
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.039901
Article

A Flexible Architecture for Cryptographic Applications: ECC and PRESENT

Muhammad Rashid1,*, Omar S. Sonbul1, Muhammad Arif2, Furqan Aziz Qureshi3,
Saud. S. Alotaibi4 and Mohammad H. Sinky1

1Department of Computer Engineering, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
2Computer Science Department, Umm Al-Qura University, Makkah, 21955, Saudi Arabia

3Cyber R&D Specialist, NASTP, Rawalpindi, 46000, Pakistan
4Department of Information Systems, Umm Al-Qura University, Makkah, 21955, Saudi Arabia

*Corresponding Author: Muhammad Rashid. Email: mfelahi@uqu.edu.sa
Received: 23 February 2023; Accepted: 20 April 2023; Published: 09 June 2023

Abstract: This work presents a flexible/unified hardware architecture of
Elliptic-curve Cryptography (ECC) and PRESENT for cryptographic appli-
cations. The features of the proposed work are (i) computation of only the
point multiplication operation of ECC over GF(2163) for a 163-bit key gener-
ation, (ii) execution of only the variant of an 80-bit PRESENT block cipher
for data encryption & decryption and (iii) execution of point multiplication
operation (ECC algorithm) along with the data encryption and decryption
(PRESENT algorithm). To establish an area overhead for the flexible design,
dedicated hardware architectures of ECC and PRESENT are implemented
in the first step, and a sum of their hardware area is computed. Then, the
implementation of the proposed flexible architecture for ECC and PRESENT
algorithms is presented. Implementation results regarding the area, clock
cycles, latency, clock frequency, and power after the place-and-route level on
Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA devices are presented. Hence,
the implementation results and comparisons show that the proposed architec-
ture suits applications demanding flexible implementation of cryptographic
applications.

Keywords: Flexible; unified; design; ECC; PRESENT; FPGA

1 Introduction

In the last few years, we have witnessed a massive increase in the use of embedded devices, such as
the automatic control of electronic appliances and smart cards for electronic payments [1]. It has been
observed that the desired features/attributes for these application-specific embedded devices include
low power consumption, limited memory usage (area), reasonable performance, and flexibility [2].
In addition, security is another critical demand for these devices [2,3]. Comparatively, the symmetric
cryptographic algorithms are beneficial to obtain low power, limited area, and high performance as
compared to public-key cryptographic (PKC) algorithms. On the other hand, the PKC algorithms are
prevalent for higher security achievement. Hence, one of the alternatives for the security improvement

https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.039901
https://www.techscience.com/doi/10.32604/cmc.2023.039901
mailto:mfelahi@uqu.edu.sa


1010 CMC, 2023, vol.76, no.1

of application-specific embedded devices is to unify the advantages of symmetric and PKC algorithms;
this unification specifies flexibility which is a critical need of application-specific embedded devices
and is a means of interest in this work.

Several applications demand flexible cryptographic implementations. Examples are online bank-
ing payments by smart cards, where for each transaction, a unique secret key is required to complete
the computation [4]. Another example includes identity-based public key cryptography, where a
trusted third party (or the private key generator) generates a public key to affirm a specific device
on the network [5]. Also, blockchain technology requires separate keys or digital signatures for
secure communications such as online payments, tracking orders, maintaining business accounts, and
many more online transactions. In this regard, in 2022, a blockchain-based reliable, and efficient
certificateless signature scheme is presented in [6] for securing industrial internet of things devices.
Hence, these applications confirm the need for a flexible cryptographic system that allows the
generation of separate keys for each encryption and decryption operation. This motivates us to
implement such a system that covers today’s needs.

The National Institute of Standards and Technology (NIST) has standardized several symmetric
and PKC algorithms/protocols to address the security concerns related to application-specific embed-
ded devices. However, the current symmetric and PKC standards are Advance Encryption Standard
(AES), Elliptic Curve Cryptography (ECC) [7], and Rivest-Shamir-Adleman (RSA) [8].

The cryptographic standards/algorithms can be implemented on software (SW) and hardware
(HW) platforms. The SW implementations (such as on microcontrollers) provide higher flexibility
but offer limited performance and security [3]. On the other hand, the HW implementations, such as
field-programmable gate arrays (FPGA) and application-specific integrated circuits (ASICs), provide
higher processing speed/performance but with limited flexibility [2,3]. More precisely, unlike the
ASIC implementations, FPGA devices offer flexibility due to a re-configurability feature but are not
comparable to pure SW-implemented designs. Therefore, an FPGA platform is preferred in this study
to obtain a flexible cryptographic hardware accelerator with a focus on higher performance. This is
the objective of this work.

1.1 Motivation for Selecting PRESENT and ECC Algorithms

Concerning [9,10], the excessive hardware resource utilization makes the existing symmetric
standard (i.e., AES algorithm) ineffective for the area-constrained applications compared to the
PRESENT block cipher. Therefore, we have preferred PRESENT block cipher for encryption/de-
cryption over data in our implementation.

For PKC, ECC has become a promising approach to securing internet-of-things (IoT) and smart-
card and securely generating digital signatures because it offers an equivalent security level with
shorter key lengths than the RSA algorithm [11–13]. Moreover, ECC requires low hardware resource
utilization and power consumption without reducing security than RSA; hence, the former is beneficial
to secure low-power and low-memory resource-constrained IoT devices. Additionally, by offering
a shared key mechanism for the wireless sensor nodes connected to the IoT infrastructures in the
networks, it prevents unauthorized appliances from acquiring a permit for wireless sensor networks
(WSNs) [14,15]. Moreover, an ECC-based Diffie Hellman protocol [16] allows the generation of a
shared key for security-related systems. According to [17,18], ECC could be more beneficial in satis-
fying security challenges related to radio-frequency identification (RFID) technologies. In addition,
ECC-based RFID authentication protocols are employed in intelligent healthcare environments to
enhance medical data security [19]. ECC-based digital signature schemes are adopted in wireless



CMC, 2023, vol.76, no.1 1011

body area networks (WBANs) to satisfy the security needs for real-time health data management
[20]. Hence, the scenario presented above declares that ECC is widely adopted for securing range
of cryptographic applications. Therefore, based on this compliance, we have selected ECC for key
generation in our flexible design.

1.2 Related Hardware Accelerators and their Limitations

For addressing the data security issues, the cryptographic algorithms (symmetric and asymmetric/
public-key) are (frequently) demonstrated in literature as hardware accelerators on FPGA and ASIC
platforms. A lightweight RECTANGLE symmetric cipher is implemented in [21] for data encryption
and decryption on wireless sensor nodes. For similar encryption and decryption on wireless sensor
nodes, a co-design of AES is implemented in [22] on hardware (180 nm and 90 nm process technologies)
and software (microcontrollers) platforms. A SIMON block cipher is implemented in [23] for securing
low-resource embedded devices. Specific to IEEE 802.15.4 standard, a SIMECK32/64 block cipher
is implemented in [24]. For securing low resource-constrained applications, three dedicated hardware
architectures are presented in [25] for three lightweight cryptographic algorithms, i.e., LED64/128,
SIMON64/128, and SIMECK64/128. ASIC demonstration of HIGHT and PRESENT block ciphers
is provided in [26].

Hardware accelerators of [2,27,28] reveal that flexible cryptographic designs are (also) known
in the literature to secure embedded devices where the benefits of symmetric and PKC algorithms
are combined/unified. The design of [2] presents a unified architecture to integrate AES and ECC.
Similarly, a dual-field ECC processor combined with AES is shown in [27]. Recently, in 2018, a
compact co-processor architecture of ECC and AES for IoT devices has been described in [28].

The state-of-the-art implementations show that the symmetric algorithms are more beneficial
regarding resource utilization and consumed power. However, the requirement of key storage inside
the embedded devices is one of the significant limitations. On the other hand, asymmetric algorithms
do not require key storage; however, these are area and power-hungry [3,13,15]. Similarly, the unified
hardware accelerators of AES and ECC [2,27,28] are specific to key generation using ECC and
encryption & decryption by employing AES; this is only the benefit of the flexible designs of [2,27,28].
We believe it is possible to obtain some more benefits by setting architecture(s) with the following key
features: (i) only the computation of key generation, (ii) only the execution of encryption & decryption
processes, and (iii) the computation of both key generations followed by encryption & decryption
operations. This requires only an efficient control logic without the additional arithmetic blocks (of an
adder, multiplier, and square) for PRESENT and ECC algorithms. Additionally, the flexible state-of-
the-art designs of [2,27,28] utilize higher hardware resources and consume more power. Like flexibility,
other critical parameters, i.e., hardware resources (area) and consumed power, can be improved by
employing different architectural strategies.

1.3 Novelty and Contributions

Therefore, we present our novel contributions to address the aforementioned security issues
below.

• Flexible accelerator architecture: We have proposed a flexible (or unified) hardware architecture
of ECC and PRESENT algorithms with three different compositions, (i) execution of only a
163-bit key generation using ECC, (ii) only the execution of encryption and decryption using an
80-bit PRESENT block cipher, and (iii) execution of the key generation of ECC with a variant
of a PRESENT block cipher for data encryption & decryption.



1012 CMC, 2023, vol.76, no.1

• Strategies for area and power optimizations: We have realized a shift-and-add multiplier in the
ECC-based key generation architecture. The square operations for ECC implementations are
computed by providing identical inputs to our utilized shift-and-add multiplier. For inverse
computations, we also used the existing hardware resources of our shift-and-add multiplier.
These techniques allow us to reduce hardware costs. Moreover, the design of our shift-and-add
multiplier is a bit-serial. Therefore, it consumes very low power.

• Dedicated controller: A finite-state-machine (FSM) based dedicated controller is presented to
implement three different compositions of our flexible design. More insight details are given in
Section 3.4.

• Dedicated designs for ECC and PRESENT: Dedicated architectures for both ECC and
PRESENT algorithms are implemented to establish an area overhead for the proposed unified
design.

The proposed hardware designs are implemented in Verilog HDL using the Vivado IDE tool and
reported implementation results on Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA devices after the
place-and-route level. On modern Virtex-7 FPGA, the total sum of slices for the dedicated design
of ECC and PRESENT algorithms is 1.24 times higher than our proposed flexible architecture. The
dedicated and flexible hardware designs achieved a maximum clock frequency of 387 MHz (for ECC),
407 MHz (for PRESENT), and 200 MHz (for flexible architecture) on the same Virtex-7 device.
Thus, the implementation results and comparison to state-of-the-art reveal that the proposed flexible
design is suitable for applications that need flexible cryptographic accelerators. Note that the proposed
accelerator design can operate on a 163-bit key length for ECC and an 80-bit key size for PRESENT.
As the block size of the PRESENT cipher is 64, this means that our accelerator can encrypt and decrypt
only 64-bit message size at one time.

The remainder of this work is structured as follows: Section 2 provides the related background
for PM computation of ECC and PRESENT algorithm. Our proposed architecture is described in
Section 3. The implementation results are given in Section 4. Finally, Section 5 concludes the paper.

2 Mathematical Background
2.1 Elliptic Curve Cryptography

The ECC includes four layers of operations [11,13]. The uppermost protocol provides encryp-
tion/decryption and signature generation/verification. The most crucial process to compute in ECC is
point multiplication (PM), and it relies on the implementation of point addition (PADD) and double
(PDBL) operations (these are layer two operations of ECC). Each PADD and PDBL computation
depends on the execution of finite field arithmetic operations, i.e., addition, multiplication, square,
and inversion.

ECC include prime and binary finite fields [11]. GF(P) denotes a prime field, while GF (2m)

shows a binary field, where m is the field length (163 in this work). The binary fields are more
promising as it provides carry-free additions [17,29]. Moreover, ECC provides polynomial and normal
basis representations to implement the arithmetic operations; comparatively, the former is helpful
for efficient multiplication implementations [11,30]. Furthermore, ECC offers affine and projective
coordinate representations for implementation; comparatively, projective coordinates are useful to
minimize the overall clock cycles [7,13]. Hence, we have preferred binary fields with projective
coordinates and selected a polynomial basis representation for computations in this work. For GF (2m)



CMC, 2023, vol.76, no.1 1013

field, an affine representation of ECC is defined as set of points, i.e., x and y, by satisfying the following
Eq. (1):

E : y2 + xy = x3 + ax2 + b mod f (x) (1)

In Eq. (1), x and y are the coordinates of the initial point P over GF (2m) while a and b are the curve
parameters with b �= 0 and f (x) is an irreducible polynomial. The representation of x and y coordinates
of the GF (2m) field in a triplet (X , Y and Z) is projective coordinates. Therefore, for GF (2m) field, a
Lopez Dahab projective form of Eq. (1) is defined as set of points P(X :Y :Z), presented in Eq. (2).

E : Y 2 + XYZ = X 3Z + aX 2Z2 + bZ4 (2)

In Eq. (2), X , Y and Z are the Lopez Dahab projective coordinates of point P(X :Y :Z), where
Z �= 0, a and b are the curve constants with b �= 0. The points on the defined elliptic curve construct
a group named additive group when all the elliptic-curve points combine with the ‘point-at-infinity’.
Then, according to the additive group definition, the sum of two points in a group represents another
point in the group. For illustration, let us have two points P and Q on an elliptic curve. Then a PADD
is R = P + Q, where R shows the resultant point on the curve. Similarly, two identical points P and
P on the curve define a PDBL, i.e., P + P = 2P. Hence, the sum of d copies of PADD and PDBL
specifies the PM. It can be calculated using Eq. (3).

Q = d.P = d. (P + P + P + . . . + P) (3)

In Eq. (3), Q specifies the final/resultant point, d determines a scalar multiplier and P denotes
an initial point. We have several algorithms to implement Eq. (3); comparatively, the utilization
of identical PADD and PDBL statements for PM computation makes the Montgomery algorithm
suitable for side-channel resistant implementation of ECC. We referred readers to [3] for a compre-
hensive comparison over various PM algorithms. We have used the Montgomery algorithm, given in
Algorithm 1, to provide a side-channel attack-protected hardware implementation of ECC. For if and
else portions of Algorithm 1, the associated mathematical operations for PADD and PDBL functions
are shown in Table 1.

Algorithm 1: Montgomery PM algorithm (taken from [30])
Input: d = (dn−1, . . . , d1, d0) with dn−1 = 1, P = (xp, yp) ∈ GF(2m)

Output: Q(xq, yq) = d.P
1. X1 = xp, Z1 = 1, X 2 = xp4 + b, Z2 = xp

2

2. for (i from m − 2 down to 0) do
3. if (di = 1) then

PADD (X1, Z1) = (X1, Z1, X2, Z2)
PDBL (X2, Z2) = (X2, Z2)

4. else
PADD (X2, Z2) = (X2, Z2, X1, Z1)
PDBL (X1, Z1) = (X1, Z1)

end if
end for
Return:

(Continued)



1014 CMC, 2023, vol.76, no.1

Algorithm 1: Continued

5. xq = X1

Z1

,

6. yq =
(

xp + X1

Z1

)
[(X1 + xp × Z1)(X2 + xp × Z2) + (x2

p + yp)(Z1 × Z2)](xp × Z1 × Z2) − 1 + yp

Table 1: Mathematical formulations of PADD and PDBL functions of Algorithm 1

Insti PADD PDBL Insti PADD PDBL

for if portion of Algorithm 1 for else portion of Algorithm 1

Inst1 Z1 = X2 × Z1 Z2 = Z2
2 Inst1 Z2 = X1 × Z2 Z1 = Z2

1

Inst2 X1 = X1 × Z2 T1 = Z2
2 Inst2 X2 = X2 × Z1 T1 = Z2

1

Inst3 T1 = X1 + Z1 T1 = b × T1 Inst3 T1 = X2 + Z2 T1 = b × T1

Inst4 X1 = X1 × Z1 X2 = X 2
2 Inst4 X2 = X2 × Z2 X1 = X 2

1

Inst5 Z1 = T 2
1 Z2 = X2 × Z2 Inst5 Z2 = T 2

1 Z1 = X1 × Z1

Inst6 T1 = xp × Z1 X2 = X 2
2 Inst6 T1 = xp × Z2 X1 = X 2

1

Inst7 X1 = X1 + T1 X2 = X2 + T1 Inst7 X2 = X2 + T1 X1 = X1 + T1

2.2 PRESENT Block Cipher

PRESENT is a lightweight block cipher having a block size of 64 bits. It supports 80 and
128-bit key lengths. The structure of the PRESENT block cipher depends on the computation of
AddRoundKey, substitution, and permutation operations. It includes 32 rounds to perform the desired
crypto operations (encryption and decryption). For the initial 31 rounds, substitution and permutation
operations are essential to execute after the computation of AddRoundKey. For the final round, we
need only the AddRoundKey process to perform. We direct readers to [31] for complete mathematical
descriptions.

3 Proposed Flexible Architecture

There are various ways to establish a flexible architecture for cryptographic applications that
involve ECC and PRESENT algorithms. One approach uses a co-processor method, where ECC and
PRESENT algorithms drive on hardware while software processors manage other blocks. Indeed,
this approach provides higher flexibility but has limited performance compared to crypto processor
designs, where all blocks serve on hardware. We designed an efficient hardware controller to handle
our chosen ECC and PRESENT algorithms to achieve flexibility while maintaining high performance.
Therefore, we provide the top-level diagram of the proposed approach in Fig. 1. It includes two crypto
cores, one for ECC and another for PRESENT, a controller, and a key-transformation unit. The ECC
core generates public and private keys, while the PRESENT core performs encryption/decryption
over a 64-bit data block. With the help of a controller, a user can generate public and private keys
(only executing the ECC block), performs encryption/decryption (utilizing only the PRESENT core),
and combine public and private keys followed by encryption/decryption using ECC and PRESENT
cores. Key-transformation block generates an 80-bit key from a 163-bit generated by ECC for the



CMC, 2023, vol.76, no.1 1015

PRESENT crypto core. The output of the key-transformation block goes back to the controller for
related functionalities.

Figure 1: Overall idea of the proposed approach

We show the detailed visualization of Fig. 1 in Fig. 2. It incorporates four units: (i) a 163-bit
key generator architecture using ECC (KeyGenerator), (ii) a key transformation from 163-bit to 80-
bit (KeyReducer), (iii) a block/message of 64-bit data encryption & decryption using a PRESENT
block cipher (TEDU) and (iv) a dedicated controller for efficient control functionalities. Moreover,
the KeyGenerator block in Fig. 2 determines a dedicated architecture for the ECPM computation of
ECC. Similarly, the TEDU block in Fig. 2 denotes a dedicated design for the PRESENT block cipher.
More insight details are provided in the following sections.

Figure 2: Hardware design of the proposed flexible architecture. Note that the green and orange
portions are sequential blocks, requiring several clock cycles for computation; conversely, the key-
transformation block is combinational as it needs bit manipulations to complete the computation in
one clock cycle

3.1 KeyGenerator Unit (ECPM)

As shown in Fig. 2, the KeyGenerator architecture consists of (i) two routing paths, i.e., Routing-
Path1 and RoutingPath2, (ii) a storage element of size 5 × 163 and (iii) an arithmetic and logic unit
(ALU). We describe these blocks as follows:

3.1.1 RoutingPath1 and RoutingPath2

The RoutingPath1 takes an ECC parameter (xp, yp, & b) and an operand from the memory unit.
The xp and yp show the x and y coordinates of the initial point P on the curve. A parameter b is



1016 CMC, 2023, vol.76, no.1

the curve constant. These parameters we have selected from the NIST recommended document of
[32]. Similarly, the RoutingPath2 selects the appropriate data incoming from the finite field adder and
multiplier units, and its output returns to the memory block.

3.1.2 Memory Unit (StorageElement)

The supported key length for ECC is 163-bit, so the memory block reserves 163-bit data on each
memory address. It is essential to identify the total number of memory addresses needed. Therefore, in
implementing the Montgomery PM Algorithm 1, a 5 × 163 memory block size is implemented, where
numbers 5 and 163 specify the total number of addresses and the length of data stored on each address,
respectively. The objective of the memory block is to preserve the intermediate and final results; during
the implementation of Montgomery PM Algorithm 1.

3.1.3 Arithmetic and Logic Unit

The ALU comprises an adder and a multiplier unit. As we target binary field ECC in our
implementation, implementing an adder is simple than the multiplier block. We implement the
adder employing an m-bit array of Exclusive(OR) gates, where m specifies the secret key size (i.e.,
163) or a scalar multiplier d. For the binary ECC field, hardware accelerators of [13,29,30] use
the same approach to implement an adder. The adder inputs two m-bit operands (OPF1 and OPF2)
and outputs one m-bit operand (Aout). Moreover, one m-bit polynomial addition requires one
clock cycle. On the other hand, several bit-level & digit-level approaches to accomplish polynomial
multiplication in ECC exist. Examples of bit-serial multiplication methods are the schoolbook (SBM)
and Booth. Some bit parallel multipliers include Karatsuba and Toom-Cook. Similar to bit-serial
and bit-parallel multiplication methods, numerous digit-serial and digit-parallel techniques are also
available. It is essential to note that each multiplication method has pros and cons. Thus, the existing
multiplication architectures indicate that the bit-serial techniques are widely used for area and power-
constrained applications [17]. Bit/digit parallel multiplication architectures are better suited for high-
speed cryptographic applications with higher-hardware resources and consumed power [13,27,28].
Using digit-serial multipliers is advantageous for applications that demand high-speed and low-area
simultaneously [30]. Therefore, in this work, an SBM multiplier is employed to utilize the minimum
hardware area for the multiplier unit. It takes two m-bit operands as inputs and results in an operand
of length 2 × m − 1 bit as output. It incorporates shifting (by one bit towards the left) and addition
operations. For one polynomial multiplication, the computational complexity of our implemented
SBM multiplier is 163 clock cycles, as it operates in a bit-serial fashion. In Fig. 2, a POLRED unit is
connected after the MULT unit to reduce a polynomial of length 2 × m − 1 bit to an m-bit polynomial.
To perform a polynomial reduction over GF(2163), we have used NIST recommended algorithm from
[11].

Also, we have used the SBM multiplier to compute the square instructions of PADD and PDBL
functions (see Table 1) of Algorithm 1 for ECPM implementation. We achieved this by providing two
identical inputs to the multiplier unit. Moreover, we have implemented a square version of the Itoh-
Tsujii algorithm [33] to compute the polynomial inversion (required in projective to affine conversions
of Algorithm 1). For GF

(
2163

)
, its computational cost includes m − 1 squares followed by nine

multiplications. Therefore, we have utilized the hardware resources of our SBM multiplier to compute
the polynomial inversion. Our multiplier takes 27873 clock cycles for one polynomial inversion over
GF(2163). Out of 27873 clock cycles, 1467 cycles are required for nine multiplication computations, and
the remaining 26406 cycles are for m − 1 square computations.



CMC, 2023, vol.76, no.1 1017

3.2 KeyReducer Unit

As shown in Fig. 2, a KeyReducer unit takes two 163-bit xq and yq inputs from the KeyGenerator
unit, resulting in an 80-bit key as an output for the TEDU unit. The xq and yq contain the x and
y coordinates of the resultant point on the defined ECC curve. To generate an 80-bit key, a bitwise
Exclusive(OR) operation is executed on xq and yq. Then, the resultant 163 bits split into two 80-bit
segments, i.e., s1 and s2. The first segment (s1) contains the initial 80 bits of the Key, while s2 keeps the
bits started from Key80 to Key159. Finally, a bitwise Exclusive(OR) operation is performed on s1 and s2

to generate the resultant 80-bit Key for the TEDU unit.

3.3 TEDU Unit

The TEDU unit incorporates a PRESENT block cipher for a 64-bit data encryption and
decryption block. Moreover, it takes an 80-bit key (k) and a block of 64-bit plain text (represented
with PT in Fig. 2) as an input and results in a 64-bit block of cipher text (shown with CT in Fig. 2) as
an output. We kept the PT and our generated CT values in their corresponding registers (PlainTextREG

and Ciphertext). To process a 64-bit block of either PT or CT , our TEDU unit takes 32 clock cycles
(it means each round of PRESENT needs one clock cycle—so for 32 rounds, 32 cycles are used in our
work). It is important to note that we have used (in our work) the same architecture of the PRESENT
block cipher presented in [31]. Therefore, the complete design is not described in this work. We refer
to [31] for further architectural details.

3.4 FSM Controller

Fig. 3 shows the FSM controller and is responsible for achieving the key objective of this
manuscript (i.e., flexibility). The algorithm-selector is the initial state of the FSM controller and is
represented with Aselect in Fig. 3. Based on a two-bit select signal, the processing states are defined
for the following three units: KeyGenerator, KeyReducer, and TEDU units. The control states for these
units are shown with different colors in Fig. 3. The cases for two-bit select signal are defined as (i) 00
means no-operation, (ii) 01 determines the computation of only the PM operation of ECC for 163-bit
key generation, (iii) 10 allows the execution of only the PRESENT block cipher for data encryption and
decryption and (iv) 11 implies the execution of PM operation (ECC) with an encryption-decryption
process (PRESENT). The related details for each case are described below:

When select = 00—no-operation: If the two bits of a select signal are 00, the processor remains
idle without processing or computation. Otherwise, the control switched to the corresponding states
based on the select signal value.

When select = 01—states for KeyGenerator: The responsibility of KeyGenerator states is to
generate control signals for RoutingPath1 and RoutingPath2. For this purpose, the FSM controller
incorporates 65 states: IDLE, INT1–INT4, CON, PAD1–PAD14, INV 1, INV 2, PTA1–PTA28, and
DONE. Let us see the details about these states below.

IDLE means no operation. When the value of the start signal is 1, the control switches from IDLE
to INT1. The INT1–INT4 are the initialization states. It means the conversion from affine to projective
coordinates. In other words, these states are responsible for implementing instructions from line 1 of
Algorithm 1. A CON is an conditional state. It checks a key bit, i.e., di (given in Algorithm 1), and
based on the value of di the PAD1–PAD14 states implement the corresponding if and else portions of
Algorithm 1. The corresponding instructions for PADD and PDBL operations are given in Table 1.
The last state of each point addition and doubling (PAD14) checks the value of i (it operates like a
counter). When the value of i becomes 162 (initially, this value is set to 0), the processor switches to



1018 CMC, 2023, vol.76, no.1

state INV 1. Otherwise, the processor returns to a conditional (CON) state. The INV 1–INV 2 states
implement the inversion computation using an Itoh-Tsujii algorithm. As mentioned earlier, it needs
only square and multiplication operations. So the controller will remain in states INV 1–INV 2 until
the value of invcounter becomes 162 (initially, it is 0). When the value of the invcounter signal equals 162,
the processor switches from INV2–PTA1 state. The invcounter signal counts the number of squares in the
inversion computations. Despite the inverse computations, the PTA1–PTA28 states are responsible for
computing the remaining operations of line 6 of Algorithm 1. The DONE state ensures that the PM
is successfully computed, and it (also) checks the two-bit select signal. If the value is 11, the processor
switches to the KeyReducer state (shown with KRed in Fig. 3). Otherwise, it returns to the algorithm-
selector state (i.e., Aselect).

Figure 3: FSM controller of the proposed flexible architecture

When select = 10—states for TEDU unit: If the two bits of a select signal are 10, the PRESENT
block cipher is executed without the execution of ECC. The processor remains in the TEDU state
until the corresponding encryption or decryption operation is completed. Subsequently, the TEDU
state generates an EDD (encryption-decryption done) signal and switches control to Aselect. It takes 32
clock cycles for one 64-bit encryption and decryption operation.

When select = 11—combined states for all units: It contains the states for the KeyGenerator and
TEDU units, followed by an additional state for the KeyReducer unit. A combinational logic, which
takes one clock cycle, is used to implement a KeyReducer unit.

3.5 Total Clock Cycles Calculation

For the KeyGenerator unit, the total number of clock cycles can be calculated using Eq. (4). Eq. (5)
can be used to calculate the total clock cycles for our flexible architecture.

4 + {3 × (m − 1) + 11n × (m − 1)} + (2 (inv) + 1096) (4)

KeyGeneration + KeyReducer + TEDU (5)

In Eq. (4), a constant value of 4 determines the clock cycles required for the execution of line 1
of Algorithm 1. As shown in Table 1, three instructions are required for finite field addition. So, 3 ×
(m − 1) cycles are needed, where m is 163. Similarly, Table 1 reveals that 11 instructions are required
for squaring and multiplication. Consequently, 11n × (m − 1) cycles are needed, where n shows the
number of clock cycles for one squaring and multiplication. As described earlier in Section 3.1.3,



CMC, 2023, vol.76, no.1 1019

the proposed design employs an SBM multiplier inside the MULT unit. For one multiplication and
squaring computation, it requires 163 clock cycles for a 163-bit operands length. As we described in
Section 3.1.3, the required clock cycles for two inverse, i.e., 2(inv), computations are 27873. Additional
1096 cycles are needed to compute the remaining instructions of line 6 of Algorithm 1. Therefore, the
total number of required cycles for one PM computation (or KeyGenerator) is 319925. The KeyReducer
takes only one clock cycle for computation as it is implemented using combinational logic. A total of
32 clock cycles are required for the TEDU unit. Consequently, the total number of required clock
cycles for our flexible architecture of Fig. 3 is 319958.

4 Results and Comparisons
4.1 Results

Our dedicated and flexible architectures are modeled in Verilog HDL using the Vivado IDE tool.
The KeyGenerator unit is a specific design to compute the PM operation of ECC. The KeyReducer
denotes a dedicated structure to produce the corresponding key for PRESENT encryption/decryption
operations. Finally, our TEDU unit is a dedicated architecture for the PRESENT block cipher. In the
following text, we (first) provide our results for the dedicated architectures. Then, we presented our
results for flexible design. We must mention that we have shown hardware area regarding slices, LUTs
(look-up-tables), and FFs (flip-flops), and we obtain the corresponding area values from the Vivado
tool. The operating frequency and power results are (also) obtained from the Vivado tool. We have
described the total clock cycle calculation in Section 3.5. Finally, latency determines the time required
to perform a cryptographic operation and is calculated using Eq. (6).

Latency (μs) = ClockCycles
Frequency(MHz)

(6)

4.1.1 Results of Dedicated ECC and PRESENT Designs

The area complexity of our dedicated designs in terms of slices, LUTs, and FFs on Virtex-5, Virtex-
6, and Virtex-7 FPGA devices is shown in Table 2. On the same FPGA devices, the timing information
in clock cycles (CCs), circuit frequency (F in MHz), and latency (L in μs) are presented in Table 3.

Table 2: Utilized hardware resources of our dedicated designs on Virtex-5, -6 and -7 FPGA devices

Design components Virtex-5 Virtex-6 Virtex-7

Slices LUTs FFs Slices LUTs FFs Slices LUTs FFs

KeyGenerator (PM of ECC) 1839 6635 1292 1626 5321 1209 1457 4061 1161
KeyReducer 39 167 0 36 151 0 31 135 0
TEDU (PRESENT cipher) 66 213 149 57 196 139 49 183 126
Total sum of resources 1944 7015 1441 1719 5668 1348 1537 4379 1287

As shown in Table 2, there is a decrease in hardware resource utilization. The reasoning is
different implementation technologies. More precisely, the Virtex-5, Virtex-6, and Virtex-7 devices
are constructed on 65 nm, 40 nm, and 28 nm process technologies. It is necessary to highlight that
these technologies’ names imply the transistor size. For example, the modern 28 nm technology means
that the size of one transistor is 28 nm. So, for modern technology, the utilized resources of our
dedicated architectures are less when compared to elder technologies. Table 3 demonstrates that the



1020 CMC, 2023, vol.76, no.1

proposed ECC and PRESENT designs result in higher circuit frequencies of 387 MHz and 407 MHz
on modern Virtex-7 FPGA devices. As seen in Table 3, the clock cycle required for our KeyGenerator
unit is 319925. Table 3 shows that higher cycle counts result in higher latency (i.e., the time required
to compute one cryptographic operation) even on modern 28 nm Virtex-7 FPGA. This happens due
to a schoolbook multiplier architecture (using shift and add). Amongst several other solutions, one is
to use bit-parallel or digit-parallel multipliers to reduce the clock cycle requirement of our dedicated
designs. The power values are not reported in tables; however, on the Virtex-5 device, the total power
consumption of our KeyGenerator and TEDU units is 16 μW and 8 μW .

Table 3: Timing results of our dedicated architectures on Virtex-5, -6 and -7 FPGA devices

Design components CCs Virtex-5 Virtex-6 Virtex-7

F (MHz) L (μs) F (MHz) L (μs) F (MHz) L (μs)

KeyGenerator 319925 295 1084.49 341 938.19 387 826.67
TEDU 32 314 0.1019 347 0.0922 407 0.0786

4.1.2 Results for Flexible Design

On the same Virtex-5, Virtex-6, and Virtex-7 FPGA devices, our flexible design’s area, timing, and
power results are presented in Table 4. The implementation device is shown in column one. Columns
two to four provide the area utilization regarding slices, LUTs, and FFs. Moreover, columns five to
seven provide the timing information in terms of total clock cycles (CCs), operational frequency (F in
MHz), and latency (L in μs). Finally, the last column shows the total power (i.e., static + dynamic) in
μW .

Table 4: Area & timing results of our flexible architecture on Virtex-5, -6 & -7 FPGA devices

Device Area utilization Timing information Power (μW )

Slices LUTs FFs CCs F (MHz) L (μs)

Virtex-5 1663 5016 1401 319958 147 2176.58 23
Virtex-6 1489 4194 1307 319958 173 1849.46 36
Virtex-7 1236 3481 1241 319958 200 1599.79 43

As shown in Table 4, the FPGA slice utilization of our proposed flexible architecture is 1663, 1489,
and 1236 on Xilinx Virtex-5, Virtex-6, and Virtex-7 devices. Moreover, the clock cycle requirement
of our flexible design is 319958. On different FPGA devices, our flexible design can operate at a
maximum of 147 MHz (on Virtex-5), 173 MHz (on Virtex-6), and 200 MHz (on Virtex-7). Similarly,
the computation cost of our flexible design for one key generation with encryption/decryption is
2176.58 μs (on Virtex-5), 1849.46 μs (on Virtex-6), and 1599.79 μs (on Virtex-7). As can be observed
from Table 4, the proposed architecture outperforms in area, frequency, and latency on a 28 nm Virtex-
7 FPGA when compared to Virtex-5 and Virtex-6 implementations. The last column shows that the
proposed design consumes less power, i.e., 23 μW , on the Virtex-5 device. As expected, when moving
from Virtex-5 to Virtex-7 devices, the increase in circuit frequency increases consumed power.



CMC, 2023, vol.76, no.1 1021

4.1.3 Comparison of Dedicated and Flexible Designs

Let us compare only the hardware resources of our flexible design with the sum of resources of
our dedicated architectures. The flexible design utilizes 1.16 (ratio of 1944 over 1663), 1.15 (ratio
of 1719 over 1489), and 1.24 (ratio of 1537 over 1236) times lower slices on Virtex-5, Virtex-6, and
Virtex-7 devices. The reason is fewer (design) interfaces for ECC and PRESENT implementations.
Moreover, the shared key register between ECC and PRESENT is another cause of obtaining fewer
implementation resources. Despite the hardware resources, the consumed power on Virtex-5 of our
flexible design is 23 μW , almost equal to the sum of the power of our dedicated implementations
of ECC and PRESENT algorithms (16 μW + 8 μW ). Almost equal power consumption is due
to a schoolbook multiplier in the ECC design, which incorporates only one shift register and an
accumulated register. But, in the case of a dedicated PRESENT implementation, the consumed power
is 8 μW on Virtex-5 FPGA, while the flexible design consumes 23 μW . This reveals that implementing
the PRESENT algorithm in flexible design degrades the performance regarding power consumption,
but there is always a trade-off.

4.2 Comparison with State-of-the-Art

Our design implements ECC and PRESENT algorithms and is the first flexible hardware
accelerator to our best; therefore, it is essential to highlight that no unified hardware implementation of
ECC & PRESENT exists in the literature. Hence, a realistic and reasonable comparison with state-of-
the-art is not possible. However, Table 5 compares the most relevant state-of-the-art designs, where
column one shows the reference architectures. The key length in n/m is presented in column two,
where n shows the key size for symmetric algorithms, and m determines the key length of ECC. The
implementation device is listed in column three. Columns four and five provide the area in slices and
LUTs for FPGAs, and gate equivalents (GE) show the hardware area for ASIC-implemented designs.
Column six presents the clock cycles. Columns seven and eight exhibit the circuit frequency (in MHz)
and computation time (i.e., latency in μs), respectively. The last column shows the design details.
Moreover, we have used the symbol ‘–’ in Table 5, where the related information is not provided in
the reference design.

Table 5: Comparison of our flexible design with most related state-of-the-art architectures

Ref #. n/m Device Slices LUTs CCs F (MHz) L (μs) Design details

[26] 80/– 180 nm 6207.5 GE 32 – – 80-bit key with UF = 5

[13] –/163 Virtex-7 2207 9965 3960 369 10.73 DP-LSD + PIP
[29] –/163 Virtex-7 1529 4162 3796 383 9.91 DP-LSD + PIP
[30] –/163 Virtex-7 1476 4721 4173 397 10.51 DSM + PIP
[2] 128/163 Virtex-5 2309 5512 – 146 – Unified AES + ECC
[28] 128/163 Virtex-6 – 2121 – 84 – Unified AES + ECC

TW 80/163 Virtex-5 1663 5016 319958 147 2176.58 Flexible design
PRESENT & ECC
algorithms

TW 80/163 Virtex-6 1489 4194 319958 173 1849.46
TW 80/163 Virtex-7 1236 3481 319958 200 1599.79
Note: TW. This Work, Ref. reference design, m. key length, CCs. clock cycles, DSM. segmented digit-serial multiplier, GE. gate equivalents
(area for ASIC designs), L. latency, F. clock frequency, PIP. Pipeline, UF. unrolling factor for PRESENT algorithm, DP-LSD. digit-parallel-
least-significant-digit multiplier.



1022 CMC, 2023, vol.76, no.1

4.2.1 Comparison to PRESENT Algorithm [26]

Column three of Table 5 shows that the implementation results are reported on 180 nm ASIC
technology, while we provide results after place-and-route on FPGA. Therefore, on different imple-
mentation technologies, the area comparison is not possible. As reported earlier, we implemented the
PRESENT architecture of [31] in this work. So, the clock cycle utilization of 32—given in column six
of Table 5—is the same for the 80-bit key length variant of a PRESENT cipher. The comparison to
frequency and latency is impossible as the corresponding information is not reported in the reference
design.

4.2.2 Comparison to PM Designs of ECC [13,29,30]

For an ECC key length of 163 on a Virtex-7 FPGA device, our flexible design is 1.78 (ratio of 2207
over 1236) times more efficient in hardware resources (slices) when compared to the design of [13]. The
reason is 8 × 163 register array in [13] while we used only a 5 × 163 register array to keep the initial,
intermediate, and final results of PM computation of ECC. Another reason is a digit-parallel-least-
significant-digit (DP-LSD) multiplier with a digit size of 32 bits in the datapath of the PM design [13].
On the other hand, we have a shift and add multiplier circuit in the datapath for polynomial squares,
multiplication, and inverse computations. Additionally, the design of [13] utilizes a specific square unit
for modular square calculations, while we used the resources of our multiplier (of shift and add) to
compute square instructions. Along with different multiplier and square units in [13], two reduction
units are utilized for modular reduction computations, connected one after multiplier and square unit.
In this work, we used only one modular reduction unit as we have only one multiplier. Compared to our
flexible architecture, separate modular multiplier and square units in [13] result in lower clock cycles
and latency values, reported in columns six and eight of Table 5. A 2-stage pipelining in [13] results in
higher operating frequency when compared to our flexible design on the same Virtex-7 FPGA device.

Similar to [13], for the same key length size of 163-bit, our flexible design is 1.23 (ratio of 1529
over 1236) times more efficient in hardware resources (slices) compared to the design of [29]. The
reason is the 8 × 163 register array in [29], while we used only a 5 × 163 register array to accommodate
ECC’s initial, intermediate, and final results. Another reason is a DP-LSD multiplier in the datapath
of the design [29]. We utilized a bit-serial (shift and add) multiplication method for polynomial
squares, multiplication, and inverse computations. Compared to our flexible architecture, the DP-LSD
multiplier in [29] results in lower clock cycles and latency values, as shown in columns six and eight of
Table 5. Alike [13], 2-stage pipelining in [29] results in higher operating frequency when compared to
our flexible design on the same Virtex-7 FPGA device.

On identical Virtex-7 FPGA, our flexible architecture is 1.19 (ratio of 1476 over 1236) times more
efficient in hardware area (slices) as compared to [30]. The possible reasons to utilize higher hardware
resources in [30] are (i) a segmented digit-serial multiplier (DSM) for polynomial multiplications, (ii)
separate multiplier and square units for polynomial multiplication and squaring, and (iii) different
modular reduction units. In this work, we utilized only one multiplier and one reduction unit. Similar
to [29], the PM architecture of [30] is more efficient in clock cycles, circuit frequency, and latency when
compared to our flexible design because the designs of [29,30] are pipelined (PIP), while we are not
taking pipeline in consideration to this work.

4.2.3 Comparison to Unified Designs of ECC [2,28]

On the Virtex-5 FPGA device, our flexible architecture of PRESENT and ECC algorithms is
1.38 (ratio of 2309 over 1663) times more efficient in slices than the unified design of AES and ECC



CMC, 2023, vol.76, no.1 1023

algorithms of [2]. The AES supports key lengths of 128, 192, and 256; conversely, the PRESENT
cipher supports 80 and 128. As we have shown in column two of Table 5 that our PRESENT design
utilizes an 80-bit key length while the architecture of [2] targets a 128-bit key length. The larger key
lengths infer higher hardware resources. The comparison to clock cycle and latency is impossible as the
related information is missing in the reference design. As seen in column seven of Table 5, our flexible
architecture operates at a similar circuit frequency of 147 MHz as compared to the frequency reported
in [2] (146 MHz). On the Virtex-6 FPGA device, the architecture of [28] is 1.64 (ratio of 3481 over 2121)
times more efficient in LUTs than our flexible architecture of PRESENT and ECC algorithms. On the
other hand, our flexible architecture is 2.38 (ratio of 200 over 84) times faster in circuit frequency. As
seen in columns six and eight of Table 5, the clock cycles and latency comparison is impossible as this
information is not present in the reference design.

5 Conclusions

This article has presented a flexible/unified hardware architecture of ECC and PRESENT
algorithms. On Virtex-7 device, our dedicated and flexible designs can operate at a maximum
clock frequency of 387 MHz (for ECC), 407 MHz (for PRESENT), and 200 MHz (for flexible).
The implementation results of the dedicated and flexible architecture reveal that flexibility directly
influences the performance and area of the hardware design. The comparison to state-of-the-art
shows that the proposed flexible architecture outperforms hardware resources compared to the unified
architecture of ECC and AES [2]. Similarly, our flexible design is faster in clock frequency when
compared to a unified implementation of ECC and AES [27]. Consequently, the implementation
results and comparison to state-of-the-art show that the proposed architecture is well-suited for
applications that demand flexible implementation of cryptographic algorithms.

Funding Statement: The authors would like to thank the Deanship of Scientific Research at Umm
Al-Qura University for supporting this work by Grant Code: (22UQU4320020DSR01).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] W. Guo, S. Lian, C. Dong, Z. Chen and X. Huang, “A survey on security of digital microfluidic

biochips: Technology, attack, and defense,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 27, no. 4, pp. 1–33, 2022.

[2] Y. Wang and R. Li, “A unified architecture for supporting operations of aes and ecc,” in 2011 Fourth Int.
Symp. on Parallel Architectures, Algorithms and Programming, Tianjin, China, pp. 185–189, 2011.

[3] M. Rashid, M. Imran, A. R. Jafri and T. F. Al-Somani, “Flexible architectures for cryptographic algo-
rithms: A systematic literature review,” Journal of Circuits, Systems, and Computers, vol. 28, no. 3, pp.
1930003–1–1930003–35, 2019.

[4] F. Shohaimay and E. S. Ismail, “Improved and provably secure ecc-based two-factor remote authentication
scheme with session key agreement,” Mathematics, vol. 11, no. 1, pp. 1–22, 2023.

[5] P. V. Reddy, A. R. Babu and N. B. Gayathri, “Efficient and secure identity-based strong key-insulated
signature scheme without pairings,” Journal of King Saud University—Computer and Information Sciences,
vol. 33, no. 10, pp. 1211–1218, 2021.

[6] W. Wang, H. Xu, M. Alazab, T. R. Gadekallu, Z. Han et al., “Blockchain-based reliable and efficient
certificateless signature for IIoT devices,” IEEE Transactions on Industrial Informatics, vol. 18, no. 10, pp.
7059–7067, 2022.



1024 CMC, 2023, vol.76, no.1

[7] V. S. Miller, “Use of elliptic curves in cryptography,” In: H. C. Williams (Ed.), Advances in Cryptology—
CRYPTO ’85 Proceedings, CRYPTO 1985, Lecture Notes in Computer Science, vol. 218, Berlin, Heidelberg:
Springer, 1986.

[8] R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and public-key
cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[9] L. C. Thungon, N. Ahmed and M. I. Hussain, “Comparison of aes and present block cipher for 6LoWPAN
based internet-of-things,” International Journal of Computational Intelligence & IoT , vol. 1, no. 2, pp. 255–
259, 2018.

[10] C. A. Lara-Nino, M. Morales-Sandoval and A. Diaz-Perez, “An evaluation of aes and present ciphers for
lightweight cryptography on smartphones,” in Int. Conf. on Electronics, Communications and Computers
(CONIELECOMP), Cholula, Mexico, pp. 87–93, 2016.

[11] D. Hankerson, S. Vanstone and A. Menezes, Guide to elliptic curve cryptography, Springer, pp. 1–311, 2004.
[Online]. Available at: https://link.springer.com/book/10.1007/b97644 (last accessed on January 9 2023).

[12] G. Leelavathi, K. Shaila and K. R. Venugopal, “Hardware performance analysis of rsa cryptosystems on
fpga for wireless sensor nodes,” International Journal of Intelligent Networks, vol. 2, pp. 184–194, 2021.

[13] M. Imran, M. Rashid, A. R. Jafri and M. Kashif, “Throughput/area optimised pipelined architecture for
elliptic curve crypto processor,” IET Computers & Digital Techniques, vol. 13, no. 5, pp. 361–368, 2019.

[14] Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo et al., “On emerging family of elliptic curves to secure
internet of things: Ecc comes of age,” IEEE Transactions on Dependable and Secure Computing, vol. 14, no.
3, pp. 237–248, 2017.

[15] C. A. Lara-Nino, A. Diaz-Perez and M. Morales-Sandoval, “Elliptic curve lightweight cryptography: A
survey,” IEEE Access, vol. 6, pp. 72514–72550, 2018.

[16] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory,
vol. 22, no. 6, pp. 644–654, 1976.

[17] M. Rashid, S. S. Jamal, S. Z. Khan, A. R. Alharbi, A. Aljaedi et al., “Elliptic-curve crypto processor for
rfid applications,” Applied Sciences, vol. 11, no. 15, pp. 7079, 2021.

[18] Y. -P. Liao and C. -M. Hsiao, “A secure ecc-based rfid authentication scheme integrated with id verifier
transfer protocol,” Ad Hoc Networks, vol. 18, pp. 133–146, 2014.

[19] D. He and S. Zeadally, “An analysis of rfid authentication schemes for internet of things in healthcare
environment using elliptic curve cryptography,” IEEE Internet of Things Journal, vol. 2, no. 1, pp. 72–83,
2015.

[20] M. E. S. Saeed, Q. -Y. Liu, G. Tian, B. Gao and F. Li, “Remote authentication schemes for wireless body
area networks based on the internet of things,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4926–4944,
2018.

[21] M. Li, D. Zhao, X. Tang, S. Cheng, X. Hu et al., “Hardware implementation and optimization design of
lightweight rectangle algorithm,” in IEEE 9th Joint Int. Information Technology and Artificial Intelligence
Conf. (ITAIC), Chongqing, China, pp. 1447–1450, 2020.

[22] C. T. O. Otero, J. Tse and R. Manohar, “AES hardware-software co-design in wsn,” in 21st IEEE Int. Symp.
on Asynchronous Circuits and Systems, Mountain View, CA, USA, pp. 85–92, 2015.

[23] S. Abed, R. Jaffal, B. J. Mohd and M. Alshayeji, “Fpga modeling and optimization of a simon lightweight
block cipher,” Sensors, vol. 19, no. 4, pp. 913, 2019.

[24] S. Limnaios, N. Sklavos and O. Koufopavlou, “Lightweight efficient simeck32/64 crypto-core designs and
implementations, for iot security,” in IFIP/IEEE 27th Int. Conf. on Very Large Scale Integration (VLSI-
SoC), Cuzco, Peru, pp. 275–280, 2019.

[25] W. E. Youssef, A. Abdelli, F. Dridi and M. Machhout, “Hardware implementation of secure lightweight
cryptographic designs for IoT applications,” Security and Communication Networks, vol. 2020, pp. 13, 2020.

[26] B. Rashidi, “Efficient and high-throughput application-specific integrated circuit implementations of hight
and present block ciphers,” IET Circuits, Devices & Systems, vol. 13, no. 6, pp. 731–740, 2019.

https://link.springer.com/book/10.1007/b97644


CMC, 2023, vol.76, no.1 1025

[27] S. Nagaraja and V. Sridhar, “A unified architecture for a dual field ecc processor applicable to aes,” in Fifth
Int. Conf. on Computational Intelligence, Modelling and Simulation, Seoul, Korea (South), pp. 321–326,
2013.

[28] L. Parrilla, E. Castillo, J. A. Lopez-Ramos, J. A. Alvarez-Bermejo, A. Garcia et al., “Unified compact ecc-
aes co-processor with group-key support for iot devices in wireless sensor networks,” Sensors, vol. 18, no.
1, pp. 251, 2018.

[29] M. Imran, S. Pagliarini and M. Rashid, “An area aware accelerator for elliptic curve point multiplication,”
in 27th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS), Glasgow, UK, pp. 1–4, 2020.

[30] Z. -U. -A. Khan and M. Benaissa, “Throughput/area-efficient ecc processor using montgomery point
multiplication on fpga,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 11,
pp. 1078–1082, 2015.

[31] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar and A. Poschmann, “Present: An ultra-lightweight block
cipher,”In: P. Paillier, I. Verbauwhede (Eds.), Cryptographic Hardware and Embedded Systems–CHES 2007,
Lecture Notes in Computer Science, vol. 4727, Berlin, Heidelberg: Springer, 2007.

[32] L. Chen, D. Moody, A. Regenscheid and A. Robinson, “Recommendations for discrete logarithm-
based cryptography: Elliptic curve domain parameters,” NIST Special Publication (NIST SP 800-186),
2023. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf (last
accessed on April 4, 2023).

[33] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses in gf (2m) using normal bases,”
Information and Computation, vol. 78, no. 3, pp. 171–177, 1988.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf

	A Flexible Architecture for Cryptographic Applications: ECC and PRESENT
	1 Introduction
	2 Mathematical Background
	3 Proposed Flexible Architecture
	4 Results and Comparisons
	5 Conclusions
	References


