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Abstract: In 2019, the novel coronavirus disease 2019 (COVID-19) ravaged
the world. As of July 2021, there are about 192 million infected people
worldwide and 4.1365 million deaths. At present, the new coronavirus is
still spreading and circulating in many places around the world, especially
since the emergence of Delta variant strains has increased the risk of the
COVID-19 pandemic again. The symptoms of COVID-19 are diverse, and
most patients have mild symptoms, with fever, dry cough, and fatigue as the
main manifestations, and about 15.7% to 32.0% of patients will develop severe
symptoms. Patients are screened in hospitals or primary care clinics as the
initial step in the therapy for COVID-19. Although transcription-polymerase
chain reaction (PCR) tests are still the primary method for making the final
diagnosis, in hospitals today, the election protocol is based on medical imaging
because it is quick and easy to use, which enables doctors to diagnose illnesses
and their effects more quickly3. According to this approach, individuals who
are thought to have COVID-19 first undergo an X-ray session and then, if
further information is required, a CT-scan session. This methodology has
led to a significant increase in the use of computed tomography scans (CT
scans) and X-ray pictures in the clinic as substitute diagnostic methods for
identifying COVID-19. To provide a significant collection of various datasets
and methods used to diagnose COVID-19, this paper provides a comparative
study of various state-of-the-art methods. The impact of medical imaging
techniques on COVID-19 is also discussed.
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1 Introduction

Since December 2019, a new form of coronavirus illness has spread internationally from Wuhan,
China. SARS-CoV-2 is the new coronavirus, and COVID-19 is the illness it produces. The diagnosis of
COVID-19 is based on a positive SARS-CoV-2 nucleic acid test. However, due to nucleic acid testing
constraints such as long detection times, false negatives, and stringent biosafety standards, it cannot
fully satisfy clinical needs [1–3]. A radiological imaging test, particularly computed tomography (CT),
is a rapid and simple technique to screen for a lung infection. It can not only assess the presence
or absence of infection, but it can also serve as a reference for pathogen infection and has unique
diagnostic benefits. COVID-19 lung CT symptoms are mostly ground glass [4].

The new coronavirus (SARS-CoV-2) is an enveloped positive-sense single-stranded RNA virus
that is spreading globally, posing a significant danger to human health and the global economy [5].
More than 539 million confirmed cases and 6.32 million fatalities had been recorded globally as of
June 24, 2022. Because present therapeutic options are limited, the development and administration
of vaccines remain the most significant strategy for controlling the pandemic of new coronavirus
pneumonia [6,7]. Reference [8] proposed a new approach for predicting COVID-19 using machine
learning algorithm. This method has achieved 93% accuracy and has limited time span for detecting
datasets. The complexity is also worth notable.

As a result of the expansion of linked research initiatives and the collection of medical picture data,
several datasets have become available. This paper gathers multiple dispersed open-source datasets
that have been quoted in various works of literature and research, as well as relevant descriptions
and download links; discusses the picture’s properties; and evaluates and summarizes the prevalent
algorithm models.

This paper provides an in-depth review of various state-of-the-art methods for diagnosing
COVID-19. The limitations and advantages of each method is also discussed and tabularized. A
detailed graphical imaging approach is used to further clarify the role of each method on concerned
dataset.

2 COVID-19 Imaging Performance

Chest medical imaging data such as CT and chest X-ray (CXR) images are often used and
crucial. The statistical and texture aspects of lesion pictures serve as a crucial foundation for image
identification and recognition in medical image analysis and are frequently employed to quantitatively
define the properties of lesion images [9].

2.1 CT Image Performance

In individuals with COVID-19, consolidation (CL) and ground-glass opacities (GGO) are the
most frequent lung CT abnormalities [10–12]. They are primarily located in the lung margin. The
lesions eventually disappear to generate fibrotic streaks when the condition becomes better [13–19].
The majority of patients also exhibited imaging characteristics such as thickened bronchial vessels and
interlobular septa [20,21]. The patient’s lungs’ CT imaging results are shown in Fig. 1.

The results are shown in Table 1. Even though it is now a segmented dataset with relatively clear
data images and enhanced segmentation labels, the CC-CCII dataset will be explained in detail in
Section 3.1.
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Figure 1: COVID-19 patient’s CT of lungs. (a) GGO (in red box) (b) Consolidation (in red box)

Table 1: Texture feature analysis of CT images

Parameter Group

1 2 3

Standard deviation 58 (Patient)
43.3 (Normal)

50.2 (Patient)
45.1 (Normal)

49.9 (Patient)
53.6 (Normal)

Entropy 6.86 (Patient)
6.84 (Normal)

7.31 (Patient)
6.84 (Normal)

7.47 (Patient)
7.06 (Normal)

Skewness 0.026 (Patient)
0.950 (Normal)

0.250 (Patient)
1.340 (Normal)

0.170 (Patient)
0.840 (Normal)

Energy 0.019 (Patient)
0.012 (Normal)

0.008 (Patient)
0.012 (Normal)

0.007 (Patient)
0.010 (Normal)

Average gray 179.3 (Patient)
94.3 (Normal)

166.5 (Patient)
86.4 (Normal)

160.1 (Patient)
87.3 (Normal)

2.2 X-Ray Image Appearance

X-ray CXR images are more common in chest image detection than CT scanning tomography
because they are simpler to collect. The primary barrier to using CXR in the imaging diagnosis of
COVID-19 is the absence of information that can be verified visually. As illustrated in Fig. 2, CXR
pictures reveal airspace turbidity, which is mostly dispersed in the lung margins [22]. In practice, CXR
and CT are frequently combined to provide a more accurate diagnostic evaluation [23].

Table 2 displays the outcomes of the examination of texture features. The textural properties of the
CXR images of healthy lungs vary from those of COVID-19-infected lungs. However, some variations
are less visible than others. The contrast of infected photos is two to three times greater than that of
healthy lung images.
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Figure 2: Lungs images of X-ray. (a) Normal (b) with COVID-19

Table 2: Texture feature analysis of normal and patient chest CXR images

Group Types of Contrast Dissimilarity Inverse gap Energy Relevant

First group Normal
Patient

23.58
69.36

3.01
4.53

0.34
0.33

0.008
0.004

0.99
0.99

Second
group

Normal
Patient

25.04
35.80

2.80
3.38

0.39
0.33

0.129
0.028

1.00
0.99

The third
group

Normal
Patient

33.67
79.61

3.48
5.22

0.32
0.25

0.103
0.020

0.99
0.98

3 Related Open Source Datasets

Datasets are an important basis for building deep learning-based COVID-19 diagnosis and
segmentation models, especially datasets that can be downloaded as open source [24,25].

Table 3 lists the data type, quantity, and data source of each dataset, and describes its use. Since
lung CT images carry more detailed information, CT datasets are widely used in the detection and
segmentation of COVID-19, while CXR datasets are mostly used in the detection of COVID-19.
Images in these datasets are stored in various formats including.nii.gz, JPG, PNG, and DICOM. Table
A1 in the Appendix gives legends for all datasets.

Table 3: Comparison of various datasets

Serial number Data set Type of data Data composition Description

1 COVID-19-CT-Seg CT 100 sheets Segmentation

2 Segmentation dataset nr.2 CT 9 cases Segmentation

3 COVID-19-CT-Seg-
Benchmark [26]

CT 20 cases Segmentation

(Continued)
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Table 3: Continued
Serial number Data set Type of data Data composition Description

4 COVID19_1110 [27] CT 1110 cases Classification-
segmentation

5 CC-CCII data set CT 617775 sheets Classification-
segmentation

6 COVID-CT-Dataset [28] CT Positive:
349/Normal: 463

Classification

7 SARS-CoV-2 CT [29] CT Positive:
1252/Normal: 1230

Classification

8 COVID-CTset [30] CT Positive:
15589/Normal:
48260

Classification

9 HUST-19 [31] CT 19685 sheets Classification

10 CT-COVID-19-
August2020 [32]

CT 632 examples Classification

11 Pneumonia-chest x-ray
dataset [33]

CXR 5863 sheets Classification

12 COVID-chest
x-ray-dataset [34]

CXR 434 sheets Classification

13 COVID-19 Radiography
Database

CXR Positive: 3616
sheets

Classification

14 COVID-19-CT-CXR [35] CT-CXR Positive:
1327/Normal: 263

Classification

15 COVID-19-AR [36] CT-CXR 256 examples Classification

16 BIMCV COVID-19+ [37] CT-CXR CR:7377/DX:9
463/CT:6 687

Classification

17 MIDRC-RICORD [38] CT-CXR CT: 240
cases/CXR: 1 000
cases

Classification

18 COVIDx dataset [39] CT-CXR CXR: 16 352
sheets/CT: 194 922
sheets

Classification

3.1 CT Segmentation Dataset

Constructing a dataset for COVID-19 lesion segmentation requires a lot of annotation work.
After sorting and searching, there are currently five open-source datasets available for COVID-19
segmentation as follows.
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(1) COVID-19-CT-Seg dataset (http://medicalsegmentation.com/covid19/): This dataset is col-
lected by the Italian Society of Medical and Interventional Radiology and contains 100 CT
images of more than 40 COVID-19 patients. It is used to train the COVID-19 lesion segmenta-
tion model, the labels include ground-glass opacity, consolidation, and pleural effusion. This
dataset is most commonly used in lesion segmentation.

(2) Segmentation dataset nr.2 datasets (http://medicalsegmentation.com/covid19/) This dataset is
derived from 3D CT images of 9 patients with new coronary pneumonia in Radiopaedia. A
total of 829 slices were included, and 373 of them were labeled, and the labels included lungs
and infected areas.

(3) COVID-19-CT-Seg-Benchmark dataset (https://zenodo.org/record/3757476#.YAj7HO): This
dataset was created by [26], which contains 20 labeled 3D CT images of the lungs of COVID-19
patients, with a slice size of 512 × 512 pixels. Segmentation labels contain the left lung, right
lung, and infected area.

(4) COVID19_1110 dataset (https://mosmed.ai/datasets/covid19_1110): This dataset [27] is pro-
vided by Moscow Hospital, including 3D lung CT images of 1 100 COVID-19 patients, with a
slice size of 512 × 512 pixels. Among them, 50 cases have segmentation labels, marking ground
glass opacities and consolidation areas for lesion area segmentation.

(5) CC-CCII dataset (http://ncovai.big.ac.cn/download): This dataset is stored in the National
Center for Bioinformatics, including COVID-19 pneumonia (NCP), common pneumonia (CP)
and normal (Normal). A total of 750 CT slices from 150 patients were manually annotated as
background, lung, GGO, and CL for segmentation. The image size of this dataset is 512 × 512
pixels, and the images are clear and suitable for classification and segmentation tasks. Reference
[21] published this dataset and used it to develop an AI system for auxiliary diagnosis, detect
and segment COVID-19 lesion areas, and further analyze the correlation between imaging
features and clinical data.

In the field of lesion segmentation, the COVID-19-CT-Seg and CC-CCII datasets contain labeled
2D CT images. For 3D CT images, the contrast enhancement method can be used to improve the image
quality after slicing to construct a larger number of 2D segmentation data sets.

3.2 CT Classification Dataset

COVID-CT-Dataset (https://github.com/UCSD-AI4H/COVID-CT) and SARS-CoV-2 CT
(https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset) are early The most commonly
used binary classification diagnostic datasets [28,29], but these datasets have too few samples and non-
uniform image sizes. The COVID-19-CT-CXR (https://github.com/ncbi-nlp/COVID-19-CT-CXR)
dataset was extracted from the PubMed Central Open Access (PMC-OA) article. The following are
the current three CT classification data sets with good data quality and sufficient quantity.

(1) COVID-CT set dataset (https://github.com/mr7495/COVID-CTset): This dataset was collected
including 95 patients and 282 normal CT images, with a resolution of 512 × 512 pixels.
Different from other data sets, the gray level of the images in this data set is 16 bits, and
the image quality is the highest in the current data set, which is used for binary classification
detection.

(2) CT-COVID-19-August2020 dataset (https://wiki.cancerimagingarchive.net/display/Public/
COVID-19): This dataset was released on the Cancer Imaging Archive (TCIA) and consists of
two parts. The first part contains 650 lung CT scans of 632 patients with COVID-19 infection
scans, the second part contained 121 CT scans from 29 patients. TCIA is a large-scale public

http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/
https://zenodo.org/record/3757476#.YAj7HO
https://mosmed.ai/datasets/covid19_1110
http://ncovai.big.ac.cn/download
https://github.com/UCSD-AI4H/COVID-CT
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://github.com/ncbi-nlp/COVID-19-CT-CXR
https://github.com/mr7495/COVID-CTset
https://wiki.cancerimagingarchive.net/display/Public/COVID-19
https://wiki.cancerimagingarchive.net/display/Public/COVID-19
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database of medical images, which contains a variety of tumor data. Its imaging modalities
include MRI, CT, etc., and the data on the website continues to increase, providing an interface
for the source of imaging data.

(3) HUST-19 dataset (http://ictcf.biocuckoo.cn/): This dataset is provided by Huazhong Univer-
sity of Science and Technology, and a patient-centered resource library (iCTCF) has been
developed, including COVID-19, Lung CT slices and corresponding clinical data of normal
and suspicious patients. Among them, 19685 CT images were manually marked for model
training. Reference [31] developed a hybrid learning model to predict the severity and mortality
of patients by integrating the image classification results of the convolutional neural network
(CNN) and the clinical data classification results of deep neural network (DNN).

3.3 CXR Dataset

CXR imaging datasets typically include COVID-19-positive, other viral pneumonia, and normal
chest X-ray images. pneumonia-chest ray. The dataset (https://www.kaggle.com/paultmothymooney/
chestxray-pneumonia) comes from the Guangzhou Maternal and Child Health Center. This dataset
does not contain COVID-19 CXR images but is often used for data augmentation. COVID chest
x-ray dataset (https://github.com/ieee8023/covid-chestxraydataset) comes from online open-source
data, websites, and images. This dataset was released earlier, but the amount of data is small.
COVID-19 Radiography Database (https://www.kaggle.com/tawsifurrahman/covid19-radiography-
database) was jointly established by researchers from Qatar University and Dhaka University. The
dataset contains 3616 COVID-19 Positive, 1345 images of viral pneumonia, 6012 images of lung
opacity (non-COVID-19), and 10192 images of normal.

3.4 CT and CXR Hybrid Dataset

(1) COVID-19-AR dataset (https://wiki.cancerimagingarchive.net/display/Public/COVID-19):
This dataset [36] was released on TCIA, which includes 233 times of 105 patients CXR and 23
CT scans with a total of 31935 pictures. All image data is stored in DICOM standard format.
Each patient is described by a set of clinical data.

(2) BIMCV COVID-19+ dataset (https://osf.io/nh7g8/):

The dataset is derived from the Valencia Medical Image Repository (BIMCV) [37], which contains
chest CXR and CT images of COVID-19 patients, as well as related clinical data. In addition, a team
of radiologists annotated 23 images for semantic segmentation of lesion regions.

(3) MIDRC-RICORD dataset (https://wiki.cancerimagingarchive.net/display/Public/COVID-19):
This dataset was also released on TCIA, including CT scans and X-ray scans. The lesion areas
of all COVID-19 CT images are marked pixel by pixel, and all X-ray films are classified and
marked. The data set has three parts, including 240 cases of CT and 1000 cases of CXR images.

(4) COVIDx dataset (https://github.com/lindawangg/COVID-Net): This dataset is derived from
the COVID-Net open-source project and is maintained by the Canadian Darwin AI Company and
the Vision and Image Processing Research Group of the University of Waterloo, Canada. In the latest
COVIDx8B version, 16352 CXR images are included, and in the COVIDx-CT version, 194 922 CT
images are included.

In the field of classification, the CC-CCII and HUST-19CT image data sets released in China are
of reliable quality, and more models are expected to be trained and compared on this data set. CT-
COVID-19-August2020, the COVID-19-AR and MIDRC-RICORD datasets contain high-quality CT

http://ictcf.biocuckoo.cn/
https://www.kaggle.com/paultmothymooney/chestxray-pneumonia
https://www.kaggle.com/paultmothymooney/chestxray-pneumonia
https://github.com/ieee8023/covid-chestxraydataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://wiki.cancerimagingarchive.net/display/Public/COVID-19
https://osf.io/nh7g8/
https://wiki.cancerimagingarchive.net/display/Public/COVID-19
https://github.com/lindawangg/COVID-Net
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and CXR imaging data, but these data are based on patients. Researchers need to reconstruct a dataset
suitable for deep learning model training on this dataset, which has potential research value [40].

4 Research Model Based on Deep Learning

From the standpoint of model tasks, research on COVID-19 may be categorized and displayed
(classification or segmentation). Different lung lesions act differently, which presents some difficulties
for classification. CNN provides the classification result through the softmax layer after learning the
advanced characteristics of the picture and mapping them to a one-dimensional vector. A U-shaped
structure serves as the segmentation’s foundation, and the encoder initially extracts features using
convolution before decoding. Deconvolution is then used to classify the pixels, and the segmentation
label is then produced. The application structure of CNN for various tasks is depicted in Fig. 3.

Figure 3: CNN model for COVID-19 diagnosis

Fig. 4 shows that there are several data sets for classification and that classification detection has
wider applicability than lesion area segmentation. To increase the model’s capacity for generalization,
the majority of models undergo repeated data sets of training. Some older open-source datasets have
seen widespread use, while others have not.

4.1 COVID-19 Classification Model

There are often two categories and three classifications for the job of classifying new coronary
pneumonia.

4.1.1 Classification of CT Images

Table 4 shows the CT image classification models. Although there is presently no 3D pre-training
model that is widely accessible, the 3D method is typically superior to the 2D model.
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Figure 4: Application of different models for COVID-19 diagnosis

(1) Common backbone network

Use common backbone networks (including visual geometry group (VGG), ResNet, DenseNet,
etc.) for effective feature extraction, and use them for subsequent fusion, classification, and other oper-
ations. Reference [41] compared different 3D ResNets and found that the 3D ResNet-18 classification
performance is the best when the input depth is 4 and the batch size is 32 slices. Reference [42] compared
the classification performance of Resnet-18, InceptionV3, and Mobile-NetV2 on CT and CXR, and
found that ResNet-18 has the highest accuracy on CT, and InceptionV3 has the highest accuracy
on CXR. Reference [28] trained DenseNet-169 for the detection of COVID-19 and used a feature
extraction network and Atrous Spatial Pyramid Pooling (ASPP) to extract more accurate features.
Reference [43] trained DenseNet121 on the COVID-19-CT-CXR dataset to test the CT classification
performance. Reference [44] used ResNet50v2 and a modified feature pyramid structure to improve
classification accuracy on COVID-CTset.
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(2) Data enhancement

To avoid model training overfitting and improve the accuracy of model classification, data
augmentation methods are often used to expand data sets.

Reference [45] used operations such as affine transformation and translation on the COVID-
CT-Dataset. Additionally, most models use unsupervised generative adversarial networks (GANs) to
augment data. Commonly used data augmentation methods include supervised geometric transfor-
mation and unsupervised GAN. Reference [46] used a combination of traditional data augmentation
and CGAN to improve experimental accuracy and performance. Reference [47] used a conditional
GAN (CGAN) based pix2pix network to generate images on the COVID-CT-Dataset. Reference [48]
performed operations such as rotation, tilt, flip, and pixel filling on the SARS-CoV-2CT dataset.
Reference [49] utilized Cycle Generative Adversarial Network (CycleGAN) to generate GGO images
on a large-scale lung cancer dataset. Reference [50] used the mixed data augmentation (mixup)
[51] method in 3D models and demonstrated that this method can effectively improve the model’s
accuracy.

(3) Migration Learning

The method of using migration learning can also make up for the problem of insufficient data
sets, usually loading the pre-training parameters on ImageNet. Reference [52] used a deep transfer
learning model (DTL) to train on the SARS-CoV-2 CT dataset by using the pre-trained DenseNet201.
Reference [53] used five deep transfer learning models to train on the COVID-CT-Dataset, combined
with data augmentation, and the results showed that ResNet50 had the best classification performance.
Reference [54] proposed a method for COVID-19 detection based on transfer learning and conducted
experiments on the COVID-19 dataset by fine-tuning the pre-trained CheXNet [55] model.

(4) Integrated Learning

Using ensemble learning to integrate multiple classification models and determine the classi-
fication results through voting and other methods can effectively improve classification accuracy.
Reference [56] used 15 different pre-trained classification models for classification tasks, used ensemble
learning methods to train on COVID-CT-Dataset, and output classification results using the number
of votes.

(5) Lightweight model

Aiming at the characteristics of the COVID-19 data set and classification tasks, many kinds
of literature proposed lightweight classification models. Reference [57] proposed a capsule network
(CapsNet) structure DECAPS for fine-grained recognition, which uses activation maps to crop and
extract fine-grained representations of regions of interest. Reference [58] designed a neural architecture
search (NAS) [59] method based on reinforcement learning to generate a lightweight 3D model
MNas3DNet41, and build the model by stacking predefined units. Reference [60] proposed a model
COVIDNet-CT for pneumonia CT image classification by stacking mapping-replication-mapping-
expansion (PRPE and PRPE-S) modules. Reference [61] proposed a federated learning scheme to
improve diagnosis by learning from heterogeneous datasets. Reference [62] proposed the CTnet-10
model, and compared with five models, VGG-19 has the best classification effect, but CTnet-10 has
the shortest prediction time.
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Table 4: Comparison of features and evaluation of various models

Model Use dataset Model Features Performance
evaluation

3D ResNet-18 [45] CC-CCII
110420 (80.4%) of them
are used for training
and verification;
26836 (19.6%) were
used for testing

Explore the input
convolution depth and
the influence of the 3D
model on the
classification effect

ACC = 0.997 6
Recall = 0.999 6
Precision = 0.993 5
F1 = 0.992 4

MNas3DNet41 [46] CC-CCII
A total of 340 190
pieces after cleaning;
Divide training and
testing by 4:1

3D CNNs are better
than 2D; model
performance is not
significantly linked to
the number of slices;
mixed data
augmentation improves
performance

ACC = 0.874 1
F1 = 0.872 5
AUC = 0.957 0

CTnet-10 [47] COVID-CT-Dataset
training:validation:
test = 8:1:1

VGG-19 classification
performance is stronger
than CTnet-10, but
CTnet-10 has the
shortest training and
testing time

ACC(CTnet-10) =
0.821 0
ACC(VGG-19) =
0.945 2

Integrated learning [48] COVID-CT-Dataset
train:validation:
test = 60:15:25

15 model ensembles,
majority voting
strategy;
transfer learning
method

ACC = 0.850 0
Recall = 0.854 0
Precision = 0.857 0

DenseNet
improvements [49]

COVID-CT-Dataset
train:test:
validation = 60:15:25

Transfer learning
method

ACC = 0.870 0
F1 = 0.860 0

ResNet50 [50] COVID-CT-Dataset
train:validation:test = 4
292:870:94

Traditional data
augmentation;
conditional generative
adversarial networks

ACC (ResNet50)=
0.813 8

DenseNet-169 [51] COVID-CT-Dataset
training:
validation = 1:1

Transfer learning
methods;
self-supervised learning

ACC = 0.890 0
AUC = 0.980 0
F1 = 0.900 0

(Continued)
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Table 4: Continued
Model Use dataset Model Features Performance

evaluation

DECAPS [52] COVID-CT-Dataset
training: 286 positives,
339 negatives
tests: 47 positive, 58
negative

Capsule network
(CapsNet) captures
fine-grained features of
regions of interest;
conditional generative
adversarial networks

ACC = 0.876 0
AUC = 0.961 0
F1 = 0.871 0

DenseNet201 [53] SARS-CoV-2 CT
train:validation:
test = 68:17:15

Transfer learning
methods; traditional
data augmentation

ACC (training) =
0.998 2
ACC(test) = 0.962 5
ACC(verification) =
0.974 0

MADE-DBM [54] SARS-CoV-2 CT
training:test = 3:2

Deep bidirectional long
short-term memory
(DBM); adaptive
differential evolution
(memetic adaptive
differential evolution,
MADE) algorithm to
tune hyperparameters

ACC = 0.984 0
AUC = 0.983 0
SEN = 0.989 0

CNN-COVID [55] SARS-CoV-2 CT
training:
validation = 4:1

Interpretable deep
learning methods;
transfer learning
method

ACC = 0.973 8
AUC = 0.973 6
Precision = 0.991 6

COVID-Net
Improvements [56]

Site A: SARS-CoV-2
CT
Site B:
COVID-CT-Dataset
train:validation:
test = 60:15:25

Batch Normalization
(BN) layer;
cosine annealing
learning rate;
Joint Learning Program

Site A: ACC = 0.908 3
Site B: ACC = 0.786 9

ResNet50v2 [57] COVID-CTset
training:
validation = 4:1

Improved Feature
Pyramid Structure

ACC = 0.984 9
SEN = 0.949 6

COVIDNet-CT [58] COVIDx dataset
train:validation:
test = 60:15:25

Before convolution:
Map and then copy to
increase dimension;
After convolution: Map
and expand the output
(PRPE)

ACC = 0.991 0
SEN = 0.973 0
Spec = 0.999 0
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4.1.2 Classification of CXR

It’s important to note that certain simple CNNs often outperform more sophisticated structures
at categorization. Table 5 compared various dataset models of CXR. In terms of data augmentation,
references [58–60] all adopt traditional supervised data augmentation methods. Reference [61] used
unsupervised GAN to augment the dataset. In terms of transfer learning, references [62–64] all used
pre-trained models on ImageNet as backbone networks. Different from using the pre-trained model
on ImageNet, reference [65] improves the ability to capture the characteristics of the lesion area [66,67].

In terms of ensemble learning, reference [68] integrated 3 classification models, and reference
[69] integrated 5 classification models, and voted to determine the classification results to improve
classification accuracy. Reference [70] enhanced the local phase information of the image as data
augmentation input into the neural network, combined with a semi-supervised training method, using
small labeled data to train large unlabeled data.

By designing a lightweight X-ray classification model and reducing model parameters, good
performance can also be achieved. Reference [71] proposed a lightweight CXR classification model
COVID-Net, using the PEPX module, that is, through 1 × 1 convolution to realize the design pattern
of mapping to an extension, and the classification effect exceeds VGG-19 and ResNet-50.

Table 5: Comparison of features and evaluation of CXR dataset models

Model Use dataset Model features Performance
evaluation

Integrated learning [59] COVID-19-CT-CXR
Training:test = 4:1

Integrate resnet18,
resnet50, and densenet201
models to determine
classification decisions
through voting; traditional
data augmentation;
transfer learning

Acc = 0.997 0
Auc = 0.999 0

CNN-COVID [60] Bimcv COVID-19+
Training:
test:validation = 5:1:1

4 convolutional layers; 4
pooling layers; 5 fully
connected layers
traditional data
enhancement: Geometric
transformation; 20%
neuron random
deactivation

Acc = 0.998 4
Sen = 0.996 6
Spec = 0.980 1

Integrated learning [61] Pneumonia-chest x-ray
dataset
Training 5232; testing 624

Integrate alexnet, resnet18,
inception v3, densenet121
and Google net, voting for
classification decisions;
transfer learning;
traditional data
augmentation: Adding
noise, cropping, and
flipping

Acc = 0.964 0
Recall = 0.996 2

(Continued)
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Table 5: Continued
Model Use dataset Model features Performance

evaluation

Resnet18 [62] Part of the
pneumonia-chest x-ray
dataset
624 sheets;
Training: Test = 4:1

Comparing the
classification effects of
alexnet, Squeeznet,
googlenet, and resnet18;
using GAN for data
enhancement; transfer
learning

ACC (resnet18) =
0.990 0

Cov-elm [63] Pneumonia-chest x-ray
dataset
Covid-chest x-ray
Covid-19 radiography
database

Preprocessing:
Equalization; extracting
texture features and
frequency features;
extreme learning machines
(elm)

Acc = 0.944 0
Recall = 0.957 8
F1 = 0.950 0

Lightweight CNN [64] Pneumonia-chest x-ray
dataset COVID-chest
x-ray

Fewer parameters, high
efficiency; Avoid
overfitting

ACC = 0.996 9
SEN = 1.000 0
AUC = 0.999 5

MF-TS [65] Covid-19-ar
Bimcv covid-19+
Midrc-record
Covidx dataset

Semi-supervised tasks via
a teacher-student
approach; local phase
image enhancement

Using 30% labeled data
is equivalent to
resnet50 using all
labeled data

Covidnet [66] Covidx dataset Lightweight mode;
Before convolution:
Low-dimensional mapping
and high-dimensional
expansion; after
convolution:
Low-dimensional mapping
and high-dimensional
expansion to the final
feature output (PEPX)

ACC = 0.933 0
SEN = 0.910 0
PPV = 0.989 0

Cov-snet [67] Covidx dataset Transfer learning:
Pre-training on
chestx-ray14 pneumonia
dataset

Sen = 0.950 0

4.2 COVID-19 Segmentation Model

CT scans are often utilized for COVID-19 lesion area segmentation [72]. The segmentation
industry is still facing difficulties. The segmentation performance comparison among the models is
shown in Table 6.

(1) Data enhancement

Reference [73] randomly rotated, cropped, and flipped the existing dataset images and labels at
the same time, used the Efficient-Net-B0 pre-trained on ImageNet as the feature extractor [74], and
replaced the traditional one with Dusampling upsampling [75]. Upsampling structure to improve
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U-Net. Using the GAN network to synthesize infected images solves the problem of difficult data
labeling to a certain extent.

Reference [70] proposed a CGAN-based CT image synthesis method for COVID-19 segmentation,
using dynamic element weighting (Dynamic Element-wise Sum, DESUM) on the generator and
dynamic feature matching on the discriminator (Dynamic Feature Matching, DFM) to improve
the quality of synthesized images. Reference [76] proposed a generative model, CoSinGAN, which
combines GAN and feature pyramid structures to reconstruct image details through conditional
constraints and across scales.

(2) Attention mechanism

The scSE attention module was integrated into the U-Net architecture via reference, captured the
data for optimal results, and dilated convolution residual blocks (Res dil) be used in the encoder and
decoder parts to increase the receptive field. To continually train the attention coefficient, the Criss-
Cross Attention device is added, resulting in the dynamically deformable attention network DDANet.
Compared to U-Net and Inf-Net, this model’s segmentation impact is noticeably better.

(3) Lightweight model

To adapt to the insufficient number of segmentation datasets, relatively lightweight models based
on small sample datasets have been proposed one after another. The study proposed a COVID-19
lesion area CT segmentation model, Inf-Net, which uses a Reverse Attention (RA) module and an
Edge Attention (EA) module to improve the infection area. Another dataset suggested the MiniSeg
model in conjunction with the AHSP module for efficient multi-scale learning and demonstrated that,
for the identical data set, this model’s segmentation impact outperformed Inf-Net.

Table 6: Comparison of various segmentation methods for COVID-19 diagnosis

Model Use dataset Model features Performance
evaluation

Inf-Net [66] COVID-19-CT-Seg
45 images for training; 5
images for verification; 50
images for testing

The encoder uses the PPD
module to aggregate
high-level features;
RA reverse attention
module;
Expanding datasets for
semi-supervised learning

Dice = 0.739
Sen = 0.725
Spec = 0.960

MiniSeg [67] COVID-19-CT-Seg
Training 60; validation 40
the training set is enhanced
with crop flipping

Note hierarchical space
pyramid (AHSP) module;
Lightweight multi-scale
learning for small samples

DSC = 0.773
Sen = 0.836
Spec = 0.974

U-Net improvements [68] COVID-19-CT-Seg: 100
sheets
Segmentation dataset nr.2:
373 sheets
Training set: Test set = 4:1

Build the Res_dil residual
module;
Introduce the scSE
attention module in U-Net

Dice = 0.831
Sen = 0.867
Spec = 0.993

(Continued)
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Table 6: Continued
Model Use dataset Model features Performance

evaluation

DDANet [69] COVID-19-CT-Seg and
Segmentation dataset nr.2
A total of 471 sheets after
clearing

Introduce the CCA
attention module in U-Net
architecture

Say (GGO)=0.734
Say (Consol)=0.613

U-Net+cGAN [70] Segmentation dataset nr.2
300 images for training; 73
images for testing

Generator: Dynamic
weighted sum (DESUM)
module;
Discriminator: Dynamic
feature matching (DFM)
module

Dice = 0.892
PSNR = 26.89
FID = 0.033

CoSinGAN [71] COVID-19-CT-Seg-
Benchmark: 3 520 training
images;
COVID19_1110: 50 tests

The multi-scale
architecture of the
two-level GAN pyramid;
Hybrid reconstruction loss;
Hierarchical data
augmentation module

DSC = 0.713 ± 0.190
NSD = 0.720 ± 0.209

U-Net [72] COVID-19-CT-Seg-
Benchmark
Training: validation = 4:1;
COVID19_1110: 50 tests

Creation of the COVID-19-
CT-Seg-Benchmark
dataset;
Use more than 40 baselines
to segment the left lung,
right lung, and lesion area
on this dataset

Lesion segmentation
effect:
DSC = 0.673
NSD = 0.700

D2A U-Net [73] COVID-19-CT-Seg: 100
tests;
Segmentation dataset nr.2
and COVID-19-CTSeg-
A total of 1 645
benchmarks are used for
training

Expanded convolution
increases the receptive field;
Double attention
mechanism

Dice = 0.730
Recall = 0.707

Improved U-Net [74] COVID-19-CT-Seg
Segmentation dataset nr.2
1 810 images for training;
150 images for verification;
10 images for testing

Traditional data
augmentation;
EfficientNet-B0 for feature
extraction;
Replace traditional
upsampling with a
DUpsampling structure

DSC = 0.851
Recall = 0.804
Precision = 0.842

(Continued)
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Table 6: Continued
Model Use dataset Model features Performance

evaluation

Improved threshold
segmentation technology
based on multi-level
Kapur entropy [75]

COVID-CT-Dataset Image contrast
enhancement algorithm;
Image correlation series for
automatic thresholding

Dice = 0.710
ACC = 0.980

5 Conclusion

This study primarily examines the use of several imaging datasets from COVID-19 for various
purposes. It has gathered and arranged many open-source imaging datasets, some of which contain
CT pictures and others which include CXR images. According to various TCIA image data collection
standards, image data format consistency, metadata standardization, and data labeling should be
treated with unified specification criteria for picture completeness, or research on quality evaluation
standards for recorded images should be conducted. Furthermore, because patient information is
typically present in medical imaging data, de-privacy methods should be implemented during data
collection to remove patient information from image and lesion label data.

Combined with the classification and segmentation tasks of COVID-19 images, the application
of the current mainstream deep learning algorithm models is compared. The idea of an attention
mechanism has achieved obvious results in medical image analysis, and the lesion area of medical
imaging has typical local characteristics. The study of local attention mechanisms will become a more
effective method in the future. At the same time, the research on small sample sets and data imbalance
methods is still an issue worthy of an in-depth discussion in the field of medical image processing.
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Appendix

Table A1: Dataset partial information

Serial number Data set Image size Storage format Features Image example

1 COVID-19-CT-
Seg

Not fixed Nii.gz Released earlier,
the lesion is
larger, which is
conducive to
visual
segmentation

(Continued)
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Table A1: Continued
Serial number Data set Image size Storage format Features Image example

2 Segmentation
dataset nr.2

Slice: 512 × 512 Nii.gz 3D data, need
to slice

3 COVID-19-CT-
Seg-Benchmark

Slice: 512 × 512 Nii.gz 3D data, need
to slice

4 COVID19_1110 Slice: 512 × 512 Nii.gz 3D data, need
to slice

5 CC-CCII data
set

512 × 512 JPG Clear image, a
large amount of
data, suitable
for
classification
and
segmentation
experiments

6 COVID-CT-
Dataset

Not fixed PNG Commonly used
in the early
days, but the
amount of data
is small and the
quality is
average

7 SARS-cov-2 CT Not fixed PNG It is often used
for
classification
and detection in
the early stage,
and the effect is
better

8 COVID-ctset 512 × 512 DICOM 16-bit grayscale,
the best image
quality, suitable
for
classification
experiments

9 CT-COVID-19-
August2020

Slice: 512 × 512 Nii.gz 3D data, only
images of the
patient’s lungs

10 COVID-19-AR Not fixed DICOM Good data
quality

(Continued)
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Table A1: Continued
Serial number Data set Image size Storage format Features Image example

11 HUST-19 12 × 512 JPG The amount of
data is sufficient
and the quality
is good, suitable
for
classification
experiments

12 COVID-19-CT-
CXR

224 × 224 JPG Collected from
documents and
web pages, the
format is not
uniform, and
the quantity
and quality
General

13 BIMCV
COVID-19+

Not fixed Nii.gz High-
resolution,
manual
construction of
training data
sets is required

14 MIDRC-
RICORD

Not fixed DICOM There is a large
amount of data,
and the training
data set needs
to be manually
constructed.
Use less

15 Covidx dataset Not fixed PNG Build data from
other
open-source
datasets with
sufficient data
volume

16 Pneumonia-
chest X-ray
dataset

Not fixed JPEG No COVID-19
imagery used to
augment the
data

(Continued)
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Table A1: Continued
Serial number Data set Image size Storage format Features Image example

17 COVID-chest
X-ray dataset

Not fixed JPEG, JPG, etc. It was published
earlier, with less
data volume
and inconsistent
format and size

18 COVID-19
Radiography
Database

256 × 256 PNG The data quality
is good and the
quantity is
sufficient for
classification
experiments
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