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Abstract: Due to the recent trend of software intelligence in the Fourth
Industrial Revolution, deep learning has become a mainstream workload for
modern computer systems. Since the data size of deep learning increasingly
grows, managing the limited memory capacity efficiently for deep learning
workloads becomes important. In this paper, we analyze memory accesses
in deep learning workloads and find out some unique characteristics differ-
entiated from traditional workloads. First, when comparing instruction and
data accesses, data access accounts for 96%–99% of total memory accesses in
deep learning workloads, which is quite different from traditional workloads.
Second, when comparing read and write accesses, write access dominates,
accounting for 64%–80% of total memory accesses. Third, although write
access makes up the majority of memory accesses, it shows a low access
bias of 0.3 in the Zipf parameter. Fourth, in predicting re-access, recency is
important in read access, but frequency provides more accurate information
in write access. Based on these observations, we introduce a Non-Volatile
Random Access Memory (NVRAM)-accelerated memory architecture for
deep learning workloads, and present a new memory management policy for
this architecture. By considering the memory access characteristics of deep
learning workloads, the proposed policy improves memory performance by
64.3% on average compared to the CLOCK policy.

Keywords: Memory access; deep learning; machine learning; memory access;
memory management; CLOCK

1 Introduction

With the rapid advances in artificial intelligence (AI) technologies of the Fourth Industrial
Revolution, deep learning is increasingly being adopted in modern software design. As a result, deep
learning has become an indispensable part of our smart living infrastructure [1–3]. Various modern
applications internally perform image processing and text analysis with deep learning frameworks
such as TensorFlow [4,5]. Mobile applications also make use of learning techniques for intelligent
services [6].
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As the data size of deep learning increasingly grows, analyzing the memory access characteristics
of AI workloads becomes important. Although the memory size of the system continues to grow, it
is not easy to accommodate the entire memory footprint of ever-growing AI workloads because of
the density limitation in the manufacturing process of Dynamic Random Access Memory (DRAM)
and the large energy consumption of DRAM media [7,8]. In particular, the manufacturing process of
DRAM cannot scale down the density below 5 nanometers, and the energy consumption of DRAM
increases largely following the memory capacity. Since DRAM is volatile memory, consistent recharge
of each cell is needed to maintain the stored data even though the data is not read or written [7,8].
Note that this recharge operation of each cell accounts for a dominant portion of energy consumption
in memory systems [9].

For this reason, analyzing memory accesses is important to design efficient memory management
policies for deep learning workloads. In this paper, we analyze the memory access characteristics of
deep learning workloads consisting of text and image data. To the best of our knowledge, this is the
first attempt to quantify the memory access behavior of deep learning workloads. There are several
steps in deep learning workloads: loading the dataset, preprocessing, building the model, training the
model, and testing the model. Of these, we collect memory access traces while building and training the
model as it is a major step in deep learning that requires most of the system resources. Specifically, we
analyze read and write operations separately for instruction and data memory accesses. Based on our
analysis, we find out some special characteristics of deep learning memory accesses, which are quite
different from conventional desktop workloads such as games, office software, document viewers,
and photo browsers. First, when comparing instruction and data accesses, data access accounts for
a dominant portion of memory accesses in deep learning workloads, which is quite different from
traditional workloads. Specifically, data access accounts for 96%–99% of deep learning workloads
while 70%–85% of traditional workloads. Second, when comparing read and write accesses, write
access accounts for 64%–80%, which is also different from traditional workloads where write accounts
for 6%–55%. Third, although write access accounts for the majority of memory accesses, it exhibits low
access bias. Specifically, the Zipf parameter of write access is about 0.3, and the parameter is smaller in
text workloads than in image workloads. Fourth, in predicting memory re-access, recency is important
in read access, but the frequency is necessary for accurate estimation in write access.

Based on these observations, we present a new memory architecture that makes use of Non-
Volatile Random Access Memory (NVRAM) to accelerate the memory system for deep learning
workloads. As a large amount of data is generated during the training phase of deep learning
workloads, performance degradation is inevitable unless the DRAM size is increased to accommodate
it. Instead of increasing the DRAM size of the system, we observe that NVRAM can provide an
alternative solution to compensate for the limited DRAM size in deep learning workloads. This
will provide significant implications to address rapidly growing memory demands in deep learning
workloads. In particular, while deep learning workloads generate explosive memory demands for data
accesses during training, our architecture defends against memory thrashing by absorbing data pages
evicted from DRAM. In the case of instruction pages, our policy simply discards them without flushing
to NVRAM or storage like conventional workloads as they are read-only pages so the same versions
already exist in secondary storage. In our architecture, page tables always reside in DRAM, so they
never have a chance to enter NVRAM. By so doing, the proposed architecture eliminates most of the
storage I/Os caused by deep learning data access considering the memory access characteristics we
observe. That is, a small size of NVRAM in our architecture absorbs a large portion of data access
although deep learning workloads become larger than the given DRAM capacity. As the retrieval
latency from storage is not uniform depending on the backup location (i.e., NVRAM and secondary
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storage), we need a new memory management policy for NVRAM-added architectures. In this paper,
we present a new memory management policy that considers the different I/O costs and memory access
characteristics of deep learning workloads.

Memory management is a traditional topic, so there have been many attempts to improve memory
performance. Specifically, the page eviction policy plays a central role in memory management,
which determines victim pages to be discarded from memory when there is no free memory space to
accommodate new page requests. Although extensive studies have been performed on eviction policies,
most of them have focused on the consideration of specific storage characteristics (e.g., flash memory)
[10] or workload characteristics (e.g., mobile applications) [11]. Unlike previous works, our study
focuses on the analysis of memory access characteristics originating from deep learning workloads and
accelerating performance by adopting NVRAM-added architectures. As the CLOCK policy [12] is the
most popular one that is being adopted in the current operating systems like Linux, we use CLOCK as
the baseline eviction policy and validate the improvement of our policy against the existing architecture
and new architecture with CLOCK. Simulations based on the memory access traces of four popular
deep learning workloads consisting of Internet Movie DataBase (IMDB), Spam detection, Modified
National Institute of Standards and Technology database (MNIST), and Fashion MNIST show that
the proposed policy improves the memory performance by 64.3% on average compared to the CLOCK
policy.

The rest of this paper is organized as follows. Section 2 describes the method of collecting memory
access traces for deep learning workloads, and presents the characterization results of memory accesses
focusing on access types and operations. In Section 3, we analyze the memory access characteristics of
deep learning workloads with respect to access bias. Section 4 describes the prediction of memory re-
access based on recency and frequency characteristics in deep learning workloads. Section 5 explains
a new memory management policy suggested in this paper. Section 6 validates the proposed policy
based on simulation experiments. Section 7 briefly summarizes studies related to this paper focusing
on NVRAM technologies. Finally, Section 8 concludes this paper.

2 Analysis of Deep Learning Memory Accesses

TensorFlow [13] and Pytorch [14] are well-known deep learning frameworks for generating
learning models with Convolution and Long Short-Term Memory (LSTM) layers. In this paper, we
extract memory access traces while executing TensorFlow with LSTM and Convolution layers. For
collecting memory access traces of deep learning workloads, we make use of the Callgrind module of
the Valgrind toolset [15]. There are several tools that can capture memory access traces such as Pintools
[16] and Valgrind [15]. Of these, we use Valgrind as it has been used in previous studies and we need
to analyze our traces in comparison with the desktop traces collected by Valgrind [17]. In our trace
collection, memory accesses were captured as the result of read/write requests from the last level cache
to the main memory. Our trace collection is based on whether memory access was actually performed
regardless of how address translation was done. That is, whether address translation is performed via
the TLB (Translation Lookaside Buffer) or the page table is irrelevant to the point of view we traced.
We extract memory access traces of four popular deep learning workloads: IMDB, Spam detection,
Fashion MNIST, and MNIST. The brief descriptions of these workloads are as follows.
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• IMDB [18]: identifying positive or negative ratings from 50,000 movie reviews by utilizing
1-dimensional Convolution layers.

• Spam detection [19]: determining whether an email is a spam or not based on the content of
the email by utilizing LSTM layers.

• FashionMNIST [20]: classifying 10 kinds of clothing images including shoes, bags, and pants
by utilizing 2-dimensional Convolution layers.

• MNIST [21]: classifying text images of digits 0 to 9 by utilizing LSTM layers.

Fig. 1a shows the distributions of memory accesses for the four deep learning workloads we exper-
iment with. We also show the memory access distributions of some traditional workloads consisting
of game, office, PDF (Portable Document Format), and photo for comparison purposes as shown
in Fig. 1b. The game trace was extracted while playing the traditional card game application called
Freecell; the office trace was collected while editing a document file by the text editor software Gedit;
the photo trace was captured while executing the image browser software called Geeqie; the PDF trace
was collected while viewing a PDF file by the document viewer application KGhostview [17].

Figure 1: Memory access distributions of (a) deep learning workloads and (b) conventional workloads;
IMDB = internet movie database; MNIST = modified national institute of standards and technology
database
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There are two memory access types (i.e., instruction and data), and two operations (i.e., read and
write). As instructions are fetched from the code region of memory that has read-only permissions,
write operations are not allowed on instruction-type memory accesses. Thus, we can classify memory
accesses into three types, i.e., the instruction read, data read, and data write. As shown in Fig. 1a, when
comparing instruction and data accesses, data access accounts for a dominant portion of memory
accesses in deep learning workloads. Specifically, instruction access accounts only for 1%–3.3% of all
deep learning workloads we consider. Note that this is not the case for traditional workloads where
15%–30% are instruction accesses as shown in Fig. 1b.

Another important observation is that write operations account for a large portion of total
memory accesses in deep learning workloads. Specifically, data write is responsible for 64%–80%
of total memory accesses regardless of workload types as shown in Fig. 1a. However, in traditional
workloads shown in Fig. 1b, read access accounts for a majority of memory accesses in most cases
though the writing is dominant in some workloads like the photo. Specifically, the ratio of write access
in traditional workloads is 12%, 7%, 6%, and 55%, respectively, for game, office, PDF, and photo.

Fig. 2 shows the distributions of distinct memory accesses for the same workloads in Fig. 1. That
is, we count only once for the same memory address although the location is accessed multiple times
in Fig. 2. By observing the results in Figs. 1 and 2, we can conclude that the size and the number of
data to be accessed in deep learning workloads are excessively larger than traditional workloads for
executing a similar ratio of instructions.

Meanwhile, in order to see how these access characteristics affect the performance of the actual
system, we measured LLC (last-level cache) misses and page faults in deep learning workloads and
traditional workloads. In our experiment, the measurement result of the LLC miss rate ranged from
10% to 20%, and there was no significant difference between the traditional workloads and the deep
learning workloads. This is because LLC focuses on maintaining the micro-level working set of the
currently running process, so a certain ratio of cache misses inevitably occurs during working-set
transitions. Nevertheless, DRAM accesses caused by LLC misses do not significantly affect overall
system performance as DRAM access latency is not very large compared to storage access latency.
On the other hand, if the allocated memory size is very small to accommodate the footprint of the
workload, frequent page faults will occur, resulting in significant performance degradation due to
slow storage access. In this paper, we measured the major faults caused by storage access and observed
that the traditional workloads showed 40–100 faults/sec, while the deep learning workloads showed
3,000 to 10,000 faults/sec, indicating memory thrashing situations. In order to resolve this issue, the
memory capacity should be increased during the training phase of the deep learning workloads. Our
preliminary experiments showed that the memory size required for deep learning workloads is 2 to 8x
to achieve performance comparable to traditional workloads. However, when we add system memory
for this purpose, resources will be wasted during idle time and power consumption will also keep
increasing. Thus, an effective solution to deal with this problem should be considered.
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Figure 2: : Distinct memory access distributions of (a) deep learning workloads and (b) conventional
workloads; IMDB = internet movie database; MNIST = modified national institute of standards and
technology database

3 Memory Access Bias in Deep Learning Workloads

In this section, we analyze the characteristics of memory accesses in deep learning workloads
focusing on access bias. This is important for determining the hot data of deep learning workloads
that reside in memory and setting an appropriate size of memory for the system running the workload.
Skewed popularity distributions are usually modeled by the Zipf distribution, where the access
frequency of the i-th most popular page is proportional to 1/i. The Zipf distribution comes from
quantitative linguistics [22], where the frequency of a word’s usage is inversely proportional to its rank
in an ordered frequency list, and can also be applied to model biases in web pages accessed [23] or TV
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channels watched [24]. In our problem, the access probability Pi of the i-th popular memory page is
expressed as

Pi = (1/i)θ

∑n

k=1 (1/k)
θ

(1)

where n is the total number of memory pages accessed and θ (0 ≤ θ ≤ 1) is the Zipf parameter that
determines the degree of popularity bias. When θ is 0, all memory pages are evenly accessed. As the
value of θ increases, the popularity of memory pages is increasingly biased, and finally, when it becomes
1, the popularity is most biased [24]. If we plot the popularity rank of a page vs. the number of page
accesses on a log-log scale, the Zipf distribution can be fitted with a straight line. Thus, to find the Zipf
parameter θ of each workload, we perform a linear regression and extract the slope of the line.

Table 1 lists the Zipf parameter for the four deep-learning workloads that we analyze. As we see
from this table, the Zipf parameter of write access is smaller than that of read, implying that the access
bias is weaker in write operations. Specifically, the parameter of read is about 0.5 for most cases, but
in writes, it is 0.29 to 0.44, which means that memory accesses in deep learning workloads are not
excessively concentrated on some hot pages in writes. When comparing the four workloads, the Zipf
parameter of text workloads (i.e., IMDB and Spam Detection) is smaller than that of image workloads
(i.e., Fashion MNIST and MNIST). For comparison purposes, we also analyze some Zipf parameters
of conventional workloads and list them in Table 2. As we see from this table, the Zipf parameter of
write access is significantly larger than that of deep learning workloads in all cases.

Table 1: Skewness parameter of deep learning workloads

IMDB Spam detection Fashion MNIST MNIST

Inst. read 0.50818 0.52530 0.52440 0.52989
Data read 0.48746 0.36947 0.53208 0.53624
Data write 0.36771 0.29781 0.38493 0.44271

Table 2: Skewness parameter of desktop workloads

Game Office PDF Photo

Inst. read 0.45630 0.52673 0.45341 0.46795
Data read 0.46453 0.49033 0.45977 0.39400
Data write 0.45589 0.79030 0.56293 0.43831

4 Re-Access Estimation of Memory Pages

To accelerate memory performances, it is important to predict future memory accesses well and
maintain those pages likely to be re-accessed in memory as much as possible. To do this, the memory
system should utilize good estimators that predict future memory accesses. Recency and frequency
are two well-known estimators utilized in predicting the re-access of memory pages [25]. We compare
these two estimators in deep learning workloads and analyze which one leads to better predictions.

Fig. 3 plots the effect of recency rankings of accessed pages on re-access of pages for the four
deep learning workloads. In the figure, the x-axis is the page ranking based on the last access time (i.e.,
recency ranking), and the y-axis is the number of accesses on that page ranking. For example, ranking
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1 is the most recently accessed page in a chronologically sorted order. An increase in rankings along
the x-axis implies that more time has passed since the pages have been accessed. The cyan, blue, and
red plots represent instruction read, data read, and data write, respectively. Note that we separately
maintain page rankings based on access types and accumulate when the corresponding access type
happens. As we see from this figure, the curve decreases monotonically within certain top-ranking
ranges, implying that recently accessed pages are more likely to be re-accessed soon. When comparing
access types, the plots of “data read” and “instruction read” are mostly located above those of “data
write” in the rankings of less than 103, indicating that recency is a strong estimator in read accesses,
but it is relatively weak in write accesses.

Figure 3: Number of accesses for page rankings based on recency: (a) IMDB (internet movie database);
(b) spam detection; (c) fashion MNIST (modified national institute of standards and technology
database); (d) MNIST

Similar to the recency estimator, the effect of the frequency estimator can be analyzed based on the
corresponding page rankings. To this end, we sort pages based on their access frequency, and whenever
a page in a certain ranking is re-accessed, we increase the number of accesses for that ranking by one,
which possibly results in the reordering of the rankings.
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In Fig. 4, the x-axis is the rankings of pages based on their past access frequency, and the y-axis
is the number of re-accesses on the corresponding rankings. As can be seen in this figure, the number
of accesses in top-ranking pages is not as large as that of recency ranking curves in Fig. 3. This is
possible as the number of references plotted for each ranking in the graph is not the access count of a
particular page, but the total count accumulated for a ranking that may represent different pages over
time. However, if we add up the reference count for the overall rankings, the sum will be the same in
the recency and frequency graphs. This observation indicates that recency ranking can estimate the re-
access of memory pages better than frequency ranking for certain top-ranking pages. However, in the
case of write access, the frequency estimator consistently exhibits a large number of re-accesses even
after top rankings, but the recency estimator shows some irregular patterns such that the number of
accesses drops sharply around the rankings of 103 and then rises again. This makes recency rankings
difficult to estimate future memory write accesses when the number of memory pages to be estimated
increases.

Figure 4: Number of accesses for page rankings based on frequency: (a) IMDB (internet movie
database); (b) spam detection; (c) fashion MNIST (modified national institute of standards and
technology database); (d) MNIST

To precisely compare the recency and frequency estimators in write access, we extract the write
curves from Figs. 3 and 4, and re-plot them in Fig. 5. As clearly shown in this figure, the two curves
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intersect roughly at ranking 101. This indicates that the recency estimator is more accurate than the
frequency estimator for the highest rankings, but the frequency estimator provides consistently good
information for overall ranking ranges. We can utilize this result in memory management policies
as follows. If we have only a limited memory capacity of 10 pages, we can select the top-ranking
pages from the recency estimator. However, more memory capacities are available, an efficient memory
management policy should maintain pages suggested by the frequency estimator.

Figure 5: Comparison of recency and frequency distributions in memory write accesses: (a) IMDB
(internet movie database); (b) spam detection; (c) fashion MNIST (modified national institute of
standards and technology database); (d) MNIST

In summary, the recency estimator is sufficient to predict read access for deep learning workloads
as shown in Fig. 3. However, it shows some reversed trends for write access as the rank increases.
Therefore, the frequency estimator can be used in conjunction with the recency estimator to accurately
predict write access.
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5 Implications to Memory Management

In this section, we present a new memory architecture for deep learning workloads that utilize
NVRAM in order to accelerate the memory performance of deep learning systems without increasing
the system’s DRAM size. We then propose a memory management policy designed appropriately for
that architecture. The proposed architecture makes use of a small size of NVRAM residing between
DRAM memory and secondary storage as shown in Fig. 6. Although some previous studies have
already suggested using NVRAM as a storage accelerator or extension of main memory media [11,26],
we observe the memory pressure of deep learning workloads, especially for the large number of data
pages generated during the training phase. In this situation, instead of increasing the DRAM memory
size of the system, we make use of NVRAM as victim memory to prevent thrashing by absorbing data
pages evicted from DRAM. In the case of instruction pages, our policy simply discards them without
flushing them to NVRAM. NVRAM technologies such as Intel’s OptaneTM [27] provide fast storage
with low energy consumption [28]. However, NVRAM cannot completely replace secondary storage
due to its cost per capacity, so we use it as an additional component for performance accelerators
[26,29].

Figure 6: The system architecture that makes use of NVRAM (non-volatile random access memory)
for deep learning workloads

Main memory is managed in units of pages, and when a page is requested, the memory manage-
ment system searches whether the requested page resides in memory. If it is found, the application
continues execution by accessing the requested page. Otherwise, the page should be loaded from
secondary storage, which is called a page fault situation. Upon a page fault, if there is no available
memory space, the memory management system selects a victim page and removes it from memory.
However, if the same page is requested again in the future, it should be reloaded from storage. To
improve memory performance, minimizing the number of page faults is important, which can be
achieved by equipping with a memory size large enough to accommodate the entire data set. However,
as the system requires large memory only in the training phase of deep learning workloads, we make
use of NVRAM instead of increasing the DRAM memory size.
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As instruction access accounts for only a small fraction of memory accesses in deep learning
workloads, we do not allow them to enter NVRAM. Also, since instructions are read-only, they do not
change after being loaded into memory. This implies that instruction pages in memory necessarily have
the same contents as the original files in storage. So we can simply delete pages containing instructions
from memory without writing back to storage. In contrast, as data access accounts for a majority
of memory accesses in deep learning workloads, we accelerate them by making use of NVRAM.
Specifically, data writing is responsible for 65%–80% of total memory accesses as analyzed in Section
2, and we do not need to flush them to slow storage by maintaining them in NVRAM.

By adopting NVRAM as the data access accelerator, instruction pages and data pages have
different access costs when they need to be loaded into memory. That is, due to the performance gap
between NVRAM and secondary storage, retrieving data pages from NVRAM has a lower cost than
retrieving instruction pages from slow storage. So, we design a new memory management policy for
deep learning systems, which considers different access characteristics and I/O costs.

Specifically, our policy classifies memory pages into instruction pages, data/read pages, and
data/write pages. Then, the policy manages the main memory by logically separating it into three areas,
namely the instruction area, data/write area, and data/read area. Each area is then resized based on
the access characteristics and their costs. To do so, we add a small size of history list for the three areas
to see their access characteristics [30,31]. The history list maintains the metadata of recently removed
pages instead of their actual contents. By monitoring accesses to pages in the history list, we can predict
the page fault ratio of each memory area. Specifically, the effectiveness of enlarging each memory area
can be estimated by history lists. For example, if there are frequent accesses to pages in the history list
of instruction area, we can enlarge the instruction area to improve memory performance. As the total
memory size is fixed, enlarging the instruction area accompanies the data areas to shrink accordingly.

In addition to access frequencies in the history list, our policy considers different retrieving costs
from NVRAM and secondary storage. That is, we give higher memory priorities to the instruction area
as the cost of retrieving instruction pages from secondary storage is higher than that of retrieving data
pages from NVRAM. For example, if data pages are accessed 100 times more often than instruction
pages in the history list, but loading an instruction page from secondary storage is 500 times slower
than a data page from NVRAM, we set the priorities of instruction and data areas 5 and 1, respectively.
This implies that the instruction area is enlarged 5x faster than the data area for the same number of
accesses in the history list. As a data page can be read and then also written, a data page can be included
in both data/read and data/write areas at the same time. In this case, only a single copy of the page
content is maintained in the physical memory and it is shared by the two areas.

When the system’s free memory is exhausted, the memory management policy should select some
victim pages and discard them to make available memory space. The most popular policy used for this
purpose is CLOCK, which manages all memory-resident pages in a circular list. Although CLOCK
was devised in the early days [12], its variants are still being adopted in the current Android and Linux
systems. CLOCK sequentially checks the access bit of each page to monitor whether the page has
been used recently or not. If the access bit of a page is 1, CLOCK clears the bit instead of evicting it;
otherwise, CLOCK selects the page as a victim and removes it.

Similar to the CLOCK policy, we manage the access recency of memory pages based on circular
linked lists, but we separately manage the three areas, i.e., instruction area, data/read area, and
data/write areas, by utilizing different lists. When we need to find a victim page from the instruction
area or data/read area, our policy traverses the circular linked list of the target area and investigates
the read access bit of pages. In contrast, if we need to find a victim from the data/write area, our policy
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investigates the write access bit of pages. When a page is evicted from one of the instruction, data/read,
and data/write areas, its metadata is added to the corresponding history list. When there is no available
slot in the history list, the oldest page is evicted.

As the frequency is also important to estimate the re-access likelihood of write access, our
policy internally manages data/write area by two sub-areas, namely data/write_arearecency and
data/write_areafrequency as shown in Fig. 7. History lists for these two sub-areas are also maintained
separately. Note that data/write_arearecency maintains data pages that are written once whereas
data/write_areafrequency maintains data pages that are written more than once after entering memory.
Algorithm 1 shows the pseudo-code of the proposed policy upon a page-fault situation.

Figure 7: Memory areas and their history list in the proposed policy

Algorithm 1
procedure Page-Fault (page Pg)

Area ← area to add Pg;
HistArea ← history list of Area;
if no free space in Area then

Evict (Area);
end if
if no free space in HistArea then

discard the oldest page from HistArea;
end if
if Pg∈HistArea then

remove Pg from HistArea;
increase the size of Area based on access cost;
adjust the size of other areas;

end if
(Continued)
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Algorithm 1 Continued
add Pg to Area;

end procedure
procedure Evict (area Ar)

Pg ← page pointed by circular list of Ar;
while access-bit (Pg, Ar) = 1 do

access-bit (Pg, Ar) ← 0;
advance the pointer of Ar;

end while
delete Pg from Ar and add Pg to HistAr;

end procedure

6 Performance Evaluations
6.1 Simulation Experiments

In this section, we validate the effectiveness of the proposed memory management policy for
deep learning workloads through trace-driven simulations. For our experiments, memory accesses
were captured while executing four deep learning workloads, IMDB, Spam Detection, Fashion
MNIST, and MNIST as introduced in Section 2, and the traces were replayed under the given
architecture with different memory management policies. The hardware specifications of our system
for collecting memory access traces consist of an Intel Core i7-11700 2.5 GHz 8-core processor, 8 GB
DDR4 memory, and 1TB HDD storage. Tables 3 to 5 summarize the data set characteristics and the
experimental parameters of our simulations.

Table 3: Memory access characteristics of deep learning workloads

IMDB Spam detection Fashion MNIST MNIST

Number of
accesses
captured

Total 191,485,840 245,134,853 304,472,130 312,882,815
Inst. read 5,463,881 2,537,635 10,056,350 8,558,141
Data read 32,131,186 86,539,004 59,803,608 58,138,678
Data write 153,890,773 156,058,214 234,612,172 246,185,996

Access ratio Read:write 1:4.09 1:1.75 1:3.36 1:3.69
Inst.:data 1:34.05 1:95.60 1:29.28 1:35.56

Table 4: Memory access characteristics of desktop workloads

Game Office PDF Photo

Number of
accesses
captured

Total 490,175 1,733,763 1,546,135 610,685
Inst. read 114,233 649,500 380,609 93,242
Data read 315,902 951,441 1,061,986 172,044
Data write 60,040 132,822 103,540 345,399

(Continued)
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Table 4: Continued
Game Office PDF Photo

Access ratio Read:write 7.16:1 12.05:1 13.93:1 1:1.30
Inst.:data 1:3.29 1:1.67 1:3.06 1:5.55

Table 5: System configurations for our experiments

Resource type Configurations

Processor core Intel Core i7-11700 2.5 GHz 8-core processor
L1 instruction cache 32 KB (×8), 64-byte lines, 8-way set associative
L1 data cache 48 KB (×8), 64-byte lines, 12-way set associative
L2 cache 512 KB (×8), 64-byte lines, 8-way set associative
Last-level cache 16 MB, 64-byte lines, 16-way set associative
Main memory 8 GB DDR4 (read/write latency 50 ns)
NVRAM 8 GB PCM (read 100 ns, write 350 ns)
Secondary storage 1TB HDD (8 ms average access latency)

We developed a functional simulator that has the ability to evaluate the effectiveness of memory
hierarchies when the page eviction policy and the parameters of memory/storage media are given.
Specifically, our simulator replays memory access traces consisting of a series of logical page numbers
and access types. During the simulations, if the requested page is not in memory, we simulate I/O
activities based on the performance characteristics of each storage type. For hard disk drives (HDD),
we use the parameters of Toshiba DT01ACA1, of which the read/write access latency is 8 milliseconds.
For NVRAM, we use the parameters of PCM (Phase-Change Memory), of which the read and write
latencies are 100 nanoseconds and 350 nanoseconds, respectively [9,32]. PCM stores data based on
two phases of a material called GST (germanium-antimony-tellurium), which provides a different
resistance to the cell when current flows so that data can be distinguished [32]. We use PCM as it
is one of the well-known NVRAM media that can be placed in front of slow storage for performance
acceleration. The size of a page is set to 4 kilobytes as it is the most common size used in modern
operating systems such as Linux.

We compare our policy with the CLOCK policy [12] under the same NVRAM architecture. To
see the effect of adopting NVRAM hardware itself rather than using judicious memory management
policies, we also evaluate the performance of the system that does not use NVRAM, which we call
Baseline.

Fig. 8 shows the total I/O time of the proposed scheme, CLOCK, and Baseline as the number
of memory pages is varied. Since our memory access traces are collected on a sampling basis, the
collected footprint is smaller than the actual memory footprint. Hence, the memory size used in our
simulations should be much smaller than the actual system environment. Note that the x-axis in Fig. 8
is the DRAM memory size for each workload we simulate. The NVRAM size used in our experiments
was set to the entire footprint size of the deep learning workload, similar to the setting of the swap
memory size in desktops. As we see from this figure, the proposed policy performs consistently better
than CLOCK regardless of the memory capacity for all workloads. In particular, the effectiveness
apparently appears when the number of memory pages is relatively small. This is because our policy
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manages the limited memory capacity more efficiently to reduce the total I/O time. That is, our policy
considers the memory access characteristics of deep learning in terms of instruction and data access,
and also takes into account the different I/O costs of NVRAM and secondary storage. By so doing,
the proposed policy improves the total I/O time by 64.3% on average and up to 89.5% in comparison
with CLOCK. When compared to Baseline, the performance improvement of the proposed policy is
97.6% on average and up to 99.2%.

Figure 8: (Continued)
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Figure 8: Comparison of baseline, CLOCK, and the proposed schemes

In Fig. 8, we separately plot the I/O time for instruction and data accesses. The two sources
of performance improvement in this paper are the adoption of new hardware architecture and new
software management. When comparing CLOCK with Baseline, we can see the improvement by
adopting the hardware architecture, where data accesses benefit significantly. Note that the Baseline
graph has been truncated because the gap between the numbers is too large. When comparing
the proposed policy with CLOCK under the same architecture, we can see the improvement in
software management, where instruction access gains significantly. Specifically, the reduced I/O time
of instruction access is 88.1% on average compared to CLOCK. This is because our policy preserves
instruction pages as much as possible by assigning high priorities in accordance with their I/O cost,
whereas CLOCK does not consider the different access costs of NVRAM and secondary storage
by giving the same priorities. Finally, when we compare our policy with Baseline, we can see the
improvement by adopting both hardware architecture and software management. As we see, our policy
improves the I/O time of data access as well as instruction access significantly. The reason is that we
employ NVRAM basically for accelerating data access, but instruction access is also enhanced due
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to judicious software management. The improvement of the proposed policy against the Baseline is
88.1% and 98.1% for the I/O time of instruction and data accesses, respectively.

6.2 Discussions

In this subsection, we will discuss the impact of our architecture on real system environments
that execute deep learning workloads with a footprint of several gigabytes based on our preliminary
simulation results. In Section 2, we showed that the size of memory required for the training phase of
deep learning is 2x to 8x that of traditional workloads for executing a similar ratio of instructions. This
implies that the system needs to allocate large memory size to deep learning workloads while training
is performed to avoid memory-thrashing situations. Suppose that there are 8 GB of DRAM in the
system that can be allocated to user processes. While the training phase of deep learning, the system
temporarily requires at least an additional 8 GB in order to handle a large data set. In this situation,
instead of increasing the DRAM size to 16 GB, let us consider our architecture equipped with 8 GB
of NVRAM. Note that the typical size of a swap device in virtual memory systems is 1x to 2x the size
of the main memory. In this paper, as the basic swap storage already exists, we set the size of NVRAM
to the same as that of the main memory.

We can expect two advantages from this architecture. First, unlike the main memory system,
we can use more complicated management policies in our NVRAM layer. That is, in the proposed
architecture, since NVRAM is located below the main memory layer, it is possible to design man-
agement policies that utilize the characteristics of data access more precisely. In the main memory
system, the reference history of each data is simply monitored by 1-bit information, allowing only
simple algorithm design. For example, the working of the CLOCK algorithm is based on the binary
information of the reference bit indicating whether the data has been recently used or not. In contrast,
in the NVRAM layer of the proposed architecture, it is possible to design sophisticated algorithms
using data request characteristics (e.g., access time, frequency) and region information (e.g., code,
data). Since our purpose is to prevent memory thrashing during deep learning training, only the data
area is absorbed by NVRAM. Also, we can utilize the full information of access time and frequency in
managing NVRAM space. In summary, unlike the main memory system, which has many restrictions
on management, it is possible to manage the NVRAM area more tailored to our purpose, so we can
expect better results by adding the same size of NVRAM instead of DRAM.

Second, by adopting the proposed NVRAM-added architecture, we can expect the energy-saving
of the system greatly. The energy consumption of a memory system consists of “active energy”
consumed during read/write operations and “static energy” consumed regardless of any memory
operation. It has been reported that static energy accounts for the majority of energy consumption
in memory systems and that energy consumption increases proportionally to the size of the DRAM
used [7,8]. To quantify the effect of our architecture with respect to energy-saving, we model the energy
consumed in DRAM and NVRAM, respectively, as EnergyDRAM and EnergyNVRAM. The DRAM energy
consumption EnergyDRAM is the sum of static energy EnergyDRAM_static and active energy EnergyDRAM_active,
that is

EnergyDRAM = EnergyDRAM_static + EnergyDRAM_active (2)

Static energy EnergyDRAM_static is the energy consumed consistently irrespective of any operations in
DRAM memory, which can be calculated as

EnergyDRAM_static = Static_Power (W/GB) ∗ Size_DRAM (GB) ∗ Exec_Time (s) (3)
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where Static_Power is the power consumption of DRAM per capacity regardless of read/write
operations, Size_DRAM is the size of DRAM, and Exec_Time is the total running time of the system.
The active energy EnergyDRAM_active is the energy consumed while read/write operations are performed,
which can be modeled as

EnergyDRAM_active = Energy_DRAMread ∗ Num_DRAMread

+ Energy_DRAMwrite ∗ Num_DRAMwrite (4)

where Num_DRAMread and Num_DRAMwrite are the number of memory read and write operations,
respectively, and Energy_DRAMread and Energy_DRAMwrite are the read and write energy consumption
for the unit access size of DRAM, respectively. The NVRAM energy consumption EnergyNVRAM is
calculated as

EnergyNVRAM = Energy_NVRAMread ∗ Num_NVRAMread

+ Energy_NVRAMwrite ∗ Num_NVRAMwrite (5)

where Num_NVRAMread and Num_NVRAMwrite are the number of NVRAM read and write opera-
tions, respectively, and Energy_NVRAMread and Energy_NVRAMwrite are the read and write energy
consumption for the unit access size of NVRAM, respectively. Note that we do not consider the static
energy consumption of NVRAM as it is non-volatile, and thus does not need refresh operations.

Based on this energy model, we simulate the energy consumption of the memory system with the
increased DRAM size and our NVRAM-added architecture. In this simulation, the read/write energy
of DRAM is set to 0.1 (nJ/bit) and the static power of DRAM is set to 1 (W/GB) following previous
studies [7,9]. The read and write energy of NVRAM is set to 0.2 (nJ/bit) and 1.0 (nJ/bit), respectively
[7,9]. The energy consumption depends on how frequently read/write operations are performed. Our
simulation shows that the NVRAM-added architecture can reduce the energy consumption of the
memory system by 42.4% to 46.6% depending on the frequency of memory access in each workload.
This again confirms that the static energy of DRAM is significant in memory energy consumption.

7 Related Work

Using NVRAM in various memory hierarchies of computer systems has been attempted. As
NVRAM is byte-addressable like DRAM or SRAM (Static Random Access Memory), some studies
focus on using NVRAM for cache memory or main memory layers. Also, since NVRAM is non-
volatile, there are studies to utilize NVRAM as a fast storage medium. However, NVRAM has some
weak features for use at the memory tier (i.e., limited write endurance and slow writes) and storage tier
(i.e., high cost per capacity). Therefore, research on NVRAM has attempted to hide these limitations of
NVRAM while improving the energy and performance characteristics of memory and storage systems.

Some studies focus on the non-volatile nature of NVRAM when it is adopted for the main memory
layer. Unlike existing systems that consider in-memory data to be ephemeral, these studies exploit
the persistency of in-memory data. That is, when the main memory becomes non-volatile, the cache
lines become the boundary layer between temporary and permanent devices. This means that write
atomicity is guaranteed at the granularity of a cache line. By considering this, Cho et al. conduct studies
for persistent in-memory data structures [33]. Specifically, they propose the FBR-tree (Failure-atomic
Byte-addressable R-tree) data structure to guarantee consistency against crash situations.

Studies focusing on on-chip cache architectures aim to use NVRAM as a replacement for SRAM.
Talebi et al. present an on-chip cache architecture that makes use of NVRAM [34]. Specifically, they
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present an eviction policy for the NVRAM cache to enhance the robustness of NVRAM media against
failure conditions.

Rucker et al. make use of NVRAM as an L2 or L4 CPU cache with low area and power
requirements compared to SRAM [35]. Because NVRAM has endurance concerns, they assess the
effectiveness of cache management policies in terms of the wear-out issue of NVRAM.

Fan et al. use NVRAM as the main memory and focus on the fact that dirty pages (i.e.,
updated pages) can be kept longer without the urgent need to be flushed to storage as the main
memory becomes non-volatile [36]. Specifically, they present the Hierarchical Adaptive Replacement
Cache (H-ARC) policy that considers the status of memory pages based on clean/dirty as well as
recency/frequency characteristics.

Wang et al. suggest an NVRAM-based processing-in-memory accelerator for the training of
neural networks [37]. They try to balance memory density and computation flexibility, thereby
improving not only performance but also energy and area efficiency.

Jin et al. propose an eviction policy for cache memory when hybrid DRAM and NVRAM main
memory architectures are used [38]. They argue that the miss penalty in memory access is more
important than the hit ratio in their architecture and present Miss-penalty Aware LRU (MALRU)
to improve overall performance.

Some studies make use of NVRAM as the swap device of virtual memory systems. Liu et al. adopt
NVRAM as the swap partition of mobile devices to improve the performance of flash memory swaps
[39]. They also consider the wear leveling of NVRAM media by evenly distributing writes.

Volos et al. present an interface for programming in NVRAM memory that provides the creation
and management of data without inconsistency risks under failure situations [40]. Specifically, their
interface allows programmers to define persistent data structures based on given primitives that
guarantee consistency through transaction management functions.

Hadizadeh et al. constitute a storage-accelerating architecture hierarchically with NVRAM and
flash memory [41]. They allocate clean and dirty pages to NVRAM and flash caches based on
vulnerability aspects and generate ECCs (Error-Correction Codes) for dirty pages dynamically for
improving reliability.

The CacheLib project supports hybrid storage cache architectures consisting of DRAM and
NVRAM [42]. Specifically, they provide transparent caching to users by providing cache allocation
interfaces. As NVRAM has limited write endurance, their cache allocator supports a pluggable
eviction policy that can reject items if necessary.

8 Conclusions

As the data size of deep learning continues to grow, it is difficult to accommodate the full data
set of deep learning workloads in memory, resulting in serious performance degradation. To cope
with this situation, this paper performed extensive characterization studies for deep learning memory
accesses. Specifically, we collected memory access traces of four deep learning workloads and analyzed
them with respect to access types, operations, access bias, and re-access estimation. Our observations
from this analysis can be summarized as follows. First, when comparing instruction and data accesses,
instruction access accounts for a little portion of memory accesses in deep learning workloads, which is
quite different from traditional workloads. Specifically, instruction access accounts for only 1%–3.3%
of deep learning workloads whereas 15%–30% of traditional workloads. This implies that data access
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will be the bottleneck of memory systems in deep learning workloads. Second, when comparing read
and write accesses, write access accounts for 64%–80% of deep learning, which is also different from
traditional workloads. Third, although write access accounts for the majority of memory accesses, it
exhibits low access bias. Specifically, the Zipf parameter of write access is only 0.3. Fourth, in predicting
the re-access of memory pages, recency ranking is important in read access, whereas frequency ranking
is necessary for the accurate estimation of write access. Based on these observations, we introduced
an NVRAM-accelerated memory architecture for deep learning workloads and presented a new
memory management policy for this architecture. By considering the memory access characteristics
of deep learning workloads, the proposed policy improves memory performance by 64.3% on average
compared to the well-acknowledged CLOCK policy.

The research conducted in this paper is an early version of a model to cope with the explosive
memory demand in deep learning training. In the future, we will consider a dynamic allocation of
NVRAM for deep learning workloads executed in cloud environments. When various workloads
coexist on physical machines in the cloud, it is challenging to optimally allocate NVRAM resources
to each virtual machine over time to handle the memory pressure of deep learning workloads.
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