17E+09 436 2.17E+09 421
DataSet2 4.63E+09 1123 4.57E+09 972 4.59E+09 895
DataSet3 9.56E+09 2076 9.31E+09 1407 9.16E+09 1096

There are three general evaluation methods for distributed parallel algorithms, namely Speedup
analysis, Scaleup analysis, and Sizeup analysis, which are used to compare the runtime strengths and
weaknesses of parallel algorithms [32].
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Speedup is the ratio of the time consumed by the same task running in a single node and a multi-
node cluster environment, respectively. Keeping the dataset constant, the results after running the
algorithm are tested by varying the number of nodes in the cluster, as shown in Eq. (16), where T(1) is
the time consumed by the task running on a single node, and T(m) is the time consumed by the task
running on m nodes. If Speedup can maintain a linear growth with m, it means that multiple nodes
can increase the performance well.

Speedup (m) = T (1)

T (m)
(16)

As shown in Fig. 6, the acceleration ratio of the CLARANS algorithm can be calculated from
the clustering time recorded in Table 3. As can be seen from the line graph, the speedup ratios vary
across different data sets, and it is difficult to maintain a linear growth in speedup ratios for larger
data sets. As the number of active nodes in the cluster increases, the effect of parallel acceleration of
the algorithm tends to decrease. In addition, if the dataset being processed is smaller than the slice
size of 128 MB in HDFS, the computation will only occur on one node in the cluster. At this point,
increasing the number of nodes does not improve the efficiency of algorithmic parallelism, but rather
causes a decrease in efficiency due to the communication and initialization among the nodes in the
cluster. Therefore, the Spark cluster is not suitable for processing small data sets.

Figure 6: Speedup ratio line graph

4.3.4 Algorithm Application

China’s vast territory spans a wide range of latitudes and features diverse landscapes, including
high mountains in the west and low plains in the east. These geographical factors contribute to China’s
rich and varied climate, which can be divided into different types based on regional characteristics. For
instance, the eastern part of China is characterized by a monsoon climate, while the northwestern part
mostly experiences a temperate continental climate, and the Qinghai-Tibet Plateau is marked by a
highland mountain climate. By understanding the local climate through climate zoning, people can
make better use of the available climate resources and promote local development in a sustainable
manner, which has significant social, economic, and scientific implications.

In this paper, a total of 30 years of data from 752 meteorological stations across the country from
1988–2018 are taken as the clustering data, and the number of clustering centers is set k = 5, run the
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CLARANS algorithm 10 times to take the average value, the average of 23 iterations each time, the
obtained clustering center results are shown in Table 4.

Table 4: Clustering results

Feature Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Precipitation at 20–20 h (0.1 mm) 47 26 17 16 21
Average wind speed (0.1 m/s) 27 23 21 20 18
Average temperature (°C) 21.4 15.3 12.2 9.8 10.6
Daily maximum temperature (°C) 26.4 21.3 17.2 15.8 19.2
Daily minimum temperature (°C) 9.8 8.1 7.4 5.9 9.3
Sunshine hours (h) 6.2 6.1 6.3 6.8 7.4
Average relative humidity (%) 81 72 59 35 32

As shown in Table 5, the representative cities in each of the five climate regions were selected and
the local annual average meteorological data were found from the National Meteorological Science
Data Center. Through comparative analysis, the weather data of the center point clustered by the
CLARANS algorithm and the annual average weather data of the representative cities in the five
climate regions match, which proves that the CLARANS algorithm implemented in this paper has
good applicability to the weather data and has certain practical guidance significance for the research
of climate region classification.

Table 5: Represents the annual average meteorological data of the city

Climate regions City Average annual
precipitation (mm)

Sunshine
hours (h)

Average
temperature (°C)

Average
humidity (%)

Tropical monsoon climate Haikou 1696.6 1997 24 86
Subtropical monsoon
climate

Nanjing 1106 1933 15.4 76

Temperate monsoon
climate

Beijing 600 2476 13.6 57

Temperate continental
climate

Yinchuan 200 2767 8.5 26

Highland mountain
climate

Lasa 510 3000 7.4 12

5 Conclusion

With the increasing amount of meteorological data being generated, traditional stand-alone
computing systems are no longer sufficient to handle the large-scale data processing and analysis
required in meteorological research and applications. The adoption of big data distributed parallel
computing technology can significantly improve the efficiency and accuracy of meteorological data
processing and mining, enabling more accurate weather forecasting, climate modeling, and disaster
prevention and mitigation.
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This study introduces the Hadoop cloud computing platform and Spark computing framework
under Apache. The CLARANS clustering algorithm is parallelized in Spark platform using Scala
programming language. In this paper, the morphological similarity distance is adopted as the sim-
ilarity measurement standard instead of Euclidean distance, which improves clustering accuracy.
Furthermore, the issue of local optima caused by an improper selection of initial clustering centers is
addressed by utilizing the max-distance criterion, and the k-means, k-means++, and PAM algorithms
are introduced for comparison. It is found that the CLARANS algorithm has the best operational
efficiency and clustering accuracy of the four algorithms. The CLARANS algorithm is more robust in
handling large data sets and can reduce the interference of outlier points in the data set on the clustering
results. Spark clusters are also built and the parallelization performance of the CLARANS algorithm
is verified by computational speed-up ratio in the clusters. The CLARANS algorithm is applied to
China’s climate region classification, and the analysis of the clustering results proves the feasibility
and practicality of the algorithm. This algorithm has a positive effect on the clustering analysis of
massive meteorological data and deserves attention in scientific research activities.

Since the initial centroid selection of the CLARANS algorithm is random, it is easy to get the
local optimal solution, and in future research, the initial centroid selection can be optimized by genetic
algorithms to improve the clustering performance. Meanwhile, the time complexity of the CLARANS
algorithm is high, and the idea of grid clustering can be introduced in the next step to optimize the
time complexity of the algorithm.
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