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Abstract: Distributed renewable energy sources offer significant alterna-
tives for Qatar and the Arab Gulf region’s future fuel supply and demand.
Microgrids are essential for providing dependable power in difficult-to-reach
areas while incorporating significant amounts of renewable energy sources. In
energy-efficient data centers, distributed generation can be used to meet the
facility’s overall power needs. This study primarily focuses on the best energy
management practices for a smart microgrid in Qatar while taking demand-
side load management into account. This article looked into a university
microgrid in Qatar that primarily aimed to get all of its energy from the
grid. While diesel generators are categorized as a dispatchable distributed
generation with energy storage added to handle solar radiation from the sun
and high grid power operating costs in the suggested scenario, wind turbines
and solar Photovoltaic (PV) are classified as non-dispatchable distributed
generators. The resulting linear math issues are assessed and displayed in
MATLAB optimization software using a mixed-integer linear programming
(MILP) strategy. According to the simulation results, the suggested energy
management strategy reduced the university microgrid’s grid power costs by
38.8%, making it an affordable solution which is somehow greater than the
prior case scenario’s 23% savings. The installed solar system capacity’s effects
on the economy, society, and finances were also assessed, and it became clear
that the best option for the smart microgrid was determined that would be
325 kW of solar PV, 25 kW of wind turbine, and 600 kW of diesel generators,
respectively. Given the current situation, university administrators are urged
to participate in distributed generators and adopt cutting-edge designs for
energy storage technologies due to the significant environmental and financial
benefits.
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1 Introduction

Energy systems have been experiencing many challenges including complex network overloading,
greenhouse gas emissions, insignificant scheduling of energy generation, and rapidly increasing
electricity generation costs. The traditional power system is unable to deal with these types of issues
and challenges efficiently, but smart microgrid systems with a variety of distributed generation (DGs)
combined with modern distribution systems and storage technologies can deal with these issues by
implementing demand-response solutions [1]. The smart grid solutions can be assimilated with other
renewable energy resources to improve the efficiency and performance of the microgrid.

Smart microgrids have efficient and inexpensive renewable energy solutions due to their economic,
environmental, and technical benefits such as energy security, electricity bill savings, emission reduc-
tion, and resiliency of a microgrid [2]. Smart microgrids are small-scale, distributed, self-contained
energy systems with multiple renewable generation sources and distributed loads, and it operates
independently for energy security, electricity bill savings, emission reduction, and resiliency of a
microgrid [3]. These emerging microgrid systems improve the reliability, resilience, sustainability, and
security of the overall electric power network. Smart Microgrids are one of the promising approaches
to providing a wide range of services including power quality, reliability, and cost reduction in future
smart electricity networks [4,5].

A microgrid system is a promising solution to overcome these energy challenges. Due to this,
Qatar’s energy sector [6] depends exclusively on fossil fuels for electricity generation. A small portion
of the total energy generated is used for desalination, with public outages in the summer to cope
with the increased demand for power and water generation. Fossil fuels supply over 95% of energy
consumption, mainly crude oil and natural gas [7]. Qatar does not have any coal or hydrocarbon
sources for traditional power generation. The country has a small refinery capacity which covers only
20% of its domestic consumption. About 34 percent of worldwide carbon emissions come from coal,
oil, and natural gas. The usage of smart grids allows us to cope with challenges like global climate
change, energy distribution control and efficiency optimization [8]. Due to the variable nature of
loads, Qatar universities are among the large-load consumption electricity which comes in the class of
mixed loads consumers. These kinds of buildings have the option of prosuming surplus electricity
from the grid owing to the accessibility of site power generation [9]. The main motivation of this
study is to assure active participation in microgrid operations and to help with an optimal dispatch
to achieve demand at the least possible cost, energy management systems are utilized alongside
traditional resources [10]. The study focused on the strengthening of energy management systems for
an associated battery storage facility and onsite DGs in a smart microgrid. The proposed Energy
Management System (EMS) approach may safely and efficiently manage the bidirectional energy
flow among the utility network and the microgrid to schedule the battery charging cycles for the
energy storage system (ESS) in a way that would reduce energy costs. For a thorough study, the
actual academic load at this university was considered. The suggested university microgrid presently
includes wind energy, a standby diesel generator as an outer source, and a state grid network connected
with a regional electricity market. The Qatar Electricity and Water Company (QEWC) is responsible
for the electricity supply, so grid electricity is supplied from their power system. In this study, the
eco-friendly environment and economic effects of PV integrated with energy storage were discussed
along with the generation of energy using various renewable energy sources. However, this study also
focuses on the benefits of integrating photovoltaic (PV) systems with energy storage. By combining
PV with energy storage, it is possible to increase the overall efficiency and reliability of renewable
energy systems. Additionally, the study might explore the generation of energy using various renewable
energy sources, such as solar, wind, or hydropower, to provide a comprehensive understanding of
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renewable energy systems and their potential benefits. The ultimate goal of the study might be to
provide recommendations for promoting the adoption of renewable energy technologies and to help
mitigate the effects of climate change.

2 Literature Review

In the literature, several studies have been undertaken to evaluate the optimal energy systems
at various locations for generating energy using various techno-economic approaches and methods.
Only a couple of the studies that looked at calculating the Levelized Cost of Electricity (LCOE) for
the demand side management are mentioned below.

Xu et al. [11] proposed an integrated module with the Demand Side Management (DSM) which
aims to consider the non-changeable loads for the prosumer microgrid. In this proposed module, the
microgrid consists of DSM that calculates the operational cost of both the controllable loads and the
un-controllable loads. A modified Genetic Algorithm (GA) is developed which optimizes the proposed
module. Results show that integration of the micro-market with demand-side management minimizes
the electricity cost for the university microgrid. While Nigam [12] examined a different smart microgrid
and compared it to the suggested microgrid solution with the existing university smart grid to find the
most suitable and efficient microgrid solution. This study focuses on the implementation of a smart
microgrid at Illinois University. This paper uses a mixed-integer linear program (MILP) approach
that operates the smart microgrid according to the economical, reliable, and sustainable environment.
Results show that methodologies implemented in the Illinois university microgrid were to maintain
reliability, achieve economic benefit, and fulfil the power supply and demand-side requirements.
Likewise, they can import energy from the utility grid if DGs and energy storage systems might
be unable to encounter the load conditions [13]. Integrating these microgrids into power networks,
operational energy costs are reduced, with an emphasis on the advantages of the distribution system.

However, another author presented a solar PV-based prosumer microgrid solution in [14] to
replace hydrocarbon-based electricity generation with a PV-based generation at Purdue University,
Indiana. It consists of a solar PV grid with 3-lead-acid batteries. The main objective is to build and
install a solar PV microgrid that aims to protect the environment from sulfur, Nitrous oxide (NO),
and carbon released from hydrocarbon electricity generation. With the installation of solar microgrids,
toxic Greenhouse gas (GHG) emissions are reduced, energy consumption costs are also reduced, power
quality is increased, and voltage regulation is improved as well. While Ahsan el at. [15] modelled a
Battery Storage System dynamic approach to calculate the operating costs of a smart microgrid and
to provide the economic dispatch power/unit energy of the system. This proposed model also examines
the voltage dependency of the batteries on the state of charge (SOC) and currents. Using this, it carried
out the efficiency conversion analysis on SOC and power output. Results conclude that using this
modelled approach rather than LCOE, lowered the microgrid operational cost up to 12% which is the
optimal solution.

A solar-diesel hybrid university prosumer microgrid is modelled by Uchechukwu et al. in [16] for
the Nnamdi Azikiwe University, Nigeria. The NASA sun irradiance data was anticipated for the entire
year by the postgraduate building’s sub-grid. It estimated the load demand for the university building
in HOMER software. The installed capacity for the post-graduate building was 84.15 kW. Simulation
results delivered the component that was installed for the microgrid. The sub-grid consisted of a Solar
PV system (950 pieces in kW/total 300 W), Lithium-Ion Batteries (60 pieces in kWh), a diesel generator
(100 kW size), and a converter (145 kW size), etc. Results show that the net present value (NPV) and



154 CMC, 2023, vol.76, no.1

LCOE were calculated at 1,738,994$ and 0.264$. It somehow lacks in calculating the financial analysis
of the system to further optimize the system.

On the other hand, another author presented a hybrid system in [17] with an optimal solution
for the smart microgrid of Aligarh University, India. The given microgrid system comprised of the
solar PV system, BESS system, and diesel generators (DGs) can serve as a backup to support the
microgrid load. The study utilized the Homer Pro software which is used as a microgrid optimization
tool. Results analyzed that the system’s investment cost with PV and BESS is 18.2 million USD, or
64.2% higher than that of the existing system (11.18 million USD). Therefore, the cost of investment
for a PV system and Grid system is |494.92 INR in millions, which is 57.2% cheaper as compared to
the cost of the existing system, which is an optimal option.

However, Simmhan et al. [18] demonstrated an architecture of data integration, a machine-
learning demand response (DR) based forecasting model and the calculation of load demand by real-
time complex event processing (CEP) technique. This paper studied the use of algorithms in power
system protection and coordination. The authors used the data integration method, which integrates
traditional and new methods of energy management to determine the optimal load scheduling for a
system with limited resources. It is situated in an electrical department, at the University of Southern
California (USC). This data integration portal will tell the consumers about the temperature, and
power consumption in the building USC. Results will display on the portal as well as display the
power consumption, load demand response, and power flow in the university building. However,
Table 1, analyzed the LCOE that was calculated by considering multiple microgrid configurations
at different locations. Another effective method is discussed in [19] where the author proposed a
method to effectively design a power system for the University of Beirut (AUB) campus which was
affected by a power system outage and dependence on distributed generators. This approach was able
to manage the power flow during active and passive hours of the day. Results show that it reduces
operation cost for the distributed generation (DG) by 53.7% (for 1st Year) to 3.4% (after 10 years)
in operation mode. This proposed system reduces the cost of electricity (COE) for the whole system
by 0.137$/kWh-to-0.088$/kWh (1st Year) and 0.144$/kWh-to-0.1$/kWh (for the 10th year) with a net
positive cash flow at 6th year. Many of the literature studies discussed above were focused on demand-
side management and energy management of smart microgrids and implementing an optimal solution
to improve their power system by adopting an effective solution for their microgrid systems. Several
studies focused exclusively upon the economic feasibility of PV combined with the ESS for smart
microgrids, while others calculated the cost reductions with the inclusion of their PV integration and
an optimally scheduled ESS.

Table 1: Recent literature for LCOE calculations with multiple microgrid configurations

Smart grids configuration Locations Cost calculations References

LPG generator/energy storage South Cameron LCOE = 0.576 (e/kWh) [19]
LPG generator/energy storage/PV North Cameron LCOE = 0.576 (e/kWh)
Biogas generator/pico-hydro/energy
storage

South Cameron LCOE = 0.352 (e/kWh) [20]

(Continued)
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Table 1: Continued
Smart grids configuration Locations Cost calculations References

Biogas generator/PV/energy storage North Cameron LCOE = 0.396 (e/kWh)
WT/PV/battery Portugal LCOE = 0.650 (e/kWh) [21]
Biogas generator/pico-hydro/PV/energy
storage

Cameron LCOE = 0.278 ($/kWh) [22]

WT/PV/energy storage Iran LCOE = 0.100 ($/kWh) [23]
Grid LCOE = 0.144 ($/kWh)
Grid/solar LCOE = 0.214 ($/kWh)
Grid/WTs LCOE = 0.170 ($/kWh)
Grid/WTs/solar PV LCOE = 0.369 ($/kWh)
Diesel generators Canada LCOE = 0.902 ($/kWh) [24]
Diesel generators/WT/PV/energy
storage

LCOE = 0.422 ($/kWh)

Diesel generators/battery LCOE = 0.411 ($/kWh)
Micro-hydro/WT/PV/energy storage LCOE = 0.639 ($/kWh)
Micro-hydro/grid LCOE = 0.071 ($/kWh)
WT/PV/energy storage Bangladesh LCOE = 0.470 ($/kWh) [25]
WT/PV/energy storage LCOE = 0.666 ($/kWh)
WT/PV/energy storage LCOE = 0.630 ($/kWh)
Diesel generators (1MW
load)/WT/PV/energy storage

United Arab
Emirates

LCOE = 0.190 ($/kWh) [26]

Diesel generators (5MW
load)/WT/PV/energy storage

LCOE = 0.190 ($/kWh)

Hydrokinetic turbine South Africa LCOE = 0.330 ($/kWh) [27]
Diesel generator LCOE = 1.330 ($/kWh)
Solar PV LCOE = 0.601 ($/kWh)
Diesel generators/PV LCOE = 0.505 ($/kWh)
Hydrokinetic turbine KwaZulu Natal LCOE = 0.330 ($/kWh) [28]
Solar PV Western Cape LCOE = 0.601 ($/kWh)
PV/hydrokinetic turbine LCOE = 0.335 ($/kWh)
PV/Diesel generator LCOE = 0.505 ($/kWh) [29]
WT/PV/battery Bangladesh LCOE = 0.363 ($/kWh) [30]

The important objectives and novelties of this research work are as follows:

a) An intelligent and efficient energy management system proposed to enhance the schedule of
the onsite solar PV, diesel generators, energy storage systems, and grid energy using MILP and
time of use (TOU) based real-time responses to increasing renewable energy resources (RER)
consumption while reducing operational power costs and system peak-hours as well as load
consumption reductions.

b) With stochastic solar PV generation, which was used in a smart prosumer microgrid, degrada-
tion battery cost is also considered.
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c) An economical study is also carried out here to examine the techno-economic impact on
multiple attached RER resources and to find an optimal solution for the Qatar university smart
microgrid, which is also centred on the net-metering TOU-based environments.

The remainder of this article is arranged as follows. Section 2 describes the model of the proposed
system and solution approach. The entire problem formulation is presented in Section 3. Next,
Section 4 includes a series of case studies with simulation solutions. Lastly, Section 5 offers the author’s
final remarks and some future research proposals.

3 Methodology
3.1 Suggested Conceptual Framework

The prosumer microgrid is made up of several kinds of energy storage facilities, loads, and some
generation supplies (Diesel generator and PV). An energy supplier from a grid has a facility known
as a net-metering facility for the smart prosumer, who may use it to exchange any excess energy with
the grid. Fig. 1 depicts the suggested model’s conceptual model, which includes the utility grid, energy
management structure, and a prosumer microgrid. The proposed EMS is focused and deployed at the
prosumer end that receives load demand and pricing data, weather forecasts, the baseline condition of
the energy storage, and its relevant input parameters and finds the best way to satisfy the demand of
the required load using existing resources while staying within operational and design restrictions.

The controlling scheduler uses this optimum solution to allocate existing resources. The suggested
EMS also has the capability of storing several essential parameters, which might be used for a variety of
purposes in the future. Energy exchange data, pricing data, and smart prosumers load data are stored
in market databases (DB), Real-time DB, and smart prosumer DBs. The given model is presented in
the following subsections.

3.2 Problem Methodology

The proposed system’s architectural model of the University of Qatar is constructed as a mixed-
integer linear optimal control problem to minimize the prosumer microgrid operational expenses while
taking into consideration the lifespan of the energy storage system. The proposed model has many
additional components with certain limitations and restrictions, which are mentioned in detail in the
following sections.

3.3 Objective Function

The proposed model tries to reduce the operational costs (J) of the given prosumer microgrid,
which comprises an interchange of energy costs ‘E’, the wind turbine WT’ costs, ‘DG’ generating
units cost, and the energy storage deterioration (2)–(5). The total expenses for calculating the energy
resources are given by Eq. (1). As shown in Eqs. (4)–(6), several factors, such as the no. of cycle used,
assets investments, and entire system capacity, affects the battery life, whilst charging/discharging
efficiency and power are expressed as ηchrg, ηdchrg, Pchrg

t and Pdchrg
t that are signified in Eq. (5):

CT = J = min
24∑

t=1

(
costE

t + costDG
t + costBat

t + costWT
t

)
(1)

costE
t = PG

(t)γt (2)

costDG
t = αTG + βPDG

(t) (3)
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costWT
t = Sc.Prated ($) (4)

costBat
t =

(
Ccost

n × CT × 2

)
×

(
ηcpchrg

(t) + pdchrg
(t)

ηdchrg

)
(5)

PBat
(t) = η(ch)Pchrg

(t) − pdchrg
(t)

η(dchrg)

(6)

Figure 1: Conceptual model of the proposed smart prosumer microgrid (SPM)

Here, some of the factors are costs expressed as costE
t , costBat

t , costWT
t , costDG

t and it can be denoted
as the cost of energy interchange, degradation of energy storage systems, wind turbine systems, and
diesel generator cost at t time intervals. The electrical supply provider, Qatar Electricity & Water Co.,
has allocated the common TOU price connection for the institution. The energy exchange with the
grid system and the power unit pricing are symbolized by PG

(t) and γt at any period t. costDG
t is calculated

with a rated capacity of a general diesel generator as it is (TG = 600 kW), especially fuel intercept curves
with (α = 0.016 l/hr/kW), here fuel intercept curves slope has (β = 0.277 l/hr/kW) and DG power (PDG

(t) )

[31–33] as specified in upcoming Fig. 2. The consistent charging and discharging energy efficiency, as
well as power, is denoted as η(chrg), η(dchrg), pchrg

(t) , and pdchrg
(t) respectively and PBat

(t) is denoted as battery power
in Eq. (6).
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Figure 2: Proposed architectural design of EMS model

3.4 Load Equality Constraints

The load equality constraints symbolize the demand-side equilibrium. The expression (7) must be
met and fulfilled to attain equilibrium. However, the prosumer load profile is denoted as PL

(t).

3.5 ESS Constraints

ESS does not need to be a neglected factor in power management, since it supports to contribute
the system’s power in any tragic occasion such as power system failure. Although this ESS is normally
hard to charge or discharge quickly, their energy limitation has indeed been incorporated in the
limitations (8)–(9). Whereas, up to (12) the battery charging state “BSOCt” relies on the prior state
represented as BSOC(t−1), which is combined with an Eq. (13) at any time t. The extreme limitations of
the battery charging status are correspondingly denoted by BSOCmin and BSOCmax and in an equation
to avoid ESS overcharging and discharging issues (14). A battery state of charge (BSOCt) at t interval
(day’s end) is equal with the primary state of the battery (BSOCo) that occurs at the beginning of a
day is shown in Eq. (15).

PG
(t) + PPV

(t) + PBat
(t) + PDG

(t) + PWT
(t) = PL

(t) (7)
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BSOCt−1 − BSOCmax

100
Ces ≤ PBat

(t) (8)

PBat
(t) ≤ BSOC(t−1) − BSOC(min)

100
Ces (9)

0 ≤ η(ch)pchrg
(t) ≤ Y chrg

t PBat
(chrg, max)

(10)

0 ≤ Pdchrg
(t)

η(dchrg)

≤ Y dchrg
t PBat

(dchrg,max)
(11)

Y chrg
t + Y dchrg

t ≤ 1∀t (12)

BSOC(t) = BSOC(t−1) − 100 × η(dchrg)P
dchrg
(t)

Ces
− 100 × Pdchrg

(t)

Cesη(dchrg)

(13)

BSOC(min) ≤ BSOC(t) ≤ BSOC(max) (14)

BSOC(t) = BSOC(o) (15)

To efficiently plan the energy contribution in an energy management system, the output power
of the storage system PBat

t is already incorporated into the equality requirement specified in Eq. (8).
However, the ESS charging or discharging is characterized by high or low values of PBat

t , respectively.
The integer value variables μchrg

t and μdchrg
t , respectively, denote the ESS charging/discharging in an

interval “t”. The specified binary variable accessible in certain formulas (11) to (13), could be “1” in
comparable timings to effectively prevent the BESS charging/discharging issue. The activating mode
is indicated by a value of “1” for these kinds of variables.

The energy storage’s output gradient is as follows:∣∣PBat
(t) − PBat

(t+1)

∣∣ ≤ �PBat (16)

3.6 Diesel Generator with Grid Limitations

As utilities rely on their components of load demand, they must negotiate peak load contracts
through consumers regularly. Some demand that goes beyond the scope of such a contract will
consequence in penalties or termination of the electricity connection. Diesel generators, likewise,
cannot manage loads more than their design capacity. For the generating units and the grid-connected
PV, phrases are used to address the availability of power restrictions, as shown in the Eqs. (17)–(18).

PG
(min)

≤ PG
(t) ≤ PG

(max)
(17)

PDG
(min)

≤ PDG
(t) ≤ PDG

(max)
(18)

3.7 Grid and Smart Prosumer Energy Exchange

The exchanged net energy with a utility grid in a day is expressed as
(
EG

(net)

)
while the energy

exchange between utility grid while import/export are represented as positive/negative values are
characterized by PG

(t), in Eq. (19) respectively.

EG
(net) =

∑t=24

t=1
PG

(t) × h (19)
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3.8 Probabilistic Solar PV Modelling

Solar production patterns are quite unbalanced and not regular which is dependent on an
environment having high irradiance output [34]. The entire year’s data will be examined under
random settings. This article makes use of an earlier constructed solar irradiance simulation [35–
37]. Additionally, the curve parameters of the probability distribution function are computed. The
Latin Hypercube (LHS) global sampling method may generate 365 scenarios in 24 h [38–40]. The
fast-forwarding approach is normally used to reduce approximately 40 randomized random generated
scenarios [41,42] for the goal of reducing the calculation or computational burden, as indicated in [42].

F (I) = 1

σ
√

2π
e− (1−μ)2

2σ2 (20)

PPV
(t) = ηpvjβpvI (21)

In Eq. (20), the normally distributed function or a Gaussian function [43] is utilized to develop
an uncertain model for solar irradiation. While ηpv; j; I and βpv denote the solar panel’s performance
(17%), irradiance patterns represented as (kW/m2), and the rooftop solar area is in (m2), respectively,
whereas the standard deviations of the normal distribution are denoted as μ, while mean deviation is
represented as σ . Eq. (21) depicts the output power of solar energy PPV

(t) , that is based on a certain area’s
solar irradiation. Fig. 3 depicts the mean and standard deviation curve of solar irradiation predictable
patterns for an institutional region, but it includes the smart microgrid that has been considered.
The Qatar university region’s longitude and latitude are “51.4912°E” and “25.3773°N”, respectively,
corresponding to almost 5.2 kWh/m2 per day [38].

Figure 3: Mean value of solar irradiance and standard deviation patterns
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3.9 Grid and WT Energy Exchange

Eq. (22) expresses the wind energy generation P(t) exchanged with the grid system as:

P(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, vw < vci

PWT
r ×

(
νw − νci

νr − νci

)

PWT
r +

(
vw − vr

vci − vr

)
× (

PWT
co − PWT

r

)
vr < vw < vco

0, vco < vw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

The minimal cut-in velocity needed for the wind turbine to create power is stated as (νci). The
maximal cut-out velocity to generate the highest power permissible to be made is given by (vco), if
such speed is surpassed, then, the only thing to avoid wind turbine damage is to turn it off. However,
vr denotes the rated wind speed velocity, vw is the wind speed, PWT

r is the mean rated power of wind
turbines, and PWT

co is the cut-out power of the wind turbine.

3.10 Energy Levelized Cost

The Levelized cost of energy is calculated in many aspects to undertake an efficient and equitable
economic study of the systems. It is determined by dividing the entire system installation cost in dollars
by the amount of energy produced (kWh). The LCOE of a specific energy storage system is mainly
defined as dollars per kWh of electricity. It considers all related expenses, like installation, operating,
or maintenance costs, as well as capital expenditures. It may also be thought of as the lowest price
on which electrical energy generation must be sold to keep the budget in range to improve net profit
throughout the lifespan of the electricity generating with an energy storage component [39]. The LCOE
calculation may be written as follows:

LCOE = Lifecycle cost ($)

Lifetime electricity production (kWh)
(23)

3.11 Solutions Methodology

The general solution methodology of the MILP approach is presented as follows (see Fig. 4):
Because the proposed system objective function and the system restrictions happen essentially with
a linear model by a large number of additional integers variable, the MILP approach is used to
handle problems like linear optimization [40]. This MILP methodology is generally used as a global
optimization method for solving a variety of optimization issues in branding, planning, and optimum
scheduling.

Furthermore, it is evaluated with several metaheuristic approaches that provide inferior results,
while MILP produces the best ideal outcomes. Consequently, the MILP approach is widely employed
in EMS optimizations [41]. The following is the MILP’s general structure in Eqs. (24) and (25):

min
x f tx (24)

t0

⎧⎨
⎩

B. x ≤ b
Beq.x = beq

xb ≤ x ≤ yb

⎫⎬
⎭ (25)
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Figure 4: Proposed system flowchart

4 Results and Discussion

This proposed concept is being utilized for the smart prosumer microgrid in the Qatar region as
described in Section 3. There are a couple of dormitories, ten college departments, and many faculties
in the university. Currently, the university relies on a 2 MW grid connection to meet its needs. Based
on a quick review of the available space on the university rooftop, the capacity of the PV system is
estimated at 4 MW.

Due to regulatory restrictions and financial limits, we are only able to build 4 MW PV due to
the Qatar Electricity and Water Company (QEWC) of Qatar allowing a limited amount of energy
trade among utility networks. In our scenario, as contrasted to the [42], a local 325 kW PV System is
examined for a full economical and technical study. Other implications concentrated on the utilization
of the accessible portable generator as a standby in an event of an electrical grid failure or breakdown.

Moreover, the power grid is intended to have an excellent net-metering system which permits
energy export to regulate equal to 1 MW in compensating for the microgrid energy usage costs. Due to
an overall hostel load, academic block load, administrative offices load, and a load of housing colonies
on campus, the university load varies constantly.

As it has 320 bright days per year and 9–12 h of sunshine each day, solar PV is a practical and
workable method to alleviate energy difficulties in Qatar. Qatar produces 5.1 MWh/m2 of solar power
each day from a 1 MW PV power plant, as per the [43] research. Thus, in this research, an optimal
solution is created by developing an efficient system for the prosumer microgrid. A BESS network has
been examined for our method, and a lithium-ion battery offers a couple of benefits extended lifespan,
better operation, high power density, high reliability, and considerable self-discharge [44].

4.1 Case Study

In different case studies, an optimum microgrid planning and approach is shown for Qatar’s hot
season as it remains the same all year long. Variations in load conditions are usually normal over the
year and for convenience of study, energy patterns are taken to be the same for each season. In Qatar,
the highest electricity consumption cycles are Jan and Aug, as they are the system peak periods [45].
Peak load profiles for some months like (Jan and Aug) are used for economic and financial evaluation,
with worst-case scenarios considered. The best potential outcome for cost reduction is achieved by
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selecting the worst-case scenario. To calculate the economic advantage, PV energy can be supplied to
the grid to maximize the benefits.

When an institution has a working day, the administrative loads and loads of academic blocks
are intended to be higher, whereas the peak energy needs in the dormitories and resident societies are
examined until the middle of the night. Table 2 shows several metrics that are related to a system,
while Table 3 shows a TOU scheme’s electricity pricing data. Specifically, the daily solar data utilized
is taken from [46] and data properties are demonstrated and evaluated with the help of probability
distribution functions indicated in the Eq. (19). Our main goal for PDF is normally to generate the
daily patterns of solar on regular basis [47,48], whereas the previously present irradiance flow predicts
the PV generating output power utilizing Eq. (20).

Table 2: Optimal system parameters

Parameters Values Parameter Values

PPV
rated 325 kW CES 800 kWh

PBat
(t,max)

800 kW PBat
(t,min)

−800 kW

PG
(t,max)

2000 kW PG
(t,min)

−1000 kW

BSOCb
(max)

90% DODb
(max)

0.95

BSOCb
(min)

50% Battery lifetime 10

Table 3: Electricity tariff price structure per unit

Tariff price structure

Timing (h) Unit price

12:00 AM to 6:30 PM 0.100$
6:30 PM to 10:30 PM 0.138$
10:30 PM to 12:00 AM 0.100$

4.2 Different Case Scenarios

Many case scenarios are examined here in our study case, in which energy exchange analysis and
energy usage according to our load are expressed using price-based metrics. To better know the power
requirement for all seasons, many scenarios have been developed. Overall load patterns of load pattern
are considered also, which shows the load pattern behaviour of the campus microgrid in such a way,
their residential load pattern behavior, their academic load, and general load behavior are illustrated
in Figs. 5 and 6.

Case Scenario (a): In our first case scenario, the campus’s electricity needs are met entirely by the
grid. The campus does not have solar, wind, ESS, or a diesel generator. The operating cost of electricity
is determined to be $1630.8 using the time of use (TOU) rate. In this case scenario, LCOE is computed
as 0.113$/kWh. But the findings revealed that in the first case, the day-to-day operating costs of the
grid’s energy are exceptionally expensive, and this case scenario is utilized further as a study to evaluate
and investigate other case scenarios.
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Figure 5: Overall load pattern behaviour of the microgrid

Figure 6: Case scenario (b): Energy exchange with grid and PV

Case Scenario (b): In the 2nd case scenario, solar is associated with an institutional smart
microgrid, allowing it to both export surplus power towards the utility grid and supply the demand.
Solar PV yields 8584.3 kWh, demonstrating its efficiency. The LCOE is calculated in this case by
0.052$/kWh. The net cost calculated for the electricity/day is lowered by 46.08%, to $748.5 from the
base case scenario.

Case Scenario (c): The ESS is combined with the Solar and grid connection in this assumed
scenario. The suggested technique is employed to estimate the net electricity cost, which is $712.9,
and to scheme the charging time patterns efficiently while considering all related expenses. With the
use of TOU-based tariffs and the BESS optimum scheduling process, the LCOE was computed as
$0.050/kWh, also depicted in Table 3. However, the modest rise in LCOE calculation is due to BESS
cost, which remains here. When compared to baseline scenario 1(a), the overall cost of power is reduced
by 43.89%, which is displayed in Fig. 7.
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Figure 7: Case scenario (c): Scheduled energy trade with grid, PV, and storage power

Case Scenario (d): The smart prosumer microgrid in the fourth scenario combines a backup
generator with the BESS network and Solar PV in reducing the grid peak power demand during peak
hours (6:30 PM to 12:00 PM). The grid can only import power equal to 50 kW, which has limitations
for the connected grid, while the power output of this diesel generator is controlled to 600 kW in the
peak hours, which is displayed in the Fig. 8.

Figure 8: Case scenario (d): Scheduled energy trade with PV, grid, storage power, and diesel generator

An overall electricity cost is calculated to be $590.5 each day using BESS optimum scheduling.
When it is contrasted with base scenario (a), the LCOE determined in this example is 0.046$/kWh,
which is 41.02% better than the previous case scenario and operates with the 8.119829 s computa-
tional time.

Case Scenario (e): Scenario 1, (e): In this case scenario, a wind turbine is connected with energy
storage, rooftop solar, a diesel engine, and the utility grid. In February and March, wind speed and
direction are (3–5) times greater than in the other months. The smart prosumer microgrid chose a WT
with a power rating of 25 kW after examining many variables, including hub height of 36.6 m, rated
wind conditions of 14 m/s, wind cut-in and cut-out velocities are 3.5 m/s and 25 m/s, respectively as
25 m/s is an optimal option. The results are presented in Fig. 9.
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Figure 9: Proposed case scenario (e): Energy trade with PV, utility grid, storage power, diesel generator,
and wind turbine system

The LCOE for this scenario was determined to be 0.044$/kWh, which is 38.99%. The prosumer net
cost electricity in this case yields 8743.5 kWh, demonstrating the best optimally scheduled efficiency.
The LCOE calculated intended for rooftop solar remains 0.044$/kWh. The incorporation of the
WT network with the energy system, rooftop solar, diesel engine, and grid-connected resulted in a
568.8$/day reduction in the electricity cost-benefit for the Qatar smart prosumer microgrid.

The results of existing approaches to the proposed model are summarized in Table 4.

In Table 5, ∗ this does not include the expenses of ESS, Solar PV, wind system, or diesel generator,
which are additional system costs. To compute this cost, the LCOE for each scenario is employed. The
LCOE of photovoltaics is predicted to be 0.048 dollars per kWh [42]. The installation costs of diesel
generators and energy storage are partially offset by contributing of 0.155$/kWh and 0.065$/kWh,
respectively, to the given model, which also included operating and repair costs of certain energy
storage systems and diesel generators in various cases. If the prosumer is mentioned inside the carbon
development framework, then the prosumer will receive a receivable carbon credit (CC) [42].
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Table 5: Existing approaches are compared to our proposed model

Ref. Years Applications Techniques Comments Savings

[17] 2018 Campus
microgrid

MILP Energy storage
degradation cost and
peak demand

5.32%

[18] 2018 Residential level MILP Frequency regulation 7%
[19] 2019 campus microgrid MILP Energy storage

degradation costs
5.27%

[20] 2020 Residential
microgrid

LP Electrical grid failures 16%

[21] 2021 Campus
microgrid

MILNP Peak demand reduction 23%

Proposed
model

2022 Campus microgrid MILP Solar PV integration,
demand response, &
economic analysis

38.99%

4.3 Carbon Emission Effects on the Energy Costs

The impacts of different solar PV sizes of a smart microgrid to buy electricity from the utility
grid and emissions of carbon dioxide for a day are investigated. When rooftop solar is incorporated
doubled, the GHG emission is also reduced by 2 times, in addition to cost savings. The graph in Fig. 10
has some colourful bars that demonstrate the multiple kinds of PV incorporation according to the
proposed case scenarios and their impacts on electricity cost obtained from the grid. In all of the
above cases, these calculated values can analyze the differences between their operating energy costs.

Figure 10: Entire electricity net cost/day with an analysis of different case scenarios
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4.4 Economic Effects on the Given Parameters

The research also shows the power ratings of system components, as well as their capital costs,
service & maintenance expenses, replacement costs, return on investment, increased efficiency, and
lifespan.

Rooftop Solar, BESS, converters, wind energy systems, DGs, utility grid, and other additional
devices throughout the distributed generation is one of the target aspects. The impacts of various
parts of the system which are presently in use are investigated. With various components joined in
the system, its NPV cost is calculated. If the system included components rated at 1000 kW rooftop
Solar, 550 kW diesel generator, 3500 kW capacity of the energy system, and 1400 kW converters, the
net current cost was estimated to be around 12.8 million dollars as illustrated in Fig. 11.

Figure 11: NPV calculation in different case scenarios

Therefore, an ideal smart and effective solution for our microgrid has been determined as an ideal
solution for the Qatar Microgrid. As, it is determined that an optimal solution for our system would
be 325 kW of solar PV, 25 kW of the wind turbine, and 600 kW of diesel generators, respectively. By
estimating a daily power cost of 568.8$/kWh as an ideal solution for the smart microgrid, an optimum
system is implemented.

However, when compared to the other case scenarios, the savings evaluated at 38.99%, which is
somehow greater than the prior case scenario’s 23% savings. It is determined that the optimum smart
system with the addition of a WT, PV for the system results in larger savings, making it the best viable
option for the smart prosumer microgrid.

5 Conclusion

In this study, a smart prosumer microgrid’s management and scheduling of energy storage systems
as well as the effects of rooftop solar are examined to lower the microgrid’s operational costs for
electricity by using predictive load data. It is suggested that the proposed smart system consider
PV, BESS, and generator as DGs which focused on a variety of situations, analyzing numerous
effects in each. In MATLAB, the optimum scheduling issue was evaluated and treated as a MILP
problem with battery lifetime considerations. The time-of-use tariff pricing was investigated, and ESS
was used with a demand response system that can be recharged smartly at efficient times aiming
in achieving a cost-cutting goal without compromising the system’s longevity. In the absence of an
ESS or diesel generator, the utility provider provides all the microgrid necessary energy, resulting
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in higher operational expenses. When Solar, WT, energy storage, and generators are combined with
the prosumer microgrid, the average saving calculated is 38.99%. The influence of various sizes of
Photovoltaic systems on the ecosystem investigated and determined which resulted as an ideal solution
for a smart microgrid would be a 325 kW of solar PV, 25 kW of the wind turbine, and 600 kW of diesel
generators, respectively. In addition to microgrids, there are several other important solutions that can
be incorporated further to ensure energy security for smart prosumer microgrids, such as reducing
dependence on fossil fuels, making the microgrid less dependent on the traditional grid, upgrading
to more efficient smart grid appliances, optimizing heating and cooling systems can reduce energy
demand, using demand response programs incentivize consumers to reduce their energy use during
periods of high demand, using advanced control systems to operate more efficiently. By incorporating
these solutions, smart prosumer microgrids can help ensure energy security, reduce dependence on
fossil fuels, and promote sustainability.
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