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Abstract: In this article, a comprehensive survey of deep learning-based (DL-
based) human pose estimation (HPE) that can help researchers in the domain
of computer vision is presented. HPE is among the fastest-growing research
domains of computer vision and is used in solving several problems for
human endeavours. After the detailed introduction, three different human
body modes followed by the main stages of HPE and two pipelines of two-
dimensional (2D) HPE are presented. The details of the four components of
HPE are also presented. The keypoints output format of two popular 2D HPE
datasets and the most cited DL-based HPE articles from the year of break-
through are both shown in tabular form. This study intends to highlight the
limitations of published reviews and surveys respecting presenting a systematic
review of the current DL-based solution to the 2D HPE model. Furthermore,
a detailed and meaningful survey that will guide new and existing researchers
on DL-based 2D HPE models is achieved. Finally, some future research
directions in the field of HPE, such as limited data on disabled persons and
multi-training DL-based models, are revealed to encourage researchers and
promote the growth of HPE research.

Keywords: Human pose estimation; deep learning; 2D; dataset; models; body
parts

1 Introduction

HPE is among the fastest-growing research domains of computer vision used in medical imaging,
virtual reality, sports analysis, human-robot interaction [1], activity recognition [2], object detection,
surveillance, human-computer interactions and so on. It is among the attractive research domains
of computer vision [3]. HPE is a task that intends to localize the human body joints in images and
videos [4]. The impact in key points recognition and image segmentation was first discovered when
the decision tree algorithm was applied to computer vision and became one of the key elements (and
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with a huge volume of artificial training data) in the breakthrough success of human pose estimation
from Kinect depth image [5].

The located human body joints or keypoints are used to build what is known as human body
modelling (including skeleton pose) from the image or video input data. The features and joints
extracted from the visual input data are represented by the body modelling. Usually, the model-based
method is used to interpret and deduce human body poses and produce 2D or three-dimensional
(3D) poses. (x, y) coordinates for each joint from the red, green and blue (RGB) image and (x, y, z)
coordinates for every joint from the RGB image are estimated in the 3D and 2D pose estimation,
respectively.

In very recent research works, there is an active interest shown in estimating the semantic keypoints
of the human body which include the knee, upper shoulder, lower shoulder, and head for different
purposes. In this context, research focus has been limited to traditional or classical approaches to
articulate pose estimation using a pictorial structure framework. The classical approaches, however, are
attached with the limitations of estimating a pose independent on image data and insufficient enough
to determine the accurate location of the body keypoints. For these reasons, HPE research focused
on enriching the representational power of the process. Recently, pose estimation has been greatly
reshaped by deep-learning (DL) approaches. These DL-based approaches are efficient in extracting
more sufficient and significant features from the input data. Such an approach has yielded promising
outcomes and outpaced non-deep learning approaches [6]. Today, many researchers use machine
learning (ML) and DL concept in different applications such as agriculture [7–10], environment
[11–13], and cyber security [14]. The emergence of deep learning also presents new solutions to
conventional computer vision branches like image classification and detection [15] as well as complex
tasks which include image fusion [16] and image stitching.

Despite its outstanding performance in solving issues related to pose estimation, DL methods
are facing challenges in detecting, capturing, and extracting the significant keypoints of the human
body. Such challenges include occlusion (self-occlusion, inter-person occlusion, and out-of-frame
occlusion), limited data (limited annotation, limited variation of pose, limited number of pose), bad
input data (blurry, low resolution, low light, low contrast, small scale, noisy), domain gap, camera-
centric, crowd scenes, speed, etc. Many researchers were inspired by [17] to employ the DL method
to minimize such challenges facing HPE-accurate outcomes. Moreover, DL-based HPE has made
a significant improvement recently in the tasks of single-person pose estimation in the top-down
approach in an image [18] and videos [19] as well as multi-person pose estimation in monocular videos
or images [20]. Table 1 shows the most cited HPE article from 2014 to 2022. All these improvements
have been enabled by the use of a DL framework [21] and the availability of huge-scale benchmark
public datasets which include “Leeds Sports Pose” (LSP) [22], “Frames Labelled in Cinema” (FLIC),
“Microsoft Common Object in Context” (MS-COCO) [23], “Max Planck institute for informatics
(MPII Human pose)” and so on. The most popular datasets used in 2D HPE research are shown in
Fig. 1.

The availability of countless published research articles on HPE inspired researchers to publish
a lot of informative surveys and review articles to serve as a guide for researchers in tackling HPE
tasks. As the deep learning approaches are becoming more significant in solving complex tasks on
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HPE, many researchers focused only on single-person DL pose estimation models, others focused
on multi-person DL pose estimation only. As such, this survey highlighted both single-person and
multi-person DL pose estimation [24]. Numerous surveys on using DL models to solve HPE problems
were conducted [25]. But, to our knowledge there exists no survey that focuses on details of state-of-
the-art DL-based 2D HPE. For example, a survey [26] only reviewed the DL-based 3D and 2D HPE
and summarized the challenges and the benchmark dataset. A detailed review of the current DL-
based articles for 3D pose estimation and a summary of the merit and demerit of those methods are
presented [27].

Figure 1: Most popular 2D datasets for human pose estimation

Another study provides a review of current study on multi-person pose estimation and analyses
the algorithms and compares their advantages and the disadvantages to fill in the gap of the existing
surveys [28]. Most of the previous surveys focused on reviewing the DL approach in tackling HPE
issues but did not consider summarizing and tabulating the development of DL in HPE from the year
of breakthrough to date. In this paper the details component of HPE using the DL model are provided.
This survey intends to highlight the limitation of published reviews and surveys in terms of presenting
the systematic review of the current DL-based solution to 2D HPE. Besides that, the survey will guide
the new researchers on computer vision 2D HPE. The following key points differentiate this survey
from other surveys.

• Detailed components of HPEs are presented which include backbone, loss function, 2D datasets
and evaluation metrics

• Summary of DL-based articles for HPE from the year of breakthrough to date (2014–2022)
• Overview of 2D HPE.
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Table 1: Highly cited articles in deep learning based HPE

S/n Study Citations Method/algorithm Year

1 [29] 40 Revisiting skeleton-based action
recognition

2022

2 [30] 17 Human-computer interaction 2022
3 [31] 52 High-resolution network 2021
4 [32] 43 Pose-guided representation learning 2021
5 [33] 40 Efficient pose: 2021
6 [34] 27 Human pose estimation 2021
7 [35] 269 Human pose estimation 2020
8 [36] 194 Human pose estimation 2020
9 [37] 1166 Deep high-resolution representation 2019
10 [38] 1892 Human pose estimation 2019
11 [39] 911 Human pose estimation 2018
12 [40] 903 Multi-person pose estimation 2018
13 [41] 19930 R-CNN 2017
14 [42] 7690 Part affinity fields 2017
15 [43] 4151 Human pose estimation 2016
16 [44] 2733 Convolutional pose machines 2016
17 [26] 1298 Convolutional networks 2015
18 [45] 555 Human pose estimation 2015
19 [19] 2653 Deep neural networks 2014
20 [46] 2026 Human pose estimation 2014

2 Human Body Modelling

As humans are different, so also their shapes and sizes. Human body modelling is one of the most
significant aspects of HPE. To estimate the pose of a given body, the body must satisfy the attributes
required for a particular task to create and define the human body pose. Three distinct categories of
human body models commonly used in HPE [47] which include the kinematic-base model, planner
model, and volumetric model as shown in Fig. 2.

2.1 Kinematic-Based Model

This type of model is popularly known as a skeletal-based model or stick figure and can be
described as a simple and flexible human body structure frequently used in 2D [48] and 3D HPE
[49]. This type of model is said to represent the joints’ locations and limb orientation to present the
human body, and skeletal structure that can be used to detect relationships between body parts.

2.2 Planer Model

The planer model, known as the contour-based model, and quite different from the kinematic-base
model. In the contour-base model, keypoints are roughly symbolized with rectangles or boundaries of
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an object’s shape. The contour-based model is used to present the silhouette and form of the human
body. The planner model is commonly used in classical HPE approaches [50] that used cardboard
mode [51] and active shape mode to capture human body graph and the silhouette distortion using
principal component analysis (PAC).

Figure 2: Three different human body model

2.3 Volumetric Model

Volume-based model is used to represent three-dimensional object’s silhouette and pose with
geometric mesh. Traditional geometric mesh for modelling human body parts was cylindrical, conic,
etc., while novel volume-based are characterised in mesh form captured with the 3D scans. The most
popular volumetric model used for 3D pose estimation are stitched puppet model (SPM) and unified
deformation model (UDM) [52], Frankenstein & Adam and generic human model (GHUM) & low-
resolution generic human model (GHUML) (ite) [53].

3 Basic Stages in Human Pose Estimation

The key procedure of HPE is poached into two stages: i) human body keypoints/joints localization
and ii) formation of valid human pose configuration by grouping the localized joints/keypoints [54].
Finding the location of key points on the human body (knee, ankle, shoulder, head, arms, hands.) is
the focus in the first stage. Different human pose dataset format is used in gathering and identifying
the key points stored in the selected datasets. The output of body key points of the same image may
vary from the type of dataset format and platform adapted. For example, Max Planck Institute for
Informatics (MPII) Human pose datasets provide only 14 body joints, while Microsoft Common
Objects in Context (MSCOCO) dataset provide 17 body joints. Table 2 shows the output of MSCOCO
and MPII datasets.

The second stage of pose estimation is grouping the localized keypoints into valid human pose
structures to determine the pair organs of human body. Many researchers applied different techniques
in joining the key points candidates [55].
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Table 2: Keypoints out of MSCOCO and MPII datasets

MSCOCO Output Format MPII Output Format

0 0

1 1

2,3 2,3

4,5 4,5

6,7 6,7

8,9 8,9

10,11 10,11

12,13 12,13

14,15 -

16,17 -

18 18

4 2D Human Pose Estimation

A human pose can be estimated from a 2D image and video by locating the site of human
body keypoints in an image or video. Pictorial structure techniques [56], handcraft feature extraction
techniques [57], and other sophisticated body models [58] were used for 2D HPE. Most of these
traditional approaches depend completely on human supervision and describe the human body as a
stick figure in obtaining the local and global pose structure. In more recent years, pose estimation has
been greatly reshaped by machine learning approaches. The DL-based approach has accomplished a
great progress in HPE by enhancing the accomplishment considerably in categorizing the methodology
into single-person pose estimation and multi-person pose estimation.
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4.1 2D Single Person Pose Estimation

2D single-person pose estimation is used to predict the sets of 2D joints (keypoints) position
(x, y) of the human body from the input image. In this approach, the bounding boxes of the person
are presented before the estimation process. To address the issue of 2D single-person pose estimation,
two categories of pipelines that used deep learning techniques such as regression-based model and
detection-based model are provided.

4.1.1 Regression-Based Model

Since the main objective of the HPE problem is to locate and estimate the keypoints of human
body parts, many researchers used a regression framework to accomplish that. Alex network (AlexNet)
inspired many researchers [59–61] to adopt a regression-based method to predict human keypoints
from the input image. Reference [19] was impressed by the wonderful performance of AlexNet and
attempted to train a similar deep neural network known as DeepPose to predict a set of keypoints
position on the input image. Furthermore, cascade regressors were employed to improve the precision
of the location of each joint as shown in Fig. 3 once a joint position is identified, in the initial stage,
the cropped image along with predicted joints are then fed to the network in the next stage to predict
the refine value of the joints position in the patch and produce the finest joints position over multiple
stages.

Figure 3: Regression-based method

Due to the remarkable performance of DeepPose in solving HPE, the DL approach has become
more and more popular in HPE research. Reference [62] developed a model called Iterative Error
Feedback where the whole prediction started with the mean pose skeletal which is then updated
iteratively over many steps to match the ground truth. Reference [63] proposed a differentiable special
to numerical transform (DSNT) which is an end-to-end regression method for HPE similar to the soft-
argmax function to change feature maps into joint coordinates in a completely differentiable structure.

4.1.2 Detection-Based Model

A detection-based method is also known as a heatmap-based method. In this approach, the
pose estimation network is trained to reduce the inconsistency between the target heatmaps and
the predicted heatmaps. The target heatmap (ground-truth heatmap) is generated by a 2D Gaussian
cantered at the ground-truth joint location. Thus, a detection-based method for HPE is aimed to train
the body part detector to predict the position of body joints and is used to address the estimation issue
with a heatmap prediction approach as shown in Fig. 4.
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Figure 4: Detection-based method

One advantage of the heatmap-based method over a regression-based method is the provision of
highly rich informative information by conserving the spatial position information to ease the training
of the convolution neural network. This brings about the recent increasing interest in adopting the
heatmap-based method to present the joint location and develop the effective convolutional neural
network (CNN) architecture as in [64]. A novel loss function called heatmap weighting loss was
proposed in [65] to generate weights for each pixel on the heatmap which makes the model more
focused on keypoints. Balakrishnan et al. [66] integrated Transformer encoder with a recently proposed
Bottleneck Transformer [67] and apply the model to the problem of 2D HPE.

Reference [68] proposed a novel approach known as “Dense, Multi-target Votes”, where every
location in the image votes for the site of each keypoints using a convolutional neural net. The voting
scheme enables the utilization of information from the whole image, instead of depending on a sparsely
set of keypoints positions.

Reference [69] presented another method for pretraining 2D pose estimation networks in order
to learn the position of each spot from an image composed of shuffled spots. Another achievement
made in the heatmap-based method is the proposed novel model based on transformer architecture,
improved with a feature pyramid fusion structure to predict the keypoints heatmap [70].

4.2 2D Multi-Person Pose Estimation

Multi-person pose estimation is a more complex and challenging problem that combines the task
of identifying the number of persons, their positions and poses and then grouping their localized body
keypoints together. To resolve these problems, multi-person pose estimation can be classified into Top-
down and Bottom-up pipelines.

4.2.1 Top-Down Method

The top-down approach involved two main stages: detection of all persons bounding boxes in
an image separately using a body detector and prediction of the location of keypoints within the
detected bounding boxes using a single-person estimator. Therefore, the human body detector and
single-person pose estimator remains the most significant components of the top-down HPE pipeline.
Different HPE methods show some common pose errors until the design of PoseFix net [71] based
on related pose error distribution from different HPE methods to improve the estimated pose from
any framework. Overcrowding and complex pose are the main challenges of HPE using a top-down
pipeline, as shown in Fig. 5.
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Figure 5: Top-down pipeline for multi-person pose estimation

4.2.2 Bottom-Up Method

Estimation of human poses using the bottom-up method can be achieved by first detecting the
body joints and then grouping the joint candidate for a unique pose. Typically, there are two main
components in bottom up HPE include body joints detection and joints candidate grouping, as shown
in Fig. 6 these two components are tacked one after the other by most HPE Algorithms. One of the
earliest bottom-up-based Algorithms known as Deep-Cut was proposed in [72]. The model will first
detect all the body parts candidate and then labels each part to its corresponding part and assemble
them using integer linear programming (ILP) to estimate the pose. DeepCut is computationally
expensive, which is why [73] proposed DeeperCut to improve the DeepCut by applying a deeper,
stronger, and faster body part detector to improve performance and faster computational speed.
Bottom-up is faster compared to the top-down approach. However, bottom-up faced the main
challenge of grouping the corresponding body parts when people are with large overlap.

Figure 6: Bottom-up pipeline for multi-person pose estimation

5 Components of Human Pose Estimation Systems

Research in HPE resides in four main components which include backbone architecture, loss
functions, the datasets and the evaluation metrics employed.

5.1 Backbone Architecture

Many researchers employ different backbone networks in solving HPE problems. These feature
extractors networks are used by the model to extract features from the input image. AlexNet network
architecture is the first popular backbone architecture to be implemented by DeeoPose while applying
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DL to HPE. Due to the low receptive field, another popular backbone architecture called visual
geometry group network (VGGNet) [74] is used in [75] to enlarge the receptive field for large-scale
feature extraction. Other deep learning algorithms such as residual convolutional neural network (R-
CNN), FastR-CNN, Faster R-CNN and MaskR-CNN have been used as backbone architecture for
HPE research. In other research articles on HPE [76], ResNet has been use as a backbone architecture.

5.2 Loss Function

HPE models learned by use of loss function. The modelling of a given dataset by a specific
algorithm is evaluated by the loss function. Reference [77] mentioned that the loss function calculates
and decreased the error in the prediction process. There are three types of loss- function that is usually
applied in the human pose estimation model [78] which include Mean squared Error (MSE), Mean
Absolute Error (MAE) and Cross-Entropy loss. These types of loss functions are represented by the
following equations. Eq. (1) is Mean Absolute Error (MAE), Eq. (2) is Mean squared Error (MSE),
and Eq. (3) is Cross-Entropy loss, respectively.

L1 = 1/n�n
i=1 |yi=l − f (xi)| (1)

L2 = 1/n�n
i=1

(
yIi=1 − f (xi)

)2
(2)

Logloss = − (yilog (f (xi)) + (1 − yi) log (1 − f (xi))) (3)

5.3 Datasets

Neural networks required a huge amount of data for training and testing purposes. For accurate
hope estimation, a dataset of multiple poses is essential. These datasets are required to provide a fair
evaluation among various algorithms. The widely used datasets for the 2D DL-based HPE method
are quite many. However, only a few datasets are used in 2D HPE tasks due to various limitations
such as limited data and lack of multiple object articulation. Among the popular large-scale 2D HPE
datasets are:

5.3.1 Microsoft Common Object in Context

Popularly known as MS-COCO dataset [79]. A Microsoft product and one of the widely used
datasets for HPE, consist of 200,000 labeled subjects with keypoints and more than 330,000 images
and every person is labelled with 17 joints.

5.3.2 Max Plank Institute for Informatics

Max plank institute for informatics (MPII) HPE dataset [48]. This dataset contains about 25,000
images and annotated body joints of over 40,000 persons. This dataset includes about 410 labeled
images of human activities. In MPII datasets, everyone’s is labeled with 15 joints.

5.3.3 Leeds Sport Pose Datasets

Leeds sport pose datasets (LSP)and LSP extension (LSPe) datasets for HPE have a set of 11,000
training and 1,000 testing images from Flick (an American image hosting and video hosting service).
Most of the images in LSP are from sports activities having unusual poses with challenging appearance
terminologies [80]. In LSP dataset, the full body of every person is labeled with 14 joints.
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5.3.4 Frames Labeled in Cinema

Frames labeled in cinema (FLIC) dataset is another 2D HPE benchmark consisting of 5,003
images with about 80% images for training and 20% for testing. This dataset is formed from Hollywood
movies. It contained several images with different poses and clothes. Every person is labeled with 10
body joints. This dataset is accurate for both single and muti-person pose estimation.

5.4 Evaluation Metrics

Several features and exigencies that need to be considered make it difficult to evaluate the
performance of HPE. Such features and requirements include unusual poses, body size, single/multi-
person, upper/lower or full body pose estimation. Consequently, researchers used different evaluation
metrics for 2D HPE. Below are some popular evaluation metrics for 2D HPE.

5.4.1 Percentage of Corrected Parts

Percentage of Corrected Parts (PCP). This metric is the most powerful in earlier hope estimation
research work. It is used to evaluate stick predictions to report the localization accuracy for the body
parts. A body part is said to be detected if the distance between the detected joint and true joints is
less than half the body part [81].

5.4.2 Percentage of Detected Joints

The percentage of Detected Joints (PDJ) detected joints is said to be accurate if the distance
between the predicted and true joints is within a certain fraction of torso diameter 20. Eg. PDJ @
0.2 implies that the distance between the predicted and true joint is less than 0.2 × torso diameter.
Where the torso diameter is the central diameter. This metric is proposed to address the drawback
of PCP.

5.4.3 Percentage of Corrected Keypoints

Percentage of corrected keypoints (PCK), is used to measure the accuracy of localization of
different keypoints. PCK is denoted as PCKh @ 0.5 when the threshold is set to 50% of the head
segment length of each test image.

5.4.4 Average Precision and Average Recall

Average Precision (AP) and Average Recall (AR), AP measure is an index to calculate the accuracy
of keypoints detection based on precision and recall.

6 Conclusion and Future Work

The DL-based 2D HPE models from past surveys, reviews and results articles, using systematic
review, are investigated in this survey. A detailed and meaningful survey that will guide new and
existing researchers on DL-based 2D HPE models is achieved. Despite all the achievements, there exist
many challenges, which include occlusion (self-occlusion, inter-person occlusion and out-of-frame
occlusion), limited data (limited annotation, limited variation of pose, limited number of poses), bad
input data (blurry, low resolution, low light, low contrast, small scale, noisy), domain gap, camera-
centric, crowd scenes, speed and so on. However, future research directions in the field of HPE to
encourage researchers and promote the growth of HPE research were revealed. Limited data on
disabled persons hinders HPE research on disabled persons. They can be improved by creating a
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huge dataset of people with different disabilities and making it available for researchers. Considering
the nature of different human body parts and shapes, unusual articulation and magical movement
may occur that will require multiple training models to tackle these issues since most researchers are
adopting a single model to tackle the normal situation. Our survey is limited to DL-based 2D human
pose estimation only with the hope that this survey will serve as a guide for the existing researchers
and motivation for new researchers in the domain of HPE.
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