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Abstract: Alzheimer’s Disease (AD) is a progressive neurological disease.
Early diagnosis of this illness using conventional methods is very challenging.
Deep Learning (DL) is one of the finest solutions for improving diagnostic
procedures’ performance and forecast accuracy. The disease’s widespread
distribution and elevated mortality rate demonstrate its significance in the
older-onset and younger-onset age groups. In light of research investigations,
it is vital to consider age as one of the key criteria when choosing the subjects.
The younger subjects are more susceptible to the perishable side than the
older onset. The proposed investigation concentrated on the younger onset.
The research used deep learning models and neuroimages to diagnose and
categorize the disease at its early stages automatically. The proposed work is
executed in three steps. The 3D input images must first undergo image pre-
processing using Weiner filtering and Contrast Limited Adaptive Histogram
Equalization (CLAHE) methods. The Transfer Learning (TL) models extract
features, which are subsequently compressed using cascaded Auto Encoders
(AE). The final phase entails using a Deep Neural Network (DNN) to classify
the phases of AD. The model was trained and tested to classify the five stages
of AD. The ensemble ResNet-18 and sparse autoencoder with DNN model
achieved an accuracy of 98.54%. The method is compared to state-of-the-art
approaches to validate its efficacy and performance.

Keywords: Alzheimer’s disease; mild cognitive impairment; Weiner filter;
contrast limited adaptive histogram equalization; transfer learning; sparse
autoencoder; deep neural network

1 Introduction

Alzheimer’s Disease (AD) is the most debilitating brain disease affecting any age, especially the
elderly. A condition undertreated and under-recognized is becoming a serious public health concern.
Alzheimer’s Disease (AD) is a significant public health problem impacting life expectancy. AD
was first identified in 1906 by Alois Alzheimer, who employed memory loss, pathology indications,
and disorientation as diagnostic criteria [1]. AD can express itself clinically, including memory,
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language, visuospatial, and executive function impairments. Personality changes, impaired judgement,
aimlessness, insanity, agitation, sleep difficulties, and mood disturbances are examples of behavioural
and non-cognitive symptoms [2]. Brain alterations linked to the development of Alzheimer’s Disease
may begin two decades or more before any manifestations of the disease are evident, according to
scientists [3]. The different phases of the disease are named: Intellectually Ordinary or Cognitively
Normal (CN), Mild Cognitive Impairment (MCI), Early Mild Cognitive Impairment (EMCI), Late
Mild Cognitive Impairment (LMCI) and Alzheimer’s Disease (AD). CN subjects typically indicate
maturing with no traces of sadness and dementia [4]. MCI patients are more prone to experience an
early onset of Alzheimer’s disease. Imaging biomarkers are considered one of the robust identification
tools to diagnose the early phases of Alzheimer’s Disease [5], such as Magnetic Resonance Imaging
(MRI), Functional MRI (fMRI), and Positron Emission Tomography (PET). Fig. 1 depicts the
different stages of MCI to AD with MRI.

Figure 1: Classification stages as (a) Mild Cognitive Impairment (MCI), (b) Early MCI (EMCI),
(c) Late MCI (LMCI), and (d) Alzheimer’s Disease (AD). The blue marker line represents the shrinking
of the brain and the red markers show the enlarged ventricles as the disease advances

MCI, EMCI and LMCI are the significant stages before stepping into AD, in which the sickness
has progressed and started to impede ordinary or daily life activities. The patient displays side effects,
including loss of motor coordination, discourse issues, memory issues, and inability to peruse and
compose. Neuropsychological tests are utilized to recognize the seriousness of MCI. AD addresses
the high-level and deadly phase of the sickness [6,7]. There seems to be no comprehensive treatment
for curing AD completely; however, the correct medicine and sufficient care can aid patients’ quality
of life. In the beginning phases of Alzheimer’s infection, mental misfortune or cognitive instability can
be ended, regardless of the incurable AD [8,9]. Therefore, an early and timely AD diagnosis is essential
to improve and provide a beneficial quality to patients’ lives.

Deep Learning (DL) has demonstrated enormous possibilities for clinical support in deciding on
several diseases, including diabetic retinopathy, malignancies, and Alzheimer’s Disease (for imaging
investigation) [10]. The essential benefit of Deep learning over traditional shallow learning models
is its capacity to gain the best prescient qualities for prediction and classification straightforwardly
from unlabeled information [11,12]. It uses Graphics Processing Units (GPUs) that have become
more potent as computing power has increased, allowing for the creation of competitive and leading-
edge deep learning models and algorithms [13]. Deep Learning (DL) mimics the functioning of the
neural network in a human brain, processes the data, and identifies the pattern formation to handle
complex decision-concerning problems [14,15]. DL can understand pattern formation and is capable
enough to make a conclusion for optimization problems [16,17]. In particular, Convolutional Neural
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Networks (CNNs) have recently achieved marvelous success in the medical field for segmenting
regions and identifying disorders [18]. DL methods may be used to detect hidden interpretations
in neuroimaging data, as well as to establish connections between various portions of imagery and
identify patterns associated with the disease. MRI, fMRI, PET, and Diffusion Tensor Imaging (DTI)
are examples of medical imagery where DL models have been effectively deployed. Researchers have
recently started exhaustively utilizing computer vision and DL models to identify brain disorders
from various medical images; however, the DL can be utilized with both medical images and clinical
parameters in diagnosing and classifying AD. DL also has applications in domains like object
detection, contextual analysis, disaster management, person Re-ID, and vehicle Re-ID [19]. Some
of the most representative metaheuristic algorithms, like monarch butterfly optimization (MBO),
earthworm optimization algorithm (EWA), elephant herding optimization (EHO), and moth search
(MS) algorithm, are used in large-scale optimization problems, especially in health care research [20].

This work aimed to develop a framework for feature extraction, reduction and multi-class
classification of AD using pre-trained models of CNN, sparse autoencoders and a Deep Neural
Network (DNN).

The overlapping characteristics of Alzheimer’s Disease make it difficult to classify its distinct
stages. Most of the published research focuses on binary classification. The classification of two or
more phases of this illness requires in-depth effort. This research aims to do a multi-class categorization
of the 5 AD phases comprising CN, MCI, EMCI, LMCI and AD.

The format of the paper is described as follows: Section 2 depicts the literature survey, Section 3
encloses datasets, and Section 4 explains the methodology. It describes the preprocessing, feature
extraction model and classification model. Section 5 gives a view of performance metrics. Section 6
represents the results and their analysis, and the paper complete with Section 7 of the conclusion.

2 Background Study

This section reviews recent approaches to classifying AD and MCI using computer-aided design
models and algorithms. A volumetric convolutional neural network (CNN)-based research has been
developed for AD detection and classification in the paper [21]. The normal control and AD MRI
images were pre-trained with a convolutional autoencoder. This was followed by supervised learning
using the task-specific tuning approach to construct a classifier capable of distinguishing AD from NC.
The MCI classification is more strenuous than AD categorization with normal control. In the transfer
learning technique, learning is done as two or more tasks. The visual representation acquired or weights
learnt from NC vs. AD are transferred to the categorization of progressive MCI (pMCI) vs. stable MCI
(sMCI). For AD detection, the paper [22] aimed at a Content-Based Image Retrieval (CBIR)-based
system with 3D-CNN and pre-trained 3D-autoencoder technology Capsule Network. The technique
uses a 3D sparse for feature extraction from MRI, a query-based image retrieval system and a 3D
CNN for classification. The Capsule Network uses fewer datasets than a typical CNN, is capable of
rapid learning, and efficiently handles image rotations and transitions. The effort primarily focuses
on determining how well the system can capture the attributes for enhanced CBIR performance.
The algorithm is efficient, straightforward, and well-suited for modest computational resources. The
system displays binary classifications for MCI vs. AD, NC vs. AD, MCI vs. AD, and NC vs. AD.

A classifier for AD and its evolution by merging CNN and EL (Ensemble Learning) was
introduced in [23]. The EL algorithm generates a series of base classifiers; with the provided data
set, it discriminates characteristics to offer a weighted note per class. Several baseline classifiers were
trained using unique 2D MRI slices and the CNN approach. The research focused on the binary
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classifications of AD or MCI Convert (MCIc) vs. HC and MCIc vs. MCI does not convert (MCInc).
The paper focused on modelling multimodality CNN-based classifiers only for AD diagnosis and
prognosis. The research [24,25] highlighted the disease classification from MCI to AD using images
and protein level counts such as, fluorodeoxyglucose (FDG), positron emission tomography (PET),
MRI, Cerebro Spinal Fluid (CSF) protein levels, and the apolipoprotein E (APOE) genotype. A novel
kernel-based multiclass SVM classifier was used for the classification. The paper [26] focused on an
autoencoder 3D CNN and 2D CNN to sort the cerebral images. Accuracy rates of 85.53% for 3D
CNN models and 88.53% for 2D CNN models were achieved. The literature review [27] utilized MRI
and fMRI images to distinguish Alzheimer’s patients from healthy control participants. For binary
classification, LeNet-5 and Google Net have been employed as network designs.

The existing approaches focused on the binary classification of AD, MCI and their variations.
Though the significant factor of AD is its age criteria, the classification based on young onset and later
onset categories wasn’t carried out. The proposed method focused on the young-onset group, as it’s
difficult to detect and classify. But working on this age group helps the practitioner as a support system
in finding and classifying AD and increasing their life expectancy. This research work contributed to
the following areas, which helped to address the inadequacies of the existing work.

• The proposed work is to find and label the early stages of AD in both men and women between
the ages of 45 and 65 who get it at a young age.

• The subject selection for the current work is not only based on age but also on their clinical test
and gene protein values.

• A Contrast Limited Adaptive Histogram Equalization method was used on the selected sagittal
MRIs of the subjects to get the best values for improving the images without losing fine details.

• As part of the current work, a deep transfer learning model with a sparse autoencoder and a
neural network for detection and classification is being designed in five steps.

• In the current work, the hyper-parameters of the deep neural network model are tuned to attain
an accuracy level of 95% to 100%.

3 Neuroimaging Dataset

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multi-institutional research database
that provides biomarkers for AD detection and classification. It includes genetic, biochemical,
neuroimaging and clinical biomarkers and can help identify and track AD and its prognosis. Neu-
roimaging contains multi modalities such as PET, MRI, fMRI and DTI. All images presented in
the proposed paper were obtained from the ADNI repository, which can be found at https://www.
loni.ucla.edu/ADNI and https://www.adni-info.org. The proposed research has used the 3D MRI
neuroimaging modality as the indicator. The dataset contains MRIs of 325 patients of both gender,
168 males and 157 females of the age category of 45 to 65 years. Each subject had 166 MRI slices
from the left side of the brain to the right side, with a voxel volume of 1.5 mm, taken over five years
of monitoring every three to six months. The categories considered for the current work are Control
Normal, Mild Cognitive Impairment, Early-MCI, Late-MCI and Alzheimer’s Disease. From each
category, a set of 1200 images collected for the proposed work. The dataset offers essential information
on the cognitively normal, MCI and AD subjects. The individuals are diagnosed and labelled as the
stages from MCI to AD based on the results of neuroimaging and clinical biomarkers such as, Mini-
Mental State Examination (MMSE), Clinical Dementia Rate (CDR), Frequently Asked Questions
(FAQ), Neuropsychiatric Inventory Questionnaire (NPI-Q) and gene protein value Apolipo Protein-E
(APOE).

https://www.loni.ucla.edu/ADNI
https://www.loni.ucla.edu/ADNI
https://www.adni-info.org
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4 Methodology

The proposed methodology entrusts with detecting and classifying Mild Cognitive Impairment
in the Alzheimer’s Disease stage. It can achieve in three steps, which are as follows: (1) image
preprocessing, (2) feature extraction and size reduction using transfer learning models and sparse
autoencoder, (3) A fine-tuned neural network’s multi-class classification of disease stage. Fig. 2
describes the framework of the proposed system.

Figure 2: Proposed model for AD classification

4.1 Preprocessing

In image processing, intensity normalization is a technique of modifying the spectrum of pixel
intensity values, sometimes referred to as histogram stretching or contrast stretching. This method
intends to put the image into a range that is more natural or recognizable to the senses. The proposed
work encompasses the adaptive Weiner filter and histogram equalization methods for noise removal
and image enhancement. Applied a median filter, an adaptive median filter, and an adaptive Weiner
filter to the given input image. The Weiner filter is considered for the work, as it shows less error
when calculated through Peak Signal-to-Noise Ratio (PSNR) [28]. The Weiner filter is one of the most
prevalent and widely employed nonlinear filters, and its smoothening procedure lowers the noise of
the input image [29]. This filter also reduces the intensity difference between pixels in an MRI [30]. For
filtering, a 3 × 3 window size has been used, as this is an appropriate window size for image filtering
in the current work.

X (i, j) = W(Y (i, j) , [m, n]) (1)

where Y (i, j), is the noisy input image, W is the Weiner function and [m,n] is the window size of the
neighbourhood cells to calculate the standard deviation and mean. The filtered output image is stored
in X (i, j). Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied to the noise-
free image for additional enhancement. It solves the problem of histogram equalization (HE) over-
amplification by reducing noise in homogenous zones [31]. CLAHE highlights the hidden and finer
details of the image and maintains the level of contrast while enhancing the image. CLAHE utilized
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a clip point to regulate and restrict the contrast level obtained by traditional HE.CLAHE divides the
image into tiles of height and width pixels and also divides the image into non-overlapping blocks
[32]. In MRI, the CLAHE operates on tiles, which are tiny patches. In addition, it generates several
histograms and evaluates each to a certain image region. CLAHE can adjust the contrast or brightness
of an image [33].

A (i, j) = Ad(X (i, j) , NT (m, n) , CL(cl) (2)

The input image is X (i, j), the CLAHE function is Ad and it enhances the contrast based on the
number of tiles and clip limit considered for the given images. NT (m, n) represents the number of
images divided into tiles as rows and columns. CL (cl) sets the threshold to limit the contrast. The
enhanced output images are stored in the A (i, j). The Fig. 3 represents original and processed images
with the filtering techniques.

Figure 3: Represents the original and processed where (a)–(e): are original images of the AD, CN, MCI,
EMCI and LMCI respectively. The (f)–(j) images are preprocessed with an adaptive weiner filter and
CLAHE equalization for the corresponding (a)–(e) original images

4.2 Feature Extraction and Dimensionality Reduction

The primary purpose of feature extraction is to identify the most salient data that may be
utilized for data representation, high-dimensional data categorization, visualization and storage. In
this section, the feature extraction is carried out with pre-trained CNN models and forwarded to the
stacked autoencoder for dimensionality reduction. This strategy could extract an enlarged number
of features from the selected datasets of ADNI. The preprocessed input data has been forwarded to
the selected five transfer learning models such as Resnet-18, Inception-v3, Googlelenet, Alexnet and
VGG-16. The input image is scaled under the specified size needed by the models before being fed
into the network. However, the number of images currently available is 6000 (1200 × 5) for all the
classes. It is considered a limited count to provide an optimum classification to avoid this scenario and
overfitting the input image underwent for data augmentation. Data augmentation enlarges the image
data set by appending more images into it; several methods are available for image transformation,
such as scaling, cropping, and shifting. The current work utilized the horizontal reflection method
for data augmentation, in which the image columns get flipped around the vertical axis. To maintain
the balance in all the classes, the same number of images gets augmented (1200 + 250), resulting in
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7250 (1450 × 5). Table 1 explains the augmentation details. Following that, deep features are extracted
using activations of the global pooling layer close to the end of each network.

Table 1: Image augmentation

Subjects Before augmentation Before augmentation

AD 1200 1450
CN 1200 1450
MCI 1200 1450
EMCI 1200 1450
LMCI 1200 1450
Total 6000 7250

The five network models deliver a five set of features for the input dataset of ADNI. Afterwards,
the feature sets are transferred into the sparse autoencoder as a part of dimensionality reduction. The
fully connected layer of transfer models ensemble with cascaded autoencoder to execute the feature
size compression. Each fully connected layer of the pre-trained model was selected in such a way that
it will provide 1000-dimensional features as the output vector. The total number of features extracted
from each image for each of the frameworks is represented in Table 2.

Table 2: Characteristics of the pre-trained models and feature extraction details

Pretrained models Input size Layers Extracted features Parameters count of
TL models

ResNet-18 224 × 224 × 3 18 1000 11.5 M
Inception V3 299 × 299 × 3 48 1000 23.6 M
GoogLeNet 224 × 224 × 3 22 1000 4 M
AlexNet 227 × 227 × 3 8 1000 62 M
VGG-16 224 × 224 × 3 16 1000 138 M

The autoencoder consists of a specialized feed-forward neural network in which both input and
output are identical [34]. It encompasses an encoder, code, and decoder [35]. The encoder encodes
the data and generates the code in a compressed form, whereas the decoder reconstructs the actual
data from the code [36]. In this phase, extracted features are fed into two autoencoders for the
task of dimensionality reduction and the number of hidden layers in the cascaded autoencoder
neural framework is set to be less than the input size. The size reduction considered is 50% on
each autoencoder. Fig. 4 represents the cascaded autoencoder with dimensionality reduction of
the current work. Here an input of 1000 features gets reduced by 256 when it runs through the
autoencoders.
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Figure 4: Sparse autoencoder for dimensionality reduction

The sparse autoencoder used in this work gets trained with multiple iterations as a part of the
compression procedure. The autoencoder (Autoencoder-1) is trained with training inputs received
from the pre-trained models and is achieved by the Scaled Conjugate Gradient algorithm. The
autoencoder determines the activation of neurons in the hidden layer based on its sparsity value. It
can accomplish by applying sparse regularization to the cost function, which enables the neuron to
produce an average output value. The cost function E of the autoencoder is explained as follows:

E = 1
M

1
N

∑M

m=1

∑N

n=1

(
xmn − x̌mn

)2 + λ ×′ �weights + β ×′ �sparsity (3)

where M is the total observations, and N is no of images in the training data, the set of training
examples and its estimate is expressed as x and x̌, sparsity and weight regularization as ′�weights, ′�sparsity,
λ and β is the coefficient for weight and sparsity regularization. After training the autoencoder-1,
Reduced Feature Set-1 (RFS-1) is extracted from the encoder-1 and discards the decoder-1. The second
autoencoder (Autoencoder-2) is also trained in the same way, using RFS-1 as its input to get the
second feature set called Reduced Feature Set-2 (RFS-2). In the current work, the sparsity and weight
regularization proportions are set as λ = 0.004, β = 4. Numerous experiments were conducted and
recorded to establish the aforementioned values for each parameter. The one which achieves the best
is utilized in work. The flow of feature extraction and reduction is shown in Fig. 5.
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Figure 5: Feature extraction and reduction

4.3 Deep Neural Network Classification

Deep neural networks evolved from a multilayer variation of the artificial neural network.
Recently, deep neural networks have become the go-to method for resolving numerous computer
vision issues. Deep neural networks (DNNs) involve arranging layers of neural networks along the
depth and width of smaller structures. DNNs are a potent class of machine learning techniques. Due
to their remarkable ability to learn both the internal mechanisms of the input data vectors and the
nonlinear input-output mapping, the DNN models have recently gained immense popularity. As the
network goes deeper, the larger the number of layers to be analyzed to obtain an optimized output.
The number of hidden layers in DNN makes the framework learn more high-level, abstract input
representations. The current work utilizes the DNN framework for classifying the severity stages of AD
from MCI. To employ DNN for the multi-class classification, the output (RFS-2) obtained from the
cascaded auto-encoder is fed into the DNN for the classification. One of the most challenging aspects
of creating deep neural network models is selecting the optimum hyper-parameter while adhering to
a consistent approach to increase the model’s dependability and effectiveness. The DNN framework
is tuned and trained with multiple iterations and hyperparameters to achieve supreme performance.
Table 3 displays a view of the model’s experiment with various hyper-parameters.
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Table 3: Hyper-parameter settings for the model

Hyper parameters Range distribution

Hidden layers 1–16
Optimizers SGD, Adam, Adamax, Adagrad
Activation functions Sigmoid, Relu, Leaky Relu, Tanh
Number of epochs 10–50
Learning rate .0001–.01
Batch size [16], [32], [64], [128]

5 Performance Evaluation Metrics

The model’s performance in classification can assess using the performance metric. As a medical
application, the classifier must be able to identify the presence or absence of the disease correctly.
Therefore, the performance indicators considered for the current work, such as accuracy, precision,
recall, and F1 score, are crucial. Accuracy (Ac) describes the accurate classification of images and the
model’s performance. Precision (P) measures how well a classifier predicts the disease, while sensitivity
or recall (R) focuses on the classifier’s ability to correctly identify the images without ailment. The F1
score is the harmonic mean of recall and precision. TN, TP, FP, and FN represent the number of true
negatives, true positives, false positives and false negatives, respectively.

Accuracy (AC) = TP + TN
TP + TN + FP + FN

(4)

Precision (P) = TP
(FP + TP)

(5)

Recall (R)
TP

(FN + TP)
(6)

F1-Score(F) = 2 × (P × R)/(P + R) (7)

6 Result and Discussion

Research has been carried out for the automatic classification of stages of AD from its very
initial phase, called MCI. The collected MRI has undergone preprocessing with the Weiner filter and
CLAHE for noise removal and image smoothing. The CLAHE was executed systematically so that
it retrains the contrast level while enhancing the image without withdrawing any vital information
from the image. The following algorithm explains a systematic method of providing the clip limit and
contrast level to enhance the image. Grid the input image of the work, each grid tile has the same
number of pixels and size and will not overlap.

• For each tile, Calculate the histogram h(x), where x is the grey level ranging from 0 to L and the
maximum value for L in each tile is 255.

• Create a value to increment image contrast as ‘I’. The value of ‘I’ is directly proportional to the
image enhancement. When ‘I’ increments, the higher image contrast enhancement.

• Calculate the clip limit as cl
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cl = N
L

+
(

N − N/L
I

)
(8)

• In each tile, the value of h(x) is calculated based on the value of cl. The cut-out pixel points
are evenly allocated to the histogram of each tile. Once the pixel points are distributed. The
new histogram function is represented as g(x). The following are the supporting formula for
the same.

eN =
∑L

x
(max (h (x) − cl) , 0) (9)

aN = eN/L (10)

where eN is the total no of pixel values exceeded the Clip Limit ‘cl

‘

and aN represents the increment
in pixels for each grey level in the histogram.

• The above distribution and allocation procedure will carry out until all the pixels have been cut
out and allocated systematically. The following formula represents the process.

If (h(x) > uN) (11)

h(x) = c1

Else

h(x) = UN

where uN = cl – aN

• Perform the HE on g(x) of each tile and calculate the grey level of each pixel.

The parameters of CLAHE set the clip limit of .005 and the number of tiles for the images at
64. The original and preprocessed MRI images and those with wrong values that occurred while
experimenting with the procedure are shown in Fig. 6.

The transfer learning models utilized in the model were selected through the empirical literature
review. The five models of current work are meant to extract deep features of the brain MRI. The
AlexNet model used in the work encompassed eight hidden layers. Five are combined convolutional
layers with the max-pooling layers, and the last three are fully connected. The current work utilizes
this model by extracting the features from its third fully connected layer, FC-8. The GoogLeNet model
consists of 22 deep layers with a combination of 3 convolutional, nine inception blocks with two deep
layers each, and a fully connected layer called the loss-3 classifier. The third model is Inception V3,
with 48 layers. Compared with v1 and v2, v3 has a deeper network, which helps optimize the network.
The 11 inception modules in the Inception v3 network comprise pooling layers and convolutional
filters using rectified linear units as the activation function. It has three fully connected layers, and
the network conducts feature extraction from the layer named “Prediction”. The fourth model is
ResNet-18. It has an architecture with 72 layers, and among those, 18 are the deep layers. It utilized the
fully connected layer called “fc1000” for the extraction. The final model used in feature extraction is
VGG-16 with 16 deep layers, a combination of 13 convolutional and three fully connected layers. The
system experimented on ‘FC-8’ to acquire the 1000-dimensional features. A 1000-dimensional feature
is obtained from each of the models.
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Figure 6: Represents the original images and preprocessed images with optimal and non-optimal
values. Where (a) is a set of original images, (b) a preprocessed image with an optimal clip limit and
retraining the contrast of the image while enhancing and also pointing out the hidden details, and (c)
the set of preprocessed images with a non-optimal clip limit and which couldn’t retrain the contrast
while enhancing the image

The deep feature sets are trained with the cascaded sparse autoencoders to obtain the most reduced
data representation before the plunge into the classification process. The entire layered autoencoder
consists of encoder-1 with RFS-1 as 512 and encoder-2 with RFS-2 as 256. The DNN classifier trains
on the reduced data to produce a multiclass categorization of AD stages. The tested data and the
confusion matrix were utilized to compute the classification metrics. The experiments were conducted
on an Intel i7 processor with 16 GB of RAM on Windows 10 with 64-bit to evaluate and understand
the effect of pre-trained models and autoencoders with a DNN classifier for accurately classifying the
stages of AD. The DNN model was set up with neural network parameters, such as input and output
nodes of 256 and 5, 16 hidden layers, an Adam activation function, and 5-fold cross-validation for
training and testing.
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The DNN classifier model hyper tuned with relu activation function, adam optimizer, and a
hidden layer configuration ranging from 1–16, with a batch size of 32 and epochs of 10, was employed
on the reduced feature set of selected pre-trained models + AE and obtained a maximum accuracy
of 98.54% for the ResNet-18. As the number of layers increases, the accuracy of the performance
of the model starts to decline, and the experimentation process and its results state that the model
performed invariantly well with the configuration of 12 hidden layers. Table 4 shows the range of
accuracies obtained for all five pre-trained models with autoencoders.

Table 4: Models accuracy with various hidden layers of DNN

Hidden layers AlexNet + AE GoogLeNet +
AE

Inception V3 +
AE

ResNet-18 +
AE

VGG-16 +
AE

Layer-1 86.02% 86.16% 90.86% 92.90% 93.03%
Layer-2 89.70% 90.14% 92.40% 91.86% 90.23%
Layer-3 91.60% 93.16% 94.20% 92.70% 94.54%
Layer-4 90.30% 94.09% 93.15% 93.23% 93.25%
Layer-5 88.50% 91.40% 90.50% 86.37% 88.90%
Layer-6 85.70% 85%% 89.60% 87.00% 90.20%
Layer-7 87.30% 93.46% 92.71% 93.03% 91%
Layer-8 90.45% 92.56% 94.70% 95% 93.45%
Layer-9 93.89% 92.07% 91.75% 95.78% 90.45%
Layer-10 93.01% 94.48% 93.54% 97.08% 91.89%
Layer-11 91.25% 95.05% 92.43% 98.56% 90.65%
Layer-12 96.44% 95.64% 95.70% 98.56% 94.04%
Layer-13 93.65% 93.50% 94.07% 96% 91.25%
Layer-14 91.67% 91.26% 93.56% 95.23% 89.54%
Layer-15 89.89% 89.89% 90.54% 94.65% 86.87%
Layer-16 87.56% 88.23% 90.56% 92.76% 85.67%

The performance metrics for the Multiclass of AD stages with DNN and transfer learning model
are depicted in Table 5. The study indicates that ResNet-18 + AE with DNN stands out by achieving
optimum results in the classification when compared to other models. It could obtain an average
performance of 98.98% in precision, 98.90% in the recall, and 98.82% with an F1 score. ResNet’s
+ AEs deep learning framework’s potential made it swiftly rise to prominence, as it is one of the most
popular approaches to various computer vision issues due to its exceptional abilities and characteristics
in feature extraction and image recognition. The model has used five-fold cross-validation with the
training and testing process.
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Table 5: Model performance metrics for the AD classification

Models Class Accuracy Precision Recall F1 score

AlexNet +
AE+DNN

AD 97.8% 98.0% 98.0% 98.0%
CN 95.0% 95.0% 99.0% 97.0%
EMCI 96.0% 97.0% 95.0% 96.0%
LMCI 100.0% 100.0% 93.0% 96.0%
MCI 93.40% 94.0% 100.0% 97.0%

GoogLeNet +
AE+DNN

AD 91.3% 92.0% 95.1% 93.0%
CN 99.2% 99.3% 94.4% 97.0%
EMCI 98.2% 99.0% 98.0% 98.0%
LMCI 98.3% 99.6% 89.4% 94.8%
MCI 90.3% 91.2% 100.0% 95.7%

Inception-V3 +
AE+DNN

AD 97.6% 98.0% 99.0% 98.0%
CN 96.6% 97.0% 95.0% 96.6%
EMCI 92.7% 94.0% 95.0% 94.04%
LMCI 96.4% 98.0% 98.0% 98.0%
MCI 95.1% 96.0% 96.0% 96.0%

ResNet-18 +
AE+DNN

AD 98.6% 99.4% 99.2% 99.50%
CN 98.2% 99.2% 100.0% 99.00%
EMCI 99.0% 99.3% 99.3% 99.60%
LMCI 98.2% 98.0% 97.0% 98.00%
MCI 98.6% 99.0% 99.0% 98.00%

VGG-16 +
AE+DNN

AD 93.8% 95.0% 98.0% 96.0%
CN 95.2% 96.0% 98.7% 97.4%
EMCI 94.5% 96.3% 94.0% 95.5%
LMCI 94.3% 96.4% 90.0% 93.0%
MCI 92.4% 93.0% 96.1% 94.0%

The model Fig. 7 represents the Confusion Matrix (CM) of the proposed models for predicting
the true positive and true negative values for the five stages of Alzheimer’s Disease. CM depicts the
tabular performance of GoogLeNet + AE, AlexNEt + AE, Inception V3 + AE, ResNet-18 + AE,
and VGG-16 + AE for the multi-classification of the disease.

The Receiver Operating Characteristic (ROC) helps visualize the classifier’s performance and
summarize how well the classifier can distinguish the five classes. The following Fig. 8 shows the ROC
curve obtained for ResNet with DNN.
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Figure 7: Confusion Matrix for the proposed classification of stages of Alzheimer’s disease: (a) AlexNet
+ AE+DNN, (b) GoogLeNet + AE+DNN, (c) Inception-V3 + AE+DNN, (d) ResNet-18 +
AE+DNN, (e) VGG-16 + AE+DNN

Figure 8: ROC curve of the ResNet + AE+DNN
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The findings of the suggested approach’s quantitative comparison with the most cutting-edge
outcomes explained in Table 6 are to gauge the effectiveness of the method. The comparison is based on
the dataset, the number of classes and the accuracy of each model acquired according to its maximum
level. Based on the comparison, the suggested technique performs well on the ADNI dataset. The
results of the experiments confirm the accuracy and efficiency of AD Classification from its initial
phase and the potential of the suggested methods. Also, the results show that the transfer learning
models with AE and DNN are quite promising and convincing because they could get reliable feature
information from MRI and achieve multi-class classification in stages of AD. The computational
complexity of the ReseNet-18 + AE+DNN model was 11.5 sec/epochs for training and 6.4 sec/epochs
for testing.

Table 6: State of art for evaluating the accuracy with other approaches

Approaches Dataset Classification Accuracy

Cheng et al. [37] ADNI Binary class-2 80.37%
Altaf et al. [38] ADNI Binary class-2 92.3%
Francis et al. [39] ADNI Binary class-2 89.89%
Zheng et al. [40] ADNI Binary class-2 95.00%
Aderghal et al. [41] ADNI Multiclass-3 79.8%
Acharya et al. [42] ADNI Multiclass-4 95.70%
Proposed work ADNI Multi-class-5 98.54%

7 Conclusion

An essential component of dementia diagnosis, particularly for the aged population, is AD
classification. This work proposes transfer learning models and cascaded autoencoders with DNN-
based methods to apply AD Classification. The approach has an optimum classification accuracy of
98.54%, recalls of 98.90%, a precision of 98.98%, and an F1 score of 98.82%. The system achieved a
5-way classification of the disease as AD, CN, MCI, EMCI, and LMCI. The combination of 3D input
image preprocessing, feature extraction and reduction, and classification with the proposed model
ensure that the approach is promising to obtain supreme performance for an early onset category of
the population. The results of this study demonstrate that the proposed model outperformed other
classification models and are shown in the state-of-the-art table. In the future, the model can attempt
to estimate the time required to convert a patient from an MCI stable stage to a protracted stage.
It could aid the practitioner and the patient in ensuring that the right course of therapy is followed.
Future research can work in the same area to predict the conversion of subjects from MCI to AD
with promising bio-inspired algorithms such as monarch butterfly optimization (MBO), earthworm
optimization algorithm (EWA), elephant herding optimization (EHO), moth search (MS) algorithm.
Gene and blood protein data, MR images, and electronic health records can all be put together to
predict better and classify disease stages and build complete e-health.
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