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Abstract: The human motion generation model can extract structural features
from existing human motion capture data, and the generated data makes
animated characters move. The 3D human motion capture sequences contain
complex spatial-temporal structures, and the deep learning model can fully
describe the potential semantic structure of human motion. To improve the
authenticity of the generated human motion sequences, we propose a multi-
task motion generation model that consists of a discriminator and a generator.
The discriminator classifies motion sequences into different styles accord-
ing to their similarity to the mean spatial-temporal templates from motion
sequences of 17 crucial human joints in three-freedom degrees. And target
motion sequences are created with these styles by the generator. Unlike tradi-
tional related works, our model can handle multiple tasks, such as identifying
styles and generating data. In addition, by extracting 17 crucial joints from 29
human joints, our model avoids data redundancy and improves the accuracy
of model recognition. The experimental results show that the discriminator of
the model can effectively recognize diversified movements, and the generated
data can correctly fit the actual data. The combination of discriminator
and generator solves the problem of low reuse rate of motion data, and the
generated motion sequences are more suitable for actual movement.

Keywords: Human motion; discriminator; generator; human motion
generation model; multi-task processing performance; motion style

1 Introduction

The human motion generation model aims to generate more motion sequences through limited
data. Since the 1970s, motion capture technology has been applied to video animation. With the rapid
development of computer software and hardware technology, more and more motion capture devices
appear. Motion capture technology has been widely used in military, entertainment, sports, and robot
technology. However, motion capture devices have a lot of defects, and the data captured by different
motion capture devices are not alike in authenticity and richness. To capture motion data that meets
the demand, which will consume a lot of resources and materials. Although the types of motion in the
motion capture database are more and more abundant, they cannot directly meet user needs. How to
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effectively generate actual target motion sequences based on existing data has become a problem to
be solved.

In recent years, the generalization ability of deep learning has become more and more powerful.
More and more researchers have paid attention to the application of deep learning in motion gener-
ation. Many unlabeled and style-limited sequences reduce the possibility of reusing existing motion
sequences. So motion style recognition and motion data generation have become two major research
hotspots. Motion style recognition technology mainly analyzes frame segment and single-frame
behavior. Motion generation technology aims at reconstructing the motion sequence by extracting
the dynamic features from high-dimensional motion sequences that can fit actual motion. Therefore,
according to the generative adversarial network (GAN) [1], we create a multi-task motion generation
model that fuses a discriminator and a generator, as shown in Fig. 1.

Figure 1: Multi-task motion generation model framework based on discriminator and generator

How to effectively identify and label complex movements, researchers have proposed different
processing methods. Among them, the two representative methods are template distance measurement
and machine learning based on a probability model. Inspired by the template measurement method
and according to the periodic and continuous features of human motion joints, we construct a
discriminator. It firstly establishes the semantic feature template structure based on the motion
sequences, then calculates the similarity between the motion to be classified and all templates, and
finally selects the motion label with the maximum similarity. Kadu et al. [2] used the tree-structure
vector quantization method to establish the codeword template to approximate the motion posture.
Kapsouras et al. [3] used the joint angle rotation data to construct the posture vector and the forward
difference vector as the feature template of each motion. Raptis et al. [4] used the cascade classifier
of multivariate time series data and the distance measurement method based on the dynamic time
warping (DTW) [5] to recognize the dance moves. Compared with studies on segmented motion
recognition, there are few studies on continuous motion recognition. By observing the motion capture
data, we found that the joint angle of the human body changes periodically during the movement.
Therefore, we have established a mean spatial-temporal template matching graph for each motion
based on the joint angle data of the human. We use the DTW algorithm to calculate the similarity
between the movement to be classified and all templates. Finally, we get the final recognition results
based on the discrimination results of human joints in three degrees of freedom.

As known, there is a complex nonlinear structure between limb joints and a strict space-time
dependence between adjacent motion frames. Because deep learning can learn essential features
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from a few samples, the related works mainly focus on the spatial-temporal generative model.
Taylor et al. [6,7], Chiu et al. [8], and Gan et al. [9] established a human motion generation model
based on the restricted Boltzmann machine (RBM) [10]. RBM generative model mainly extracts low-
dimensional features for coding, then reconstructs the original data according to the extracted features
and decodes the data. The model obtains the probability distribution of the visible data through cyclic
sampling. To solve the problem that the RBM model can not establish a long-term dependent model,
Harvey et al. [11], Bayer et al. [12], Park et al. [13], and Mattos et al. [14,15] establish a human motion
generation model based on recurrent neural network (RNN) [16]. These models realize the feedback
of historical information through the autoregressive connection between hidden layers and generate
the specified style motion sequences at any time using the limited motion data set. However, the RNN
often encounters problems such as gradient explosion and long-term information forgetting. The gate
recurrent unit (GRU) [17], based on the RNN structure, with a forgetting gate, has no such problems.
So we created a generator based on the gated recurrent unit (BOGRU). We adjusted the number of
layers of the GRU neural network according to the motion capture data and added the Dropout layer
to avoid overfitting problems. Finally, the Dense layer generated the joint data we needed.

2 Discriminator

Traditional motion recognition technology focuses on analyzing the motion behavior of a frame
segment or single frame. The recognition rate of these models depends on the time frame. If the data
of a time frame is wrong, the result will be an error. According to the continuous motion data, we
found that the joint angle of the human changes periodically during the moving process. Therefore,
we proposed a discriminator based on the template distance measurement method and solved the
problem of time frame mismatching through the DTW. The discriminator does not need a complex
feature extraction algorithm, and continuous motion data avoids accidental data recognition errors in
the model.

2.1 Build Mean Spatial-Temporal Template Matching Graph

The spatial-temporal template matching graph is a broken line graph that reflects the changing
trend of each joint angle during human movement. Our motion capture data comes from CMU and
HDM05, two public databases, and the data in the capture file is the Euler angle of the human joint.
It contains 29 joints, as shown in Fig. 2. Although the captured data is discrete, we show that the joint
angle changes periodically during the continuous movement of the human body through the line graph.
Different individuals have the same shape of motion curve. Still, their many characteristics are different
when moving, such as joint angle, speed, and acceleration. To diminish individual differences, we
averaged the spatial-temporal template matching graph. Algorithm 1 shows the process of establishing
the mean spatial-temporal template matching graph.

Motion Capture Sequence: The human motion capture sequence record 29 joints’ angle data at 59
freedom degrees. Because the human body has soft structure characteristics and conforms to biological
motion characteristics, each joint has a different number of freedom degrees, which has at most three
freedom degrees, respectively x, y, and z. The dimension of the T-frame motion capture sequence is
59, and each dimension records the joint angle of each freedom degree.
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Figure 2: Human skeleton diagram

Spatial-Temporal Template Matching Graph: In the motion capture sequence with time length T ,
the motion sequence of joint i on the f freedom degree is Ei−f

T = {
ei−f

1 , ei−f
2 , ei−f

3 , . . . , ei−f
t , . . . , ei−f

T

}
, where

i = {1, 2, 3, . . . , 29}, representing human joints; f = {x, y, z}, representing joint freedom degrees. The
spatial-temporal template matching graph is the line graph formed by the motion capture sequence
Ei−f

T = {
ei−f

1 , ei−f
2 , ei−f

3 , . . . , ei−f
t , . . . , ei−f

T

}
. It reflects the joint angles are changing the trend of a joint in

one freedom degree, so 59 spatial-temporal template matching graphs are constructed from the human
motion sequence of 59 freedom degrees.

Mean Spatial-Temporal Template Matching Graph: Under the same motion, compare the spatial-
temporal template matching graphs of different individuals in the same dimension, find the corre-
sponding time frame of two individuals in the same posture through the DTW algorithm, average the
Euclidean distance between the two, and add the smaller with the mean to get the joint angle data that
eliminates the difference between the two individuals. The spatial-temporal template matching graph
composed of all joint angles that eliminate individual differences is called the mean spatial-temporal
template matching graph.

Under the same motion, compare the spatial-temporal template matching graphs constructed by
the individual p and individual p + 1 motion sequences Ei−f

pT and Ei−f
(p+1)Q, where Q represents the time

length of the motion sequence. Due to the influence of human bone length, movement speed, and
acceleration, the time frame corresponding to the same movement posture of different individuals is
different. Through the DTW algorithm, we can find the corresponding time frames t and q of two
individuals in the same pose and calculate their Euclidean distance as Eq. (1):

dtq = ∣
∣ei−f

pt − ei−f
(p+1)q

∣
∣ (1)
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where |t − q| ≤ 3. Then, average dtq and compare the joint angles ei−f
pt and ei−f

(p+1)q. The joint angle ei−f
t

that eliminates the difference between the two individuals is the sum of the smaller joint angle and the

average Euclidean distance
1
2

dtq as Eq. (2):

ei−f
t = 1

2
dtq + min

{
ei−f

pt , ei−f
(p+1)q

}
(2)

After all the corresponding frames of individual p joint angle sequence Ei−f
pT and individual p+1

joint angle sequence Ei−f
(p+1)Q are averaged, the joint angle sequence Ei−f

T that eliminates the difference
between the two individuals is obtained as Eq. (3):

Ei−f
T = {

ei−f
1 , ei−f

2 , ei−f
3 , . . . , ei−f

t , . . . , ei−f
T

}
(3)

We extracted the motion capture sequence of m individuals and constructed mean spatial-
temporal template matching graphs to eliminate the difference of m individuals according to
Algorithm 1.

Algorithm 1: Build mean spatial-temporal template matching graph
Input:
I : human joints i
F: degree of freedom f of human joint angle
E: joint angle sequences of m individuals {E1, E2, E3, . . . , Em}
T , Q : duration of human joint angle sequence.
Output: Ei−f

T .
1: For p = 1tom
2: For t = 1toT
3: For q = 1toQ
4: Find the corresponding time frames t and q of Ei−f

p and Ei−f
p+1 based on DTW;

5: Calculate Euclidean distance dtq by Eq. (1);

6: Mean Euclidean distance by
1
2

dtq;

7: The joint angle ei−f
t to eliminate the difference between two individuals is obtained by Eq. (2);

8: t = t + 1;
9: End For
10: End For
11: Return the joint angle sequence Ei−f

T that eliminates the differences between individual p and
individual p + 1 by Eq. (3);

12: p = p + 1;
13: Ei−f

p = Ei−f
T ;

14: End For
15: Return the joint angle sequence Ei−f

T that eliminates the varies of m individuals.

2.2 Extract Crucial Joints

Crucial Joint: When the joint plays a decisive role in human motion, and the recognition accuracies
of all its freedom degrees are not less than 99.5%, the joint is a crucial joint.

Voter: The voter is a counter that records the number of times the discriminator correctly
recognizes the motion capture sequence.
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The discriminator recognizes the motion style based on the human joint angle sequence. By
constructing the mean spatial-temporal template matching graphs for all joints, we found that some
joints have small periodic changes, and these joints have the same motion template matching map in
different movements. Therefore, combining all joints to identify motion will cause data redundancy
and reduce the accuracy of model recognition. We extract crucial joints from 29 human joints
according to Algorithm 2. We extracted k motion sequences and analyzed the accuracy of joint i
identifying k samples on f freedom degree. According to the DTW, the similarity between the motion
sequence of joint i on f freedom degree and the mean spatial-temporal template matching graphs
corresponding to all motions are calculated. The recognition result is the motion with the highest
similarity. After each sample data is correctly identified, the voter adds one as Eq. (4):

counti−f = counti−f + 1 (4)

After recognizing k motion sequences, calculate the recognition accuracy of the discriminator for
joint i on f freedom degree as Eq. (5):

Ri−f = counti−f

k
(5)

If the recognition accuracies of joint i in all freedom degrees are not less than 99.5%, joint i is a
crucial joint.

Algorithm 2: Extract crucial joints
Input:
I : human joints i
F: f-freedom degree of human joint angle
B: mean spatial-temporal template matching graph of various movements
E: k human motion joint angle sequences {E1, E2, E3, . . . , Ek}
counti−f : the number of times the sequence of joint i on f freedom degree is correctly recognized.
Output: crucial joints.
1: counti−f = 0;
2: For i = 1 to 29;
3: For f ∈ {x, y, z}
4: For j = 1 tok
5: Calculate the similarity between the sample of Ei−f

j and B based on DTW;
6: Identify style = the style with the greatest similarity;
7: If identify style == correct movement
8: counti−f = counti−f + 1;
9: End If
10: End For
11: Ri−f = counti−f

k
;

12: End For
13: If the correct rate Rf = countf

k
on the joint i with all freedom degrees ≥ 99.5%

14: Joint i is a crucial joint;
15: End If
16: End For
17: Return crucial joints.
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2.3 Motion Style Recognition

The goal of the discriminator is to recognize the movement style of the human joint angle
sequences. The mean spatial-temporal template matching graphs are composed of the crucial joints’
angle sequences as the comparison object of the discriminator. Calculate the similarity between
the data of each joint in each freedom degree in the motion sequence to be recognized and the
corresponding mean spatial-temporal template matching graph according to DTW, in which the result
of each recognition is the motion with the highest similarity. The voter records the recognition results
of each sequence. Combined with all crucial freedom degrees, add one to the number of votes for the

motion identified on each freedom degree. If the maximum number of votes is not less than
9
5

h, the

recognition result is the motion with the highest number of votes, where h represents the number of
crucial joints. Otherwise, the individual’s movement style is not in the database, such as in Algorithm 3.

When the number of votes is not less than
9
5

h, the discriminator not only avoids the over-fitting

phenomenon of the model but also achieves 99.7% accuracy.

Algorithm 3: Motion style recognition
Input:
E: human motion joint angle sequences {e1x, e1y, e1z, e2x, e2y, e2z, . . . , ehx, ehy, ehz}
B: mean spatial-temporal template matching graph of various movements
countstyle_q: number of votes for sports style q.
Output: motion style.
1: countstyle_q = 0;
2: For i = 1 to h
3: For j∈ {x, y, z}
4: Calculate the similarity between eij and B at the same latitude based on DTW;
5: Identify style = the style with the highest similarity;
6: countstyle_q = countstyle_q + 1;
7: End For
8: End For

9: If max{countstyle1
, countstyle2

, countstyle3
, . . . , countstylez} ≥ 9

5
h

10: Return identify style = max{countstyle1
, countstyle2

, countstyle3
, . . . , countstylez}.

11: Else
12: Return the motion style to be recognized does not exist in the database.

3 BOGRU Generator

To solve the problem that the accuracy of the motion generation model predicts long-time frame
joint angle data and smooths the transition frame of different motion styles, we propose a BOGRU
generator. GRU realizes the feedback of historical information through the autoregressive connection
between hidden layers and generates any length joint angle sequences by learning the characteristics of
the data front and back frames. We train the BOGRU based on motion sequences, and the generator
can ensure prediction accuracy and prevent the model from overfitting.

Build a BOGRU generator by combining the GRU, Dropout, and Dense, as shown in Fig.3. The
BOGRU input is the human joint angle sequence. It uses the GRU to learn human joints’ structural
and temporal characteristics. Its output is to convert the GRU layers’ predicted data into the joint angle
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data we need through the Dense. BOGRU trained different styles of motion capture sequences and
learned a set of model parameters corresponding to the motion style. BOGRU generates the human
joint angle sequence of the corresponding motion style by calling parameters. The model solves the
problem that different motion transition frames are not smooth by learning the relationship between
transition frames of motion style.

Figure 3: BOGRU generator

3.1 GRU Layer

The GRU layer is the recursive layer of the BOGRU, and it captures the nonlinear characteristics
and time characteristics between joints through GRU neurons. The input of the GRU neural network
is the joint angle sequence Xt of time frame t and the hidden state St−1 of time frame t−1. After training,
GRU obtains the hidden unit St at time t. St is the hidden unit of the GRU neural network to predict
the time t, and it is also the hidden unit St input to the next neuron. Each GRU neuron stores a time
frame of human joint angle data. The accuracy of BOGRU varies with the length of the human joint
angle sequence (the number of GRU neurons). The deeper the structure level of the neural network,
the richer the feature information obtained, and the model has a more powerful performance. One
layer of the GRU neural network can’t fully capture the features between human joints. According
to Table 1, we selected different length motion sequences and trained single-layer GRU, double-layer
GRU, and three-layer GRU.

According to Table 1, the generator model with GRU neural network layers of 2 has the lowest
prediction error and the highest accuracy. The prediction accuracy of the generator will continue to
improve as the number of neurons increases. From the evaluation of the model, when the number of
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neurons in each layer is 240, the goodness of fit of training data and test data is significant. When the
number of neurons is 480, the training data has high goodness of fit, but the test data is not good, and
the model appears to be overfitted. Therefore, we built a BOGRU generator with two layers of GRU
neural network and 240 neurons in each layer.

Table 1: The joint angle error predicted by BOGRU with different structures

Number of network layers
and number of neurons in
each layer

Judgment coefficient
R2_training

Judgment coefficient
R2_test

Mean square error
(MSE)

Single-layer (120 neurons) 0.89975 0.90568 0.00831
Single-layer (240 neurons) 0.95624 0.96245 0.00327
Single-layer (480 neurons) 0.99006 0.55326 0.00156
Double-layer (120 neurons) 0.93654 0.95248 0.00529
Double-layer (240 neurons) 0.99015 0.99635 0.00131
Double-layer (480 neurons) 0.99138 0.54378 0.00097
Three-layer (120 neurons) 0.95306 0.96006 0.00346
Three-layer (240 neurons) 0.98264 0.99264 0.00264
Three-layer (480 neurons) 0.99325 0.52136 0.00083

3.2 Dropout Layer

Because it is difficult to capture the joint angle data of human motion, there are too few training
samples. The trained model has a high prediction accuracy on the training set, while the prediction
accuracy on the test set is extremely low, so the model appears overfitting. The BOGRU solves the
overfitting problem of the model by adding a dropout layer. In the training process, the output of the
GRU layer is the hidden node of t time frames, and the dropout will disable some nodes of the hidden
layer with a 50% probability. It simplifies the network topology and generator parameters, as shown
in Fig. 4.

Figure 4: Dropout layer
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3.3 Dense Layer

The BOGRU obtains the human joint angle sequences through the dense layer. The input of the
dense layer is the hidden sequence of the output of the GRU neural network of the second layer. The
network has the learning ability of nonlinear mapping through the Relu nonlinear activation function.
So we can convert the hidden state units entered by the dense layer into visible state units that meet our
requirements. The output of the dense layer is the sequence of human motion joint angles predicted
by BOGRU in the specified time.

To reduce the training error, BOGRU uses the Adam optimization algorithm [18]. It combines the
characteristics of an adaptive gradient algorithm and root mean square propagation, which controls
the occurrence of the overfitting phenomenon and improves the accuracy of the model prediction. The
loss function is the combination of the MSE function and weight subtraction. MSE function enhances
the prediction accuracy and adds weight attenuation term to prevent the model from overfitting.

4 Experiment

Experimental Environment: The running environment of the experiment is a 2.5 GHz CPU, 16 GB
memory PC, using the Windows 10 operating system, the programming language is Python 3.7, and
the development platform is PyCharm. The generator uses the TensorFlow framework to model it.

Data Set: The experimental data set comes from two public databases, CMU and HDM05, which
are dataset 1 and dataset 2. Dataset 1 has eight motions styles, namely run, jog, walk, slow walk, stride,
forward jump, jump, and high jump; Dataset 2 has 13 motions styles, namely throw, stand, squat,
sneak, sit, rotate, lie, jump, jog, hop, grab, elbow, and depositr. Both databases capture the motion
data of 29 joints of performers and record the Euler angle of human joints, so there are 59 freedom
degrees in total.

4.1 Analysis of Discriminator Experiment Results

To solve the problem that individual differences affect the recognition accuracy of the discrimi-
nator, we extracted the human motion joint angle sequence of 35 actors for each movement. Then the
discriminator constructed the mean spatial-temporal template matching graphs based on Algorithm 1.
Each sample contains 29 joint angles of the human, and the data of each frame is 59 dimensions.
Therefore, the discriminator can construct 59 mean spatial-temporal template-matching graphs for
each movement. We analyzed the change of human joint angle during running and walking, and the
discriminator constructed mean spatial-temporal template matching graphs. Fig. 5 only shows the
r-humerus joint.

Among the 29 joints, we extract 17 crucial joints based on Algorithm 2. This way prevents the
data redundancy of the discriminator and improves the recognition accuracy of the discriminator. For
each sport, we took 64 samples, 45 samples as the training set and the other 19 samples as the test set.
Table 2 shows the crucial joints extracted by the discriminator.

After the discriminator extracts the crucial joints, it draws the mean spatial-temporal template
matching graphs of 17 crucial joints (32 dimensions) from the mean spatial-temporal template
matching graphs of 29 joints (59 dimensions) and uses them as recognition objects. Finally, the
discriminator identifies the movement style of the captured data according to Algorithm 3. We use the
confusion matrix of two data sets for quantitative analysis. The row direction represents the original
motion style, and the column direction represents the movement style recognized by the discriminator.
Each block in the figure is the correct rate of the discriminator to identify the capture sequences.
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Fig. 6 shows the recognition effect of dataset 1 and dataset 2 on each movement style. The value
of the first row and the first column in Fig. 6a is 1.00, which means that the correct rate of the
discriminator in recognizing the run motion sequence is 100%. The discriminator has identified 8%
of the motion sequence incorrectly by observing the jog motion in line 2. Through experiments, we
find that the difference between mean spatial-temporal template matching graphs of similar motion
is minuteness, and the interference discriminator recognizes. However, for the motion style with a
significant difference, as shown in Fig. 6b, the discriminator’s recognition accuracy reaches 100%.

Figure 5: The mean spatial-temporal template matching graphs of r-humerus under jogging and
walking

Table 2: Crucial joints of human movement

Number Number of joints Crucial joint Number Number of joints Crucial joint

1 1 Root 10 12 Thorax
2 2 L-femur 11 13 Lower-neck
3 3 L-tibia 12 14 Upper-neck
4 4 L-foot 13 15 Head
5 6 R-femur 14 17 L-humerus
6 7 R-tibia 15 18 L-radius
7 8 R-foot 16 24 R-humerus
8 10 Lower-back 17 25 R-radius
9 11 Upper-back
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Figure 6: Confusion matrix of dataset 1 (a) and dataset 2 (b)

To verify the recognition effect of the recognizer on the motion capture sequence, we compared
the recognition effect of the support vector machine (SVM) based on radial function and our
discriminator. Fig. 7 shows the comparison results of the two recognition algorithms. The recognition
rate of both simple motion models reached 100%. But the recognition rate of similar motion SVM
models was lower than 80%, mainly because SVM models ignored the timing information of human
motion, resulting in a poor recognition effect. Our discriminator captures the periodic and continuous
characteristics of human movements in temporal data and then combines the crucial joints of the
human body for voting recognition, significantly improving the recognition accuracy of the model.

Figure 7: Comparison of style motion recognition rate

4.2 Analysis of Generator Experiment Results

We use the joint angle sequences of multiple actors walking, running, and jumping in the CMU
database and HDM05 database to train BOGRU. So the generator can learn the temporal relationship
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of all joints between different movements. We extracted 150 walking sequences, 280 jogging sequences,
and 150 jumping sequences. After training, the discriminator obtains a series of optimal model
parameters representing each motion. At the same time, when the time step was 240 frames, the model
had the best prediction effect. According to Fig. 8, we can get the ability of the BOGRU to generate
pitch angle sequences of the r-radius joint under walk and jog motions.

Figure 8: The pitch angle of r-radius predicted by BOGRU for a walk (a) and a jog (b)

The BOGRU generator can generate single-style movements of any length and can splice move-
ments of different styles to form smoother multi-style movements. To avoid shaking during the
transition of different motion styles, we trained 130 motion sequences in the HDM05 database,
including running and leaping, and some transition frames between the two motions. The trained
model can learn the transition between the two motions and generate smooth joint angle sequences.
Taking the pitch angle of the r-humerus joint as an example, Fig. 9 shows the ability of the BOGRU
to reconstruct the run and leap sequence.

Figure 9: Pitch angle of r-humerus predicted by BOGRU for run and leap
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4.3 Comparison with Other Generation Models

The application of deep learning in the human motion generation model mainly includes the
following four studies: the temporal structure generation model based on RBM, the spatial structure
generation model based on RNN, the spatial-temporal domain generation model based on convolu-
tional neural network (CNN) [19], and the motion generation model based on hybrid deep learning
model. We use the motion generation model based on a hybrid deep learning model. Compared with
other models, our model can recognize the motion style through a discriminator and generate the target
motion joint angle sequences of any length through a generator. The combination of discriminator
and generator enables the model to realize the generation of multi-task and multi-style target motion
sequences. Table 3 shows the multi-task scenarios suitable for different motion generation models.

Table 3: Multi-task scenarios suitable for different motion generation models

Model Joint
repair

Motion transition Sequence generation Style
synthesis

Training method

Random Controlled Short-term Long-term Unsupervised Supervised

Conditional RBM
(CRBM) [6]

√ √ √ √ √

Factored CRBM
(FCRBM) [20]

√ √ √ √ √

Implicit mixture
CRBM (IMCRBM)
[7]

√ √ √ √ √

Encoder-RNN-
decoder (ERD)
[21]

√ √

Structural RNN
(SRNN) [22]

√ √ √

Factored conditional
temporal sigmoid
belief network
(FCTSBN) [23]

√ √ √

Recurrent Gaussian
process (RGP) [14]

√ √ √

GRU [18] √ √
Ours √ √ √ √ √ √

In addition, our human motion generation model is superior to other human motion generation
models in terms of prediction data and reconstruction sequences. Table 4 shows the prediction errors
of different motion generation models in predicting walking motion sequences of different lengths.
Table 5 shows the reconstruction errors of various motion generation models in reconstructing walking
and running motion data.
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Table 4: Prediction error of different motion models

Model 100 frames 200 frames 400 frames

ERD 0.0093 0.0125 0.0178
SRNN 0.0081 0.0108 0.0130
3 Long short term memory layers (LSTM-3LR) [24] 0.0077 0.0091 0.0147
Literature [25] 0.0063 0.0085 0.0098
Ours 0.0033 0.0058 0.0091

Table 5: Reconstruction error of different motion models

Model Walk Run

CRBM 0.0967 ± 0.0268 0.0845 ± 0.0203
FCTSBN 0.0813 ± 0.0026 0.0588 ± 0.0025
RGP 0.0512 ± 0.0050 0.0485 ± 0.0126
Ours 0.0225 ± 0.0037 0.0208 ± 0.0026

5 Conclusion and Prospect

The existing motion generation models generate new human motion data by extracting structural
features from existing lossless data, which cannot recognize unknown style motion and generate target
motion sequences based on current data. We propose a multi-task motion generation model combining
a discriminator and a generator. The discriminator can recognize the motion capture sequences of
unknown attributes. According to the identified data, the generator can continue to generate the
motion sequence that does not exist in the target motion. The discriminator and generator improve
the reuse rate of motion capture data. When the human motion generation model adds a recognition
function, the model generates motion sequences that are more similar to the actual motion. Compared
with the existing motion generation models, our model adds recognition tasks. From the perspective of
generation ability, our model can generate motion sequences of any length, and the predicted motion
is closer to the actual movement. At the same time, our model can also well repair the missing motion
capture data.

Although our model has achieved good results in human motion generation, we only study
periodic motion, which is also a worthwhile scheme for non-periodic movement. Confronted learning
has powerful feature extraction and reconstruction capabilities and can be used to identify continuous
behaviors in natural scenes. Therefore, generation models can add a recognition function to discrimi-
nate behavior in a complex environment. The model can generate more life-fitting motion sequences.
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