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Abstract: Recently, computation offloading has become an effective method
for overcoming the constraint of a mobile device (MD) using computation-
intensive mobile and offloading delay-sensitive application tasks to the remote
cloud-based data center. Smart city benefitted from offloading to edge point.
Consider a mobile edge computing (MEC) network in multiple regions. They
comprise N MDs and many access points, in which every MD has M indepen-
dent real-time tasks. This study designs a new Task Offloading and Resource
Allocation in IoT-based MEC using Deep Learning with Seagull Optimiza-
tion (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique
addresses the resource management issue in the MEC server, which enables
an optimum offloading decision to minimize the system cost. In addition, an
objective function is derived based on minimizing energy consumption subject
to the latency requirements and restricted resources. The TORA-DLSGO
technique uses the deep belief network (DBN) model for optimum offloading
decision-making. Finally, the SGO algorithm is used for the parameter tuning
of the DBN model. The simulation results exemplify that the TORA-DLSGO
technique outperformed the existing model in reducing client overhead in the
MEC systems with a maximum reward of 0.8967.
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1 Introduction

The Internet of Things (IoT) has become gradually substantial in daily life as information
technology has advanced. The interrelated device collects and exchanges various information among
them via a current transmission network interconnected through different IoT nodes [1,2]. A variety
of IoT applications might offer users fine-grained and highly precise network facilities. In such cases,
the IoT technique is interconnecting a growing number of devices and sensors, which might produce
massive quantities of information that may need additional processing, which offer intellect to the
service providers and customers [3]. All information should be uploaded to a central server in typical
cloud computing (CC), and the outcomes should be transferred back to the devices and sensors after
processing [4,5]. Such a technique places various constraints on the network, particularly based on the
resource and bandwidth costs for the information broadcast [6]. Fig. 1 depicts the overview of task
offloading in the mobile edge computing (MEC) method.

Figure 1: Overview of task offloading in the MEC model
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Moreover, once the information quantity is superior, the network’s performance will deteriorate
[7]. MEC offers storage and computation functions at the edge network closer to the client. Compared
to conventional CC, MEC decreases the communication latency of the user; however, it mitigates
the load and congestion of the central network [8,9]. As a key technique in MEC, computational
offloading could efficiently alleviate the mismatch between the communication and computing
abilities of task load and terminal devices [10].

Even though MEC offloading could efficiently increase the efficiency of the wireless network [11],
it could not meet the service requirement of each device because of the constraints of computational
resources of the MEC server in certain hotspots [12]. The CPU utilization of mobile devices is idle
or lower, resulting in inefficient usage and wasted resources to the specific range. Device-to-device
(D2D) transmission is a novel technique, which enables the terminal device to directly interact via
shared resources controlled by the base station (BS) [13,14]. D2D transmission might decrease BS and
transmission delay; however, it saves energy consumption and expands the transmission range. Based
on this, researcher workers incorporated D2D with the MEC scheme to improve the efficiency of the
user offloading through the suitable computational offloading technique [15].

Tan et al. [16] examined the allocation of communication resources, offloading decisions, relation-
ship decisions, and allocation of computational resource problems in C-MEC. The delay-sensitive task
of the user is locally calculated and offloaded to MEC servers or collaborative devices. The objective
is to minimize the mobile user’s overall power utilization under the delay constraints. The problems
are expressed by the mixed-integer nonlinear programming (MINLP) that includes the allocation of
computational resources, the joint optimization of task offloading decision, relationship decision,
and subcarriers and energy allocation. Deng et al. [17] proposed the autonomous partial offloading
scheme for the delay-sensitive computational task in multiple-user industrial IoT (IIoT) MEC systems.
The primary objective is to offer offloading facilities with minimal delay. Particularly, the Q-learning
mechanism is implemented for providing a discrete partial offloading decision.

Chen et al. [18] proposed a two-stage alternative technique based on sequential quadratic
programming (SQP) and deep reinforcement learning (DRL). In the upper level, provided the assigned
CPU frequency and broadcast power, the cache and task offloading decision problems are resolved
using the deep Q-network (DQN) model. In the lower level, CPU frequency distribution and the
optimum communication power with the cache and offloading decisions are attained through the SQP
method. Zhu et al. [19] examined task offloading and joint cloudlet deployment problems to diminish
the task response delay, user power utilization, and the number of deployed cloudlets.

Dai et al. [20] recommended an effectual offloading structure related to DRL for MEC with edge-
CC collaboration. In contrast, the computation-intensive task is locally offloaded or implemented to
the cloud server. By conjointly bearing in mind: i) the dynamic edge-CC platform; ii) faster offloading
decision, we influence DRL to minimalize the processing delay of tasks by efficiently incorporating
the cloud server, the computational resources of vehicles, and edge servers (ESs). Particularly, a DQN
is exploited to learn optimum offloading schemes adaptively. In [21], to minimalize the overhead of
fog computing networks, involving the energy consumption and task process delay, when preserving
the quality of service (QoS) requirement of distinct kinds of ID, the study proposed a QoS-aware
resource allocation technique that cooperatively considers the relationship between IDs and fog nodes
(FNs), computation resource allocation and communication to enhance the offloading decision when
reducing the network overhead.

This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep
Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO
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technique addresses the resource management issue in the MEC server, which enables an optimum
offloading decision to minimize the system cost. In addition, an objective function is derived based
on minimizing energy consumption subject to the latency requirements and restricted resources.
The TORA-DLSGO technique uses the deep belief network (DBN) model for optimum offloading
decision-making. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The
simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in
reducing client overhead in the MEC systems.

The rest of the paper is organized as follows: Section 2 introduces the proposed model and
Section 3 offers the experimental validation. Finally, Section 4 concludes the study.

2 The Proposed Model

In this study, we have developed a new TORA-DLSGO algorithm for task offloading and resource
allocation in the IoT-based MEC environment. The proposed TORA-DLSGO technique addressed
the resource management issue in the MEC server, which enables an optimum offloading decision to
minimize the system cost. In addition, an objective function is derived based on minimizing energy
consumption subject to the latency requirements and restricted resources.

2.1 Communication Model

MES is based on the telecommunication substructure, namely Long-Term Evolution (LTE) or BS.
The mobile drones (MDs) such as drones, smartphones, robots, and tablets are connected to the edge
computing controls at the LTE or BS in the nearby region (position) to the computational offloading.
Consider that the MEC network (MECN) exists in multiple regions comprising multiple APs, multiple
ES, and n MDs represented as n = {1, 2, . . . , n}. The MD could interconnect to the MECN via a
mobile network or access point. Based on a specific parameter, including response time, energy con-
sumption, ESs’workload, or latency, the MD must find an effective position in the network to carry out
offloading. The offloading performance is characterized by A = {a1, a2, . . . , an}, based on offloading
decision, whereby Xn indicate the offloading decision Xn = {0, 1, 2, 3} (local computing: Xn = 0 or
nearby the ES: Xn = 1, neighbouring to the ES: Xn = 2, remote cloud: Xn = 3). The computing delay
and bandwidth Bn based on processing frequency fn can impact the offloading decision.

The transmission bandwidth amongst MDs and offloading positions are represented as
Be, Ba and Bc. Furthermore, the overall transmission delay for the specific MD can be represented
as Tn. Furthermore, pt

n indicates the power utilization for tasks, and pr
n shows the receiving power

utilization. Thus, based on specific variables namely energy consumption, ESs’ workload, response
time, or latency, the MD need to find d an influential position (nearby the ES or nearby to the remote
cloud or ES) for offloading the process. Finally, afterwards, the offloading task to the adjacent ES or
nearby ES was finished, and an effective resource allocation technique was mandatory on the ES.

2.2 Task Modeling

Consider that every MD has M independent huge real-time task that is remotely implemented
in the MEC network or locally implemented in the MD by the computational offloading [22].
Consequently, a task could not be separated into subtasks to be processed in several devices. Task size
is represented as Dn (transmitted data size), and Rn represents the computational resource needed to
serve these tasks (CPU cycle number). Thus, Dn and Rn are positively related as Rn = θDn, θ constant.
The task is implemented on the MEC network or locally implemented on the MD, and Dn remains
unchanged.
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2.3 DBN-Based Decision Making

In the presented TORA-DLSGO technique, the DBN model is used for optimum offloading
decision-making purposes. The DBN is encompassed of restricted Boltzmann machine (RBM) and
backpropagation neural network (BPNN) [23]. The training model was detached into pre-training and
finetuning. The former train the RBM in unsupervised means, whereas the later fine-tunes the bias
and weight parameters of the pretrained method via executing the BP technique. The DBN is mainly
encompassed by RBM and is derived from the energy function of thermodynamics. Fig. 2 illustrates
the infrastructure of DBN. Furthermore, RBM is composed of the upper layer as a hidden layer and
the lower layer as a visible layer. The energy model of RBM can be formulated using the following
expression:

E (v, h|θ) = −
∑I

i=1
aivj −

∑J

j=1
bjhj −

∑I

i=1j

∑J

=1
wijvihj (1)

Figure 2: Architecture of DBN

From the expression, I and J correspondingly indicate the number of nodes in the visible and
hidden neurons, v = (v1, v2 . . . , vi) and h = (

h1, h2 . . . , hj

)
correspondingly refer to the state of visible

and hidden neurons, θ = {
wij, ai, bj

}
specifies the module parameter of RBM, wij denotes the weight

of i-th and j-th nodes of the visible and hidden neurons, ai specifies the bias of i-th nodes of visible
state. Bj indicates the bias of j-th neurons of the hidden layer. The joint possibility distribution can be
obtained according to the energy function of RBM:

p (v, h|θ) = e−E(v,h|θ)

Z (θ)
(2)

From the expression: Z (θ) = ∑
v,h e−E(v,h|θ) shows the mean normalization factor. The likelihood of

hj hidden neurons and vi the visible neurons are activated by:

P
(
hj|v

) = σ
(

bj +
∑I

i=1
Wijvi

)
(3)

P (vi|h) = σ
(

aj +
∑J

j=1
Wijhj

)
(4)

Now, σ (·) represent the activation function. To enable the neural network (NN) for resolving
complex problems, it is important to add a nonlinear factor to the NN using the activation function.
When training the RBM, the highest probability obtains the parameter set θ = {

wij, ai, bj

}
, and the

trained dataset is exploited for RBM training to accomplish the highest possible function is formulated
below:
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L (θ) =
∏N

l=1
L (v|θ) =

∏N

l=1
p (v) (5)

Now, N shows the number of instances. Furthermore, the random gradient rise method is
exploited to calculate the derivation of the parameter of the highest probability function, including
the bias and weight of every node in the following:

∂lnL
∂wij

=
∑N

l=1

[
P

(
hj = 1|vl

)
vl

i −
∑

v
P (v) P

(
hj = 1|v)

vi

]
(6)

∂lnL
∂ai

=
∑N

l=1

[
vl

i −
∑

v
P (v) vi

]
(7)

∂lnL
∂bj

=
∑N

l=1

[
P

(
hj = 1|vl

) −
∑

v
P (v) P (hi = 1|v)

]
(8)

2.4 Parameter Optimization

Finally, the SGO algorithm is used for the parameter tuning of the DBN model. SGO was based
on the migration and attacking performance of seagulls [24]. The mathematical process of attacking
and migrating the prey was determined in the following. The migration system stimulates the set of
seagulls that move in every place. At this point, the seagulls can accomplish 3 conditions: To avoid
collision betwixt neighbors (that is, other seagulls), an added parameter A was utilized to assess a
novel search position.
→
Cs = A × →

Ps (x) (9)

In which x denotes the existing iteration in the subsequent,
→
Cs implies the search agent position

which could not collide with another searching agent,
→
Ps denotes the existing search agent position.

A = fc − (x × (fc/Maxiterαtion)) (10)

where: x = 0, 1, 2, . . . Maxiteration

Wherein fc represents the control of the frequency of A using slowly minimizing in fc to 0. At this
point, the value of fc is set to 2. Then avoiding the collision betwixt neighbors, the searching agent
moves to a better neighbor direction.
→
Ms = B ×

(→
Pbs (x) − →

Ps (x)
)

(11)

Assume
→
Ms be the search agent and place

→
Ps to better adequate search agent

→
Pbs (viz., appropriate

seagulls). The performance of B was assigned arbitrarily using responsible to appropriate balancing
betwixt exploitation as well as exploration. B can be measured as:

B = 2 × A2 × rd (12)

During this formula, rd exemplifies an arbitrary integer that lies between zero and one. Eventually,
the search agent upgrades their place nearby to a better search agent.
→
Ds =

∣∣∣
→
Cs + →

Ms

∣∣∣ (13)
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Consider
→
Ds to be the distance betwixt the better appropriate searching agent and searching agent

(viz., better seagull which fitness value is least). The exploitation step concentrates on utilizing the
experience and history of the searching method. In prey attacking, the spiral performance occurs in
the air. Seagulls can change the angle and attack speed from the migration. It can be remembered as
altitude with wing and weight. The x, y, and z planes can be provided in the subsequent.

x′ = r × cos (k) (14)

y′ = r × sin (k) (15)

z′ = r × k (16)

r = u × ekv (17)

wherein r defines the radius of all the turns of spirals, k distinguishes the arbitrary value in[
0 ≤ k ≤ 2A

]
. u and v imply the constant to define the spiral shape, and e symbolizes the base

of the natural logarithm. It could be measured in the subsequent formula:
→
Ps (x) =

(→
Ds × x′ × y′ × z′

)
+ →

Pbs (x) (18)

At this point,
→
Ps (x) supplies the optimum result and upgrades another searching agent’s place.

Based on the abovementioned communication and computation techniques, the energy consumption
and the overall time consumption are evaluated as follows:

tn = αn · (
tup

n + tMEC
n

) + (1 − αn) · tIoT
n (19)

en = αn · eup
n + (1 − αn) · eIoT

n (20)

The mathematical modelling is used to minimize the energy utilization of every IoT device
subjected towards the limited resources and the latency requirement:

min
Bn′ fn′αn

�N
n=1en s.t.

(c1) tn ≤ T

(c2)
∑N

n=1
Bn ≤ B (21)

(c3)

N∑
n=1

fn ≤ FMEC

(c4) αn ∈ {0, 1}
Now FMEC shows the overall computation resources of the MEC server [25]. For these constraints,

constraint (c1) shows that the implementation time of IoT devices n could not exceed the delay
threshold to guarantee the QoE. Considering that the implementation time of IoT tasks is within the
delay threshold, a satisfactory user experience could be attained. For instance, in the community access
control technique, when the delay threshold of face detection techniques is 0.1 s, the user experience is
fulfilled if the face detection is finished within 0.1 s. Users have similar QoE to complete face detection
within 0.1 and 0.01 s; it is optional to pursue a low processing time that is worthless in the real-time
scene. Constraint (c2) shows that the number of assigned sub-bandwidth could not surpass the overall
bandwidth of BS. Constraint (c3) represents that the computational resource assigned to every IoT
device through the MEC server could not surpass the overall computational resource of the MEC
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server. Constraint (c4) represents that IoT device tasks are processed on the MEC server or IoT device
n. When αn = 0, the task of IoT devices would be processed on IoT devices. When αn = 1, the task of
IoT devices would be offloaded to the MEC server.

3 Results and Discussion

The experimental study of the TORA-DLSGO model is investigated in detail. Table 1 and Fig. 3
report an overall convergence rate (CR) examination of the TORA-DLSGO model with other models
such as DQN, Deep Deterministic Policy Gradient (DDPG), and fuzzy logic based DDPG (FL-
DDPG) on distinct episodes. The resultant values indicate that the TORA-DLSGO model reaches
optimal CR values under each episode.

Table 1: CR analysis of TORA-DLSGO approach with other techniques under distinct episodes

Convergence rate

Episode DQN DDPG FL-DDPG TORA-DLSGO

2000 0.4384 −2.4226 −2.7219 −0.7592
4000 0.4384 −2.0234 −1.0919 −0.2935
6000 0.7710 −0.5264 −0.1604 0.1057
8000 0.3718 −0.4266 0.2388 0.3718
10000 0.4716 −0.2935 0.4051 0.5049
12000 0.4051 −0.1604 0.3386 0.4051
14000 0.2720 0.0392 0.4384 0.5382
16000 0.5714 −0.0274 0.2055 0.5049
18000 0.5382 −0.0606 0.2388 0.4051
20000 0.2720 0.1390 0.2720 0.8708
22000 0.6380 −0.2935 0.0392 0.6380
24000 0.7710 0.1057 0.1390 0.4384

Fig. 4 represents the reward analysis of the TORA-DLSGO model under different aggregative
intervals. The results highlighted that the TORA-DLSGO model had obtained improved performance
with effective reward values. In addition, the TORA-DLSGO model has accomplished increasing
reward at 30000 aggregation intervals.

Table 2 and Fig. 5 exhibits a comparative reward study of the TORA-DLSGO model with other
existing models [25]. The results portrayed the improvements of the TORA-DLSGO model with other
models under all bandwidth (BW). For instance, with BW of 5, the TORA-DLSGO model reaches
an improving reward of 0.8196, whereas the random, greedy, DQN, DDPG, and FL-DDPG models
attain degrading reward values of 0.5604, 0.5616, 0.7001, 0.7515, and 0.7623, respectively. At the same
time, with BW of 10, the TORA-DLSGO technique reaches an improving reward of 0.9832 while
the random, greedy, DQN, DDPG, and FL-DDPG models attain degrading reward values of 0.5807,
0.9247, 0.9438, 0.9605, and 0.9677 correspondingly. At the same time, with BW of 5, the TORA-
DLSGO approach reaches an improving reward of 0.9952, whereas the random, greedy, DQN, DDPG,
and FL-DDPG methods attain degrading reward values of 0.5819, 0.9856, 0.9880, 0.9904, and 0.9952
correspondingly.
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Figure 3: CR analysis of TORA-DLSGO approach under distinct episodes

Figure 4: Reward analysis of TORA-DLSGO approach under different aggregative interval

Table 2: Reward analysis of TORA-DLSGO approach with other systems under distinct bandwidth

Reward
Bandwidth Random Greedy DQN DDPG FL-DDPG TORA-DLSGO

5 0.5604 0.5616 0.7001 0.7515 0.7623 0.8196
6 0.5700 0.6058 0.7312 0.7718 0.8542 0.8948
7 0.5676 0.6858 0.7682 0.7945 0.8889 0.9331

(Continued)
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Table 2 (continued)

Reward
Bandwidth Random Greedy DQN DDPG FL-DDPG TORA-DLSGO

8 0.5783 0.7670 0.8530 0.9068 0.9295 0.9582
9 0.5831 0.8530 0.9008 0.9426 0.9534 0.9773
10 0.5807 0.9247 0.9438 0.9605 0.9677 0.9832
11 0.5807 0.9785 0.9809 0.9785 0.9844 0.9904
12 0.5819 0.9856 0.9880 0.9904 0.9904 0.9952

Figure 5: Reward analysis of TORA-DLSGO methodology under distinct bandwidth

A brief set of energy consumption (ECM) inspection of the TORA-DLSGO model is examined
under distinct BW values in Table 3 and Fig. 6. The obtained results pointed out the enhanced efficacy
of the TORA-DLSGO model under each BW value. For instance, with BW of 5, the TORA-DLSGO
model results in minimalized ECM of 2.0389, whereas the random, greedy, DQN, DDPG, and FL-
DDPG models reach maximized ECM of 5.8015, 5.8015, 3.6821, 3.0678, and 2.7914, respectively. With
BW of 10, the TORA-DLSGO technique results in minimalized ECM of 0.1653 while the random,
greedy, DQN, DDPG, and FL-DDPG models reach maximized ECM of 5.3561, 0.9331, 0.7488,
0.5492, and 0.3342 correspondingly. Similarly, with BW of 12, the TORA-DLSGO technique results in
decreased ECM of 0.0578, whereas the random, greedy, DQN, DDPG, and FL-DDPG models reach
maximized ECM of 5.4636, 0.3956, 0.3035, 0.2267, and 0.1653 correspondingly.
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Table 3: ECM analysis of TORA-DLSGO methodology with other systems under distinct bandwidth

Energy consumption

Bandwidth Random Greedy DQN DDPG FL-DDPG TORA-DLSGO

5 5.8015 5.8015 3.6821 3.0678 2.7914 2.0389
6 5.6018 5.0029 3.0832 2.5917 2.1617 1.2403
7 5.5865 3.7436 2.6992 2.2846 1.5935 0.9178
8 5.3561 2.6992 1.8546 1.3631 1.0406 0.3956
9 5.4022 1.5935 1.0713 0.9178 0.6567 0.2574
10 5.3561 0.9331 0.7488 0.5492 0.3342 0.1653
11 5.4022 0.5799 0.4110 0.3495 0.2267 0.1038
12 5.4636 0.3956 0.3035 0.2267 0.1653 0.0578

Figure 6: ECM analysis of TORA-DLSGO method under distinct bandwidth

Table 4 and Fig. 7 show a comparative analysis of the TORA-DLSGO technique with other
existing models. The results portrayed the improvements of the TORA-DLSGO approach with other
models under all delay thresholds (DET). For instance, with a DET of 80, the TORA-DLSGO
technique achieves an improving reward of 0.5862. At the same time, the random, greedy, DQN,
DDPG, and FL-DDPG models attain degrading reward values of 0.4178, 0.4913, 0.4887, 0.4991,
and 0.5519 correspondingly. Simultaneously, with DET of 90, the TORA-DLSGO approach attains
an improving reward of 0.8352 while the random, greedy, DQN, DDPG, and FL-DDPG systems
accomplish degrading reward values of 0.4900, 0.5842, 0.6190, 0.6667, and 0.8111 correspondingly.
Concurrently, with DET of 100, the TORA-DLSGO model attains an improving reward of 0.8967,
whereas the random, greedy, DQN, DDPG, and FL-DDPG methods attain degrading reward values
of 0.5661, 0.6976, 0.7389, 0.8034, and 0.8743 correspondingly.
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Table 4: Reward analysis of TORA-DLSGO methodology with other systems under distinct delay
threshold

Reward

Delay threshold Random Greedy DQN DDPG FL-DDPG TORA-DLSGO

80 0.4178 0.4913 0.4887 0.4991 0.5519 0.5862
85 0.4733 0.5184 0.5481 0.6061 0.6332 0.6712
90 0.4900 0.5842 0.6190 0.6667 0.8111 0.8352
95 0.5249 0.6125 0.7067 0.7144 0.8318 0.8654
100 0.5661 0.6976 0.7389 0.8034 0.8743 0.8967

Figure 7: Reward analysis of TORA-DLSGO approach under distinct delay threshold

A brief set of delay (DEL) inspections of the TORA-DLSGO approach is inspected under distinct
IoT index values in Table 5 and Fig. 8. The attained outcomes pointed out the superior efficiency of
the TORA-DLSGO technique under each IoT index value. For example, with an IoT index of 1,
the TORA-DLSGO approach results in minimalized DEL of 0.0434. At the same time, the random,
greedy, DQN, DDPG, and FL-DDPG methods attain the highest DEL of 0.0992, 0.0677, 0.0759,
0.0552, and 0.0853 correspondingly. Along with that, with an IoT index of 5, the TORA-DLSGO
method results in decreased DEL of 0.0227, whereas the random, greedy, DQN, DDPG, and FL-
DDPG models reach the highest DEL of 0.0316, 0.0989, 0.0874, 0.0722, and 0.0675 correspondingly.
Similarly, with an IoT index of 9, the TORA-DLSGO model results in a reduced DEL of 0.0230. In
contrast, the random, greedy, DQN, DDPG, and FL-DDPG approaches obtain maximized DEL of
0.0992, 0.0997, 0.0798, 0.0811, and 0.0709 correspondingly.
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Table 5: Delay analysis of TORA-DLSGO approach with other systems under distinct IoT index

Delay

IoT index Random Greedy DQN DDPG FL-DDPG TORA-DLSGO

0 0.0311 0.0533 0.0300 0.0363 0.0287 0.0196
1 0.0992 0.0677 0.0759 0.0552 0.0853 0.0434
2 0.0992 0.0314 0.0675 0.0808 0.0772 0.0224
3 0.0287 0.0651 0.0539 0.0992 0.0921 0.0214
4 0.0997 0.0952 0.0780 0.0850 0.0806 0.0227
5 0.0316 0.0989 0.0874 0.0722 0.0675 0.0227
6 0.0306 0.0992 0.1000 0.0989 0.0523 0.0243
7 0.0329 0.0989 0.0850 0.0575 0.0541 0.0332
8 0.0984 0.0994 0.0657 0.0568 0.0774 0.0269
9 0.0992 0.0997 0.0798 0.0811 0.0709 0.0230

Figure 8: Delay analysis of TORA-DLSGO approach under distinct IoT index

4 Conclusion

In this study, we have developed a new TORA-DLSGO algorithm for task offloading and
resource allocation in the IoT-based MEC environment. The proposed TORA-DLSGO technique
addressed the resource management issue in the MEC server which enables an optimum offloading
decision to minimize the system cost. In addition, an objective function is derived based on the
minimization of energy consumption subject to the latency requirements and restricted resources. In
the presented TORA-DLSGO technique, the DBN model is used for optimum offloading decision-
making purposes. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The
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simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in
the reduction of client overhead in the MEC systems. In future, metaheuristic-based task scheduling
schemes can be designed to optimize makespan in the IoT-based MEC environment.
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