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COVID-19 is a vastly infectious disease caused by the new coronavirus, officially recognized as
severe acute respiratory syndrome coronavirus 2 [1]. This virus has multiplied fast worldwide, causing
a global pandemic [2]. It has caused 6.87 million death tolls until 20/March/2023.

The easiest way to stop COVID-19 is to diagnose and quarantine infected patients as rapidly as
possible [3]. Both reverse transcription polymerase chain reaction (RT-PCR) [4] and real-time RT-
PCR [5] are commonly used to detect the virus nucleic acid from nasopharyngeal swabs. However,
they suffer from obvious shortcomings, such as environmental contamination [6], slow reporting (it
costs from hours to weeks to receive the outcomes), and high false-negative results [7].

Chest imaging [8] is an effective method for rapid analysis of COVID-19. It is one type of
medical imaging technique to examine the body’s chest or thorax area, including the heart, lungs, and
other structures. Four common chest imaging scan modalities are available, chest X-ray radiograph
(CXR) [9], chest computed tomography (CCT) [10], chest magnetic resonance imaging [11], and chest
ultrasound [12]. In clinical practice, CXR and CCT are particularly suitable for diagnosing COVID-19.

Nevertheless, manual diagnosis of COVID-19 from CXR or CCT is a tedious task that requires
significant time and effort. The lesions of COVID-19 are displayed with prominent signs of ground-
glass opacities (GGOs) [13] in CCT. Moreover, it is challenging for junior radiologists with limited
experience to detect GGO regions [14] from chest images. Besides, the manual diagnosis is possibly
affected by loads of aspects (sentiment, tiredness, exhaustion, etc.).

However, machine learning (ML) algorithms [15] constantly and precisely follow the pre-designed
instructions more speedily and consistently than radiologists do. Additionally, the lesions of early-
phase COVID-19 lungs are minor and marginal, like the adjacent healthy tissues. Those small lesions
are effortlessly perceived by ML methods [16] but possibly neglected by human experts.

Deep learning (DL) [17] is nowadays the most successful type of ML algorithm. Compared to
standard ML algorithms, DL has the following five advantages: (i) DL algorithms normally have
higher accuracies than traditional ML algorithms. (ii) DL algorithms have better feature extraction
abilities, eliminating the need for manual feature engineering. (iii) DL models can be easily scaled to
large-size datasets [18], which is particularly suitable for big data applications. (iv) DL algorithms are
more flexible than traditional ML algorithms [19]. (v) DL algorithms do not need as much human
help as traditional ML algorithms, reducing human intervention [20].
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Many successful DL algorithms have been proposed in previous years. One successful algorithm
is the deep rank-based average pooling network (DRAPNet) [21], published in this journal. This
paper was indexed as ESI highly cited paper recently. In the paper, the authors first introduce
enhanced multiple-way data augmentation [22]. Second, the authors present the n-conv rank-based
average pooling module [21]. Third, the authors propose their DRAPNet based on NRAPM. Finally,
heatmaps are produced based on Grad-CAM for explainable analysis. The authors tested their
DRAPNet algorithm on a four-class dataset. DRAPNet has attained a 95.49% micro-averaged F1
score [21].

There are many other successful DL-based COVID-19 diagnosis algorithms, such as AVNC [23],
deep stacked sparse autoencoder analytical (DSSAE) [24], IFFA-DTLMS [25], deep stacked ensemble
learning model [26], ANC [27], etc.

Because of the limited sizes of the open-access datasets with ground truth labels, weakly supervised
learning (WSL) [28], trained by weak labels or partial annotations, is particularly suitable for
constructing efficient COVID-19 models [29]. WSL can attain excellent results for limited-labeled
datasets, where acquiring accurately labeled samples are expensive or challenging [30].

COVID-19 has been widespread worldwide for three years and five months. We believe ML and
DL can continue to help diagnose COVID-19. Firstly, those algorithms can be used to develop more
accurate and reliable algorithms for automated diagnosis of COVID-19, which can save radiologists
time and effort. Secondly, ML and DL algorithms can predict COVID-19 disease progression and
prognosis [31], helping identify high-risk patients who may require more intensive treatment. Thirdly,
ML and DL can identify patterns and correlations between imaging findings and clinical outcomes,
leading to the discovery of new biomarkers [32] and more effective treatments.

Overall, ML and DL have the potential to significantly improve the accuracy and efficiency of
COVID-19 diagnosis and treatment planning based on chest images.
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