
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.038232
Article

Non-Cooperative Game of Coordinated Scheduling of Parallel Machine
Production and Transportation in Shared Manufacturing

Peng Liu1,*, Ke Xu1,2 and Hua Gong1,2

1School of Management, Shenyang University of Technology, Shenyang, 110870, China
2School of Science, Shenyang Ligong University, Shenyang, 110159, China

*Corresponding Author: Peng Liu. Email: liupeng@sut.edu.cn
Received: 02 December 2022; Accepted: 10 April 2023; Published: 09 June 2023

Abstract: Given the challenges of manufacturing resource sharing and com-
petition in the modern manufacturing industry, the coordinated scheduling
problem of parallel machine production and transportation is investigated.
The problem takes into account the coordination of production and trans-
portation before production as well as the disparities in machine spatial
position and performance. A non-cooperative game model is established,
considering the competition and self-interest behavior of jobs from different
customers for machine resources. The job from different customers is mapped
to the players in the game model, the corresponding optional processing
machine and location are mapped to the strategy set, and the makespan of
the job is mapped to the payoff. Then the solution of the scheduling model is
transformed into the Nash equilibrium of the non-cooperative game model.
A Nash equilibrium solution algorithm based on the genetic algorithm (NE-
GA) is designed, and the effective solution of approximate Nash equilibrium
for the game model is realized. The fitness function, single-point crossover
operator, and mutation operator are derived from the non-cooperative game
model’s characteristics and the definition of Nash equilibrium. Rules are
also designed to avoid the generation of invalid offspring chromosomes. The
effectiveness of the proposed algorithm is demonstrated through numerical
experiments of various sizes. Compared with other algorithms such as heuris-
tic algorithms (FCFS, SPT, and LPT), the simulated annealing algorithm
(SA), and the particle swarm optimization algorithm (PSO), experimental
results show that the proposed NE-GA algorithm has obvious performance
advantages.

Keywords: Non-cooperative game; shared manufacturing; parallel machine;
coordinated production and transportation; genetic algorithm

1 Introduction

The sharing economy model began to emerge strongly and swiftly with the advent of Internet
information technology. Shared manufacturing, which uses Internet technology to optimize and

https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.038232
https://www.techscience.com/doi/10.32604/cmc.2023.038232
mailto:liupeng@sut.edu.cn

240 CMC, 2023, vol.76, no.1

match supply and demand, has become popular in recent years [1]. It may help relieve the structural
contradiction of surplus supply capacity as well as the problem of the coexistence of resource scarcity
and idle waste. For example, the XCMG HANYUN platform provides equipment for the online
construction of Wuhan Huoshenshan Hospital. The Sany RootCloud platform provides technical
support for the construction of emergency hospitals in Xi’an, Guangxi, and other locations. The Haier
COSMOPlat, BONC Cloudiip, and other cross-industry platforms widely gather industrial resources
and achieve innovation leadership. Shared resources in the shared manufacturing mode include soft
resources such as software, expertise, and labor, as well as hard resources such as manufacturing
equipment, computer resources, and materials. Among these, shared manufacturing equipment can
better match idle production equipment to demand and increase the fast response and flexible supply
capabilities of small and medium-sized enterprises.

The concept of shared manufacturing was first proposed by Ellen Brandt [2], Richard et al. [3].
They provided a shared manufacturing solution to assess the consolidation and reconfiguration of
multiple industrial operations. Rozman et al. [4] presented a scalable framework for blockchain-based
shared manufacturing that preserved the transparency and immutability characteristics of transaction
records. Yan et al. [5] gave a comprehensive review of the operational optimization, supply-demand
matching, and scheduling models in shared manufacturing. Yu et al. [6] investigated the concept
of shared manufacturing and service operations. Manufacturing resources are provided by multiple
enterprises located at different locations in the shared environment. During the process of production
scheduling, it is not only necessary to consider the manufacturing capacity but also the connection
between transportation and production caused by the difference in their spatial locations. As a result,
for manufacturing resource sharing, collaborative optimization of production and transportation
processes is a pressing issue that must be addressed.

As the sharing economy and manufacturing have become more integrated, many scholars have
studied production scheduling problems under the sharing of manufacturing resources. Jiang et al. [7]
investigated the issue of shared factories within the context of the sharing economy. Boysen et al. [8]
investigated the matching of supply and demand in a shared environment by taking machines as
shared resources and processing jobs as shared demand. Zheng et al. [9] aimed at the coordinated
scheduling problem of production and two-stage transportation and took the total order completion
time as the objective. The advantages and disadvantages of shared processing mode and traditional
processing mode are compared based on scheduling rules such as First Come First Served (FCFS).
Diaba et al. [10] investigated the complexity of the parallel execution of non-renewable resources under
resource-sharing conditions and provided theoretical support. Wei et al. [11] studied two-machine
hybrid flow-shop scheduling problems in shared manufacturing with fixed processing sequences.
Li et al. [12] investigated the factors that influence the rental and sale of idle equipment, as well
as the various benefits of sharing in the shared manufacturing mode. Liu et al. [13] investigated
the parallel processing of multi-manufacturing tasks in the cloud manufacturing environment and
developed a multi-task scheduling model with the objective of completion time and resource utiliza-
tion. Xu et al. [14] investigated the online scheduling decision problem in a shared manufacturing
environment. They developed an online scheduling strategy to minimize total completion time and
total leasing cost when the manufacturer had two parallel machines. Wang et al. [15] developed the
sharing resource allocation model from the perspective of independent decision-making of resource
providers, taking into account the credit of shared resource providers. Liu et al. [16] created a shared
resource allocation model based on the Gale–Shapley algorithm for supply and demand fluctuations.
Ji et al. [17] considered parallel-machine scheduling problems in shared manufacturing, where each
job had a machine set to which it could be assigned for processing. Zhang et al. [18] proposed a hybrid

CMC, 2023, vol.76, no.1 241

sensing-based approach to perform the monitoring and maintenance of the shared manufacturing
resources. Marin et al. [19] proposed a decentralized coordination approach based on the spillover
effect for multi-robot production planning in openly shared factories.

Although many scholars have studied the production scheduling model or resource allocation
model under manufacturing resource sharing, few have considered the coordinated scheduling of
parallel machine production and transportation. Most problem-solving methods are rule-based, with
a focus on theoretical analysis and influencing factor analysis. It cannot effectively coordinate the
allocation of multiple tasks and resources.

Because the demand in the sharing mode frequently comes from multiple self-interested individu-
als, it has obvious advantages to study the production scheduling problem based on a non-cooperative
game. Koutsoupias et al. [20] combined non-cooperative game with scheduling, built a scheduling
game model, adopted Nash equilibrium to describe the outcomes of multiple self-interested tasks
competing for machine resources, and conducted the Price of Anarchy (POA) analysis. Wang et al. [21]
adopted a scheduling game to study the matching degree of supply and demand among sharing parties
as measured by POA for a single shared resource. Wei et al. [22] took the job of the selfish player in
the game and investigated the POA of the selfish scheduling problem based on Weighted Shortest
Processing Time (WSPT) rules. Xu et al. [23], and Qi et al. [24] developed an evolutionary game model
for manufacturing resource sharing and collaboration, revealing the evolutionary relationship between
resource owners and demanders. Furthermore, corresponding research in the field of scheduling
in the environment of the single machine [25] and parallel machines [26] has been carried out
based on the non-cooperative game model. The scheduling based on the non-cooperative game fully
considers the problem of individual self-interest, which is beneficial to the advancement of research
on production scheduling in the resource-sharing mode. However, the majority of current studies are
based on rules to investigate the coordination mechanism and then perform POA analysis. Few of them
consider the interdependence of production and transportation and develop algorithms to achieve
Nash equilibrium.

As a result, this paper investigates the non-cooperative game of coordinated scheduling of parallel
machine production and transportation in shared manufacturing from three perspectives.

(1) An unrelated parallel machine production scheduling model considering pre-production trans-
portation is established to target machine resources that can perform the same type of
processing tasks on the shared manufacturing platform. The model takes into account different
machine positions as well as performance differences, processing time, and job transporta-
tion time.

(2) Aiming at the characteristics of the coordinated scheduling problem of parallel machine
production and transportation in shared manufacturing, a non-cooperative game model
considering the competition and self-interest behavior of orders (jobs) from different customers
for machine resources is constructed. The job is the player in the non-cooperative game model,
the processing machine and processing position are the strategies, and the opposite number of
the completion time of the job is the payoff for each customer.

(3) A Nash equilibrium solution algorithm based on the genetic algorithm (NE-GA) is designed
to find the Nash equilibrium of the scheduling scheme to address the problem that the Nash
equilibrium of multiple game players is difficult to solve. The fitness function is designed
according to the Nash equilibrium definition, and to ensure the feasibility of the chromosome,
the coding scheme and genetic operators are designed according to the game strategy.

242 CMC, 2023, vol.76, no.1

The remainder of this paper is organized as follows. Section 2 develops a non-cooperative
game model to handle the coordinated scheduling problem of production and transportation in
shared manufacturing. Section 3 designs a Nash equilibrium solution algorithm based on the genetic
algorithm. Section 4 describes the simulation experiment and analysis. Section 5 summarizes the
conclusions.

2 Problem Description and Non-Cooperative Game Model
2.1 Problem Description

Multiple machines from different manufacturers are at different locations in a shared manufactur-
ing environment and can receive orders from different customers or upstream enterprises to provide
processing services. The order (processing job) must first be transported to the machine, and the
scheduling production of the manufacturer is determined by the number of orders received.

Assume that there are m machines on the shared platform, which are distributed among manu-
facturers in various locations. The set of machines is M = {1, 2, . . . , m}. There are n customer sets
V = {V 1, V 2, . . . , V n} in various locations, and orders from these n customers are denoted by job set
J = {1, 2, . . . , n}, i.e., job j is from customer V j. The time required to transport job j to machine i is
denoted by the tij, i = 1, 2, . . . , m, j = 1, 2, . . . , n. Job j can be processed on any machine, but the
processing speed of each machine varies. The processing time of job j on machine i is pij, indicating
that the machine environment can be thought of as unrelated parallel machine, denoted by Rm.

Define the span time of one job as the time between the job leaving the customer and the
completion of processing, including transport time, waiting time, and processing time. Because the
problem addressed in this paper is pre-production transportation, the span time of job j is equivalent
to the completion time of job Cj,j = 1, 2, . . . , n. Each customer reduces the time it takes to complete
a job by competing for processing positions on different machines. The overall objective function of
the system is to minimize the makespan.

The problem is expressed as a three-field representation α|β |γ , where α denotes the machine
environment, β denotes the utility function of job j, and γ denotes the objective function [27]. The
utility of jobs is referred to the customer wants to maximize their payoff. Because the objective of each
job is to minimize its completion time, the utility ut of job j is –Cj, denoted Cmax = max{Cj, j = 1, 2,
. . . , n }. The problem studied in this paper can be expressed as Rm|ut = –Cj |Cmax.

The problem under consideration is consistent with the following assumptions:

(1) All jobs have arrived at time zero and can be transported.
(2) The machine is available at time zero.
(3) All machines can process jobs continuously, with no setup time or transfer time.
(4) The processing of each job will not be interrupted once it begins.
(5) Each machine can process only one job at a time.

2.2 Development of A Non-Cooperative Game Model

In the previous problem, each customer wanted his job completed as soon as possible, and multiple
players were aiming for their interests. For this problem, a non-cooperative game model with n players
is established. The model can be described in Eq. (1).

G = (I , S, U) (1)

CMC, 2023, vol.76, no.1 243

where I represent players in the game. In this problem, n jobs are mapped as players in a game. The
jobs choose the machine and the processing position. S represents the strategy of players, S = {s1, s2,
. . . , sn}, sj represents the strategy of the jth player. U represents the payoff of players, U = {u1, u2, . . . ,
un}, uj represents the payoff of the jth player under strategy S. The framework of game model is shown
in Fig. 1.

Figure 1: A game model framework for coordinated scheduling of parallel machine production and
transportation in shared manufacturing

In Fig. 1, the job must first select various machines. The job set Ji to be processed is formed in
front of each machine. Set |Ji| = mi, that is, the number of jobs processed on machine i is chosen
as mi. The job on each machine then chooses the processing position. The selected machine and the
processing position of each job comprise the job strategy, and the strategy of all jobs comprises the
complete strategy, which corresponds to a feasible solution to the problem. The strategies and payoffs
are discussed further below.

2.2.1 Strategy

A strategy is a collection of actions or decisions that a player can implement. The strategy for n
jobs in this problem is S = {s1, s2, . . . , sn}. Each job must make two decisions: the first involves selecting
the machine from a pool of m options, and the second involves selecting the processing sequence of
the machine from a pool of n options. The strategy sj for job j is described in Eq. (2).

sj = (
Mj

i , Gj
ik

)
, j, k = 1, 2, · · · , n, i = 1, 2, · · · , m (2)

where Mj
i represents that the job j selects machine i for processing, and Gj

ik represents that the job j is
processed at the kth machine i.

The strategy set consists of all possible strategies, where (mn)n is the total number of possible
strategies. Of course, not all strategies are effective. When the following events occur, the strategy S is
invalid.

(1) Processing position conflict: Because each processing sequence on each machine is unique,
this strategy is invalid when two jobs have chosen to be processed in the same position on the same
machine. That is, in strategy S, if Mj

i = Ml
i and Gj

ik = Gl
ik are satisfied, then the strategy is invalid. The

244 CMC, 2023, vol.76, no.1

number of strategies remaining in the strategy set after removing repetition strategies should be (mn)
(mn − 1)· · · (mn − n + 1).

(2) Discontinuity in processing: The processing sequence on each machine should be continuous.
However, the scheduling discontinuity on the same machine may occur in the previously considered
strategy, making it invalid.

For example, three jobs from three customers need to be processed on two unrelated parallel
machine on the shared platform. If the repetition strategy is ignored, each player has a choice of two
machines, three processing sequences on each machine, and six different strategies, for a total of 63 =
216 different strategies, some of which are ineffective. For instance, if S = {(1,2), (2,1), (1,2)} s1 = s3

= (1,2), that strategy is invalid. There are 6 × 5 × 4 = 120 strategies, excluding duplicate cases. These
120 strategies contain discontinuities. For example, if S = {(1,2), (2,1), (1,3)}, job 1 and 3 are chosen
to be processed by machine 1. They process the second and third positions of machine 1. Position 1 of
machine 1 is currently vacant, indicating a discontinuity, and thus this strategy is invalid. In fact, by
shifting the corresponding position forward, this invalid strategy can be transformed into an effective
strategy S = {(1,1), (2,1), (1,2)}.

2.2.2 Payoff

During the game, each player acts according to its own strategy in order to obtain payoffs and
expect the best payoffs for itself. In this paper, each job is played to reduce its makespan. As a result, the
opposite number of the completion time of each job is taken as the payoff function of each customer,
i.e, uj = −Cj.

The completion time Cj of job j includes the transportation time tij, the waiting time wj after
transportation arrives, and the job processing time pij, as shown in Eq. (3).

Cj = tij + wj + pij (3)

The waiting time of Job j is related to the state of the machine when the job arrives. If the machine
is idle when the job arrives and there is no job waiting to be processed before it, the waiting time is 0.
The job completion time Cj equal to the sum of the transportation and job processing times, so Cj =
tij + pij. If the machine is busy when the job arrives, or if another job is waiting to be processed before
it, the completion time of the job Cj is the sum of the completion time of the previous job processed
by the machine and the processing time of the job. Assume that job l is the last job processed by the
machine. At this point, job l could be the job being processed by the machine when job j arrives, or it
could be the job that arrived before job l and is waiting for processing. In short, the strategy of job l
is

(
Ml

i , Gl
i(k−1)

)
, which means that job l is processed at the k−1 position of machine i, and then Cj = Cl

+ pij. In conclusion, the completion time Cj can be expressed as Eq. (4).

Cj = max
(
Cl, tij

) + pij (4)

If job j is the first to arrive at machine i, then l = 0, C0 = 0.

2.2.3 Nash Equilibrium

Individual jobs can have a negative influence on one another. Processing on the same machine
to reduce their own completion time may cause other jobs to take longer to complete. As a result,
we must find an equilibrium point of interest for all jobs. The production scheduling problem with
transportation under equipment sharing is transformed into a Nash equilibrium solution for relevant
constraints based on the non-cooperative game model established above.

CMC, 2023, vol.76, no.1 245

When there is a strategy S∗ = {
s∗

1, s∗
2, · · · , s∗

n

}
such that all players cannot increase their payoff if

they unilaterally change their strategy without changing the strategies of the other players, this strategy
is known as Nash equilibrium, which satisfies Eq. (5).

uj

(
s∗

j , s∗
−j

) ≥ uj

(
sj, s∗

−j

)
, ∀j = 1, 2, . . . , n (5)

where s–j is the set of all players’ strategies except player j, s∗
−j = {

s∗
1, s∗

2, · · · , s∗
j−1, s∗

j+1, · · · , s∗
n

}
.

In the non-cooperative game model established in this paper, there are n customers involved in the
game, and each customer can choose a limited number of strategies, which is a finite game. According
to “Nash Theorem”, Nash equilibrium exists in the game model developed in this paper.

For example, there are two unrelated parallel machines on the shared platform, and two jobs
must be processed. The transport time tij of job j to machine i are: t11 = 3, t12 = 2, t21 = 3, t22 = 4, the
processing time pij of job j on machine i are: p11 = 5, p12 = 8, p21 = 7, p22 = 5. The alternative strategies
for jobs 1 and 2 are: (1,1), (1,2), (2,1), (2,2). The payoff matrix can then be written as A.

A =

⎡
⎢⎢⎣

− (8, 16) (8, 9) −
(15, 10) − − −
(10, 10) − − (10, 14)

− − (16, 9) −

⎤
⎥⎥⎦

where the rows of A represent the strategy chosen by job 1, and the columns represent the strategy
chosen by job 2. The payoffs obtained when the two jobs choose the corresponding strategy are
represented by the elements in the matrix. For example, (15,10) indicates that when job 1 chooses
strategy (1,2) and job 2 chooses strategy (1,1), the payoff obtained by job 1 is 15, and the payoff
obtained by job 2 is 10. “−” denotes that the relevant strategy is an invalid strategy.

Adopting the streak plate method, the Nash equilibrium solution of this example can be derived
as S = {(1,1), (2,1) } and S = {(2,1), (1,1) }, the corresponding payoff is (8,9), (10,10). It is clear that
neither job 1 nor job 2 can change their strategies on their own to get a better payoff.

3 Nash Equilibrium Solution Algorithm Based on the Genetic Algorithm

As the number of jobs and machines rises, the strategy space of the established game model
expands exponentially, making it harder to achieve Nash equilibrium by adopting traditional
approaches. The genetic algorithm can find an approximate optimal solution without being influenced
or limited by the deduction condition or function continuity. As a result, this paper designs the Nash
equilibrium solution algorithm based on the genetic algorithm (NE-GA) to seek the approximate
Nash equilibrium of the established game model based on the characteristics of the constructed non-
cooperative game model and the definition of Nash equilibrium.

3.1 Design of Coding and Chromosome

The coding of genetic algorithms is the process of describing feasible scheduling solutions
as “chromosomes” of genetic algorithms. The “chromosome” contains information about feasible
scheduling solutions, i.e., the action strategies of each player in the game model. Integer coding is used
for the production and transportation coordination scheduling problem of parallel machine under
manufacturing resource sharing. Each chromosome contains n gene loci, which correspond to the
strategy of n jobs, the chromosome length is 2n. Each gene locus has two components: a machine
number and a position number. So the strategies of the game model correspond to the chromosomes
one by one.

246 CMC, 2023, vol.76, no.1

For example, three unrelated parallel machines are at different locations on the shared manu-
facturing platform to provide processing and manufacturing services, and there are six jobs to be
processed from six customers. A chromosome of the problem is shown in Fig. 2.

Figure 2: Example of a chromosome

The chromosome in Fig. 2, denoted as {(2,1), (3,3), (2,2), (1,1), (3,2), (3,1)}, is made up of six gene
loci, each of which represents the strategy of the corresponding job. For example, the first gene locus
(2,1) indicates that job 1 has been selected to be processed at the first position on machine 2.

To ensure that the corresponding strategy of chromosomes is feasible, the generation process of
chromosomes is designed as follows.

Step 1: Generate m positive integers at random mi (i = 1, 2,· · · , m), and m1 + m2 + · · · mm = n,
where mi represents the number of jobs assigned to the ith machine.

Step 2: The gene locus is generated sequentially based on the m positive integers generated in Step
1. In other words, if the number of jobs processed on machine i is mi, the gene locus (i, 1), (i, 2), . . . ,
(i, mi) are generated in a sequential.

Step 3: By sequencing the corresponding gene loci of m positive integers, we get the sequence ((1,
1), (1, 2), . . . , (1, m1), (2, 1), (2, 2), . . . , (2, m2), . . . , (m, 1), (m, 2), . . . , (1, mm)).

Step 4: By randomly shuffling the sequence generated in step 3 of the gene locus, chromosomes
are obtained.

The chromosomes generated by the method described above can ensure that all of the chromo-
somes generated correspond to feasible strategies.

3.2 Design of Fitness Function

The key to a genetic algorithm is the fitness function. The ability to adopt a genetic algorithm
to achieve Nash equilibrium is primarily due to the design of the fitness function. To ensure that the
solution of the algorithm is approximate Nash equilibrium, the fitness function is designed according
to the non-cooperative game model of production and transportation coordination scheduling under
manufacturing resource sharing and the definition of Nash equilibrium.

Since the payoff of each job defines the negative value of its completion time, each job competes
with others for a better processing position to minimize its completion time. According to the
definition of Nash equilibrium, Nash equilibrium is reached when each job cannot increase its payoff
by changing its strategy. As a result, by minimizing the completion time of each job in the scheduling
scheme, the objective of payoff equilibrium is reached, and the fitness function is guaranteed to be
positive. The fitness function is defined as Eqs. (6) and (7).

Fk
(
uk

1, uk
2, · · · , uk

n

) =
n∑

j=1

∣∣uk
j − ûk−1

j

∣∣ (6)

ûk−1
j = min

q∈Q

(
uk−1

jq

)
(7)

CMC, 2023, vol.76, no.1 247

where uk
j is the payoff of job j at the kth generation, ûk−1

j is the best payoff of job j at k−1th generation,
and Q is the population set.

When Eq. (6) meets Eq. (8), there is a small difference between the payoff of each job and the
optimal value in the last iteration, indicating that the algorithm has found the Nash equilibrium.∣∣uk

j − ûk−1
j

∣∣ < εj, j = 1, 2, . . . , n. (8)

where εj is the threshold value for determining the conditions for solving Nash equilibrium points. To
simplify the problem, we can take ε1 = ε2 = · · · = εn = ε and get Eq. (9).

Fk
(
uk

1, uk
2, · · · , uk

n

) =
n∑

j=1

∣∣uk
j − ûk−1

j

∣∣ <

n∑
j=1

εj = nε (9)

3.3 Design of Genetic Operators
3.3.1 Selection Operator

The roulette choice operator is employed. Because the fitness value defined in this paper is the
smaller the better, Eq. (9) is used to convert the fitness value before performing the roulette wheel

selection operation: F
k (

uk
1, uk

2, . . . , uk
n

) = 1

Fk
(
uk

1, uk
2, . . . , uk

n

) .

The difference in fitness gq between the chromosome with the largest converted fitness value and
each chromosome is then calculated: gq = F

k

i − Fmax.

To increase the likelihood of selecting a chromosome with a good fitness function, the exponential
function is used to widen the gap between the fitness of each chromosome and the maximum fitness

value: Gq = egq . The roulette probability of each chromosome Pq is: Pq = Gq∑
q∈Q Gq

.

3.3.2 Crossover Operator

Adopting a single point crossing. First, two parental chromosomes, P1 and P2, were chosen. As
crossing points, integers between 1 and n are generated at random, and the substrings preceding the
crossing points are exchanged to generate offspring chromosomes O1 and O2. The crossing process is
shown in Fig. 3.

Figure 3: Single-point crossing process

248 CMC, 2023, vol.76, no.1

A single-point crossing can produce invalid chromosomes. As shown in Fig. 3, when job 1 and job
4 of O1 select the same position on the same machine. So chromosomes produced by a single crossover
must be processed further. First, the jobs processed on the same machine are counted according to
the offspring chromosome, and then the jobs processed on the same machine are sorted according
to the original processing position of the machine. If two processing positions are identical, the job
with the smaller serial number is ranked first.

For example, in Fig. 3, there are job 1 and job 4 on machine 1 for the offspring chromosome O1.
On machine 1, there are job 1 and job 4. Reorder by job serial number. The processing position of job
1 is 1, and the processing position of job 4 is 2. On machine 2, there are job 2, job 3, and job 5. The
processing positions are 2, 3, and 2, and the reordering positions are 1, 3, and 2. Job 6 is located on
machine 3, and the processing position is 1. The effective offspring chromosome after processing is
shown in Fig. 4.

Figure 4: Effective offspring chromosomes

3.3.3 Mutation Operator

To generate new genes, adopt the single point mutation operator. First, as a mutation locus, an
integer between 1 and n is generated at random, and then this gene locus is replaced by a randomly
generated gene. Of course, such a mutation operation may result in invalid chromosomes that must be
processed further. If the mutation locus stays unchanged when it conflicts with other loci, the other loci
are processed in the same manner as in the crossover operation described in Section 3.3.2 to produce
effective chromosomes. The mutation operation process is shown in Fig. 5.

Figure 5: Single-point mutation process

3.4 Algorithm Flow

The Nash equilibrium solution algorithm based on the genetic algorithm (NE-GA) is designed in
this paper, and the algorithm steps are as follows. The algorithm flow diagram is shown in Fig. 6.

CMC, 2023, vol.76, no.1 249

Figure 6: Flowchart of Nash equilibrium solution algorithm based on genetic algorithm

Step 1: Initialization, input job number (n), machine number (m), job processing time (pij), job
transport time (tij). Set size of the population (popsize), maximum generations (maxiter), mutation
probabilities (pm), crossover probabilities (pc).

Step 2: Initialize the population and set k = 0.

Step 3: Update the population:

250 CMC, 2023, vol.76, no.1

Step 3.1: Calculate the payoff of each individual
(
uk

1, · · · , uk
n

)
and record the maximum payoff

matrix
(
ûk

1, · · · , ûk
n

)
.

Step 3.2: Calculate the fitness value of each individual Fk
(
uk

1, uk
2, · · · , uk

n

)
, (when k = 0, ûk−1

j = ûk
j),

and record the chromosomal individuals with the best fitness values arg min
q∈Q

Fk
q .

Step 3.3: Choose a popsize−1 parent chromosome to be cross-mutated in the kth generation
population using roulette.

Step 3.4: Use the single point crossover and single point mutation operations to generate an
offspring population and calculate the fitness of each individual.

Step 3.5: Generate a new generation population by adopting the best chromosome of the parent
generation arg min

q∈Q
Fk

q to replace the individual with the lowest fitness value of the newly generated

offspring population.

Step 4: Is Eq. (9) satisfied? If yes, output the best individual is the approximate Nash equilibrium
solution. Otherwise, go to Step 5.

Step 5: Is k = maxiter? If yes, output the optimal individual of the current generation as the
approximate Nash equilibrium solution. Else, go to step 3 and enter the next iteration.

4 Simulation Experiment and Analysis

The following simulation analysis examples are aimed at verifying the effectiveness of the proposed
scheduling game model and the designed NE-GA algorithm. To compile the algorithm, the Pycharm-
2017.3.4 compiler and Python-3.7 interpreter are used. Experiments are performed on a computer
equipped with an Intel(R) Core(TM) i3-4170 CPU @ 3.70 GHz and 8 GB of RAM.

4.1 Experimental Data and Parameter Selection

Assume that the shared manufacturing platform has 5 machines available for shared production,
each of which is located in a different factory, and that 20 jobs from 20 customers are to be processed
on these shared machines. Both the processing time pij and the transportation time tij are generated
at random from the interval [1,10], and the unit of both is hours. Table 1 displays a collection of
experimental data.

Table 1: When m = 5, n = 20, the basic information of the processing job (hour)

Job j Machine i
1 2 3 4 5

1 (6, 7) (10, 7) (5, 8) (6, 6) (2, 6)
2 (2, 3) (6, 1) (7, 3) (5, 10) (9, 2)
3 (10, 6) (4, 4) (10, 4) (10, 4) (1, 4)
4 (5, 9) (8, 7) (9, 6) (8, 10) (4, 7)
5 (4, 9) (5, 5) (1, 6) (4, 6) (4, 9)
6 (5, 8) (10, 3) (9, 5) (3, 9) (10, 1)
7 (7, 5) (3, 4) (8, 4) (4, 1) (1, 4)
8 (9, 3) (5, 7) (3, 7) (8, 3) (7, 3)

(Continued)

CMC, 2023, vol.76, no.1 251

Table 1: Continued
Job j Machine i

1 2 3 4 5

9 (6, 8) (2, 10) (5, 8) (8, 10) (4, 3)
10 (4, 3) (1, 2) (7, 5) (10, 8) (8, 9)
11 (4, 1) (8, 10) (10, 10) (3, 4) (8, 9)
12 (7, 1) (6, 4) (3, 9) (1, 6) (6, 7)
13 (9, 8) (7, 2) (5, 8) (7, 5) (5, 4)
14 (4, 1) (7, 3) (4, 10) (5, 1) (8, 1)
15 (2, 10) (9, 10) (1, 2) (3, 5) (2, 6)
16 (3, 8) (2, 10) (10, 9) (10, 7) (4, 5)
17 (7, 5) (1, 9) (3, 4) (1, 10) (5, 5)
18 (6, 9) (8, 8) (2, 2) (7, 10) (3, 9)
19 (6, 6) (5, 6) (1, 8) (6, 9) (7, 10)
20 (5, 6) (9, 2) (4, 10) (2, 4) (7, 6)

Note: The 6 of binary arrays (6, 7) in the table represents the transportation time tij of
job j to machine i, and the 7 represents the processing time pij of job j on machine i.

The following orthogonal experiments are designed to determine the parameter values of the
algorithm. The population sizes (popsize) were set at 30, 50, and 100, with mutation probabilities (pm)
of 0.1, 0.2, and 0.3, respectively. Table 2 shows the calculation results under different parameters. The
maximum number of iterations (maxiter) is the number of iterations when Nash equilibrium is reached,
that is, when Eq. (9) is satisfied. The maximum number of iterations is set to 1000 if the algorithm fails
to satisfy Eq. (9). Simultaneously, the makespan Cmax is listed for comparing calculation results.

Table 2: Comparison of results under different parameters settings

Popsize pm pc Maxiter Cmax

30 0.1 0.9 205 19
30 0.2 0.8 570 18
30 0.3 0.7 720 17
50 0.1 0.9 156 18
50 0.2 0.8 352 18
50 0.3 0.7 1000 17
100 0.1 0.9 506 16
100 0.2 0.8 1000 16
100 0.3 0.7 1000 16

As shown in Table 2, the smaller the population size, the fewer iterations it takes to reach Nash
equilibrium, but it is easy to fall into local optima at this time, resulting in no better solution. If
the mutation probability is too high, and the crossover probability is too low, the algorithm will
approximate a random search, making Nash equilibrium difficult to achieve. When the population
size is 100 and the mutation probability is 0.1, a better convergence rate and a better solution can be

252 CMC, 2023, vol.76, no.1

guaranteed. As a result, the population size is set to 100, the mutation probability is set to 0.1, the
crossover probability is set to 0.9, the maximum generation is set to 1000, and ε is set to 1.

4.2 Experimental Results and Analysis

Fig. 7 shows the iterative convergence graph of the best fitness value and the makespan Cmax when
the algorithm iterates 1000 times under the data in Table 1. It can be seen that when the number of
iterations is close to 400, the fitness value and Cmax tend to converge steadily.

Figure 7: Convergence graph of the best fitness value and Cmax

The Gantt charts of the best individuals when the algorithm runs the first, 100th, and 400th
generations are shown in Fig. 8. It can be seen that the machine load is not balanced in the first
generation. Except for machine 1, the rest of the machines have more idle time. The jobs at the back of
the queue have a better chance of completing the machining early without interfering with the other
jobs. There is a big gap between the scheme and Nash equilibrium, far worse than the 100th and 400th
generations. The machine load becomes more and more balanced as the iteration progresses, and the
makespan becomes smaller and smaller, with the 400th generation significantly better than the 100th
generation. It is difficult to unilaterally advance a job in the 400th generation without affecting the
others.

Figure 8: (Continued)

CMC, 2023, vol.76, no.1 253

Figure 8: Iterative Gantt chart of NE-GA

Table 3 compares the completion times of Generation 1, Generation 100, and Generation 400. As
the iteration progresses, the completion time of each job gradually decreases. In the first generation,
compared to the 100th and 400th generations, the completion time of 19 jobs has decreased. The
completion time of 15 of the 20 jobs in the 400th generation reaching approximate Nash equilibrium
is the shortest, with only 5 jobs having an increase in completion time. The payoff of each job reaches a
relative equilibrium state. Fig. 8 shows that at the 400th generation, it is difficult to unilaterally reduce
the completion time of a job without increasing the completion time of other jobs, which is consistent
with the concept of Nash equilibrium. Furthermore, the last row of Table 3 compares the makespan
of jobs, and it can be seen that the 400th generation is also the shortest.

Table 3: The completion time of the job of Generation 1, 100 and 400 (h)

Job j 1 100 400 Job j 1 100 400

1 12 14 8 11 22 18 6
2 16 5 5 12 28 22 8
3 5 5 8 13 14 20 10
4 23 14 15 14 13 16 6
5 21 9 12 15 12 3 3
6 28 15 15 16 21 22 16
7 20 5 5 17 17 13 9
8 12 18 15 18 14 15 5
9 13 8 11 19 26 15 14
10 16 3 3 20 17 22 12
Cmax 28 22 16
Note: The data in bold in the table indicates the minimum completion time of the correspond-
ing job

254 CMC, 2023, vol.76, no.1

To demonstrate the effectiveness of the designed algorithm, the NE-GA algorithm is compared
to the heuristic algorithms: First Come First Served (FCFS), Shortest Processing Time First (SPT),
Longest Processing Time First (LPT), and the intelligent optimization algorithms: the simulated
annealing algorithm (SA) and the particle swarm optimization algorithm (PSO) at different sizes
of experiments. The Gantt chart of these algorithms when m = 5 and n = 20 is shown in Fig. 9. It
is clear that NE-GA outperforms in terms of job completion time, overall makespan, and machine
utilization rate.

Figure 9: (Continued)

CMC, 2023, vol.76, no.1 255

Figure 9: Comparison of Gantt chart

Tables 4 and 5 compare the job completion time and run time of these algorithms at m = 5, n
= 20 and m = 10, n = 50 at the two experimental sizes. It can be seen that the completion time of
each job under the NE-GA algorithm is mostly the shortest among the six algorithms at different
experimental sizes, and the makespan Cmax of the NE-GA algorithm is also the shortest among the
six algorithms. Although SA and PSO are superior to the three heuristic algorithms (FCFS, SPT, and
LPT), the completion time of each job and makespan are still worse than those of NE-GA. When m
= 5, n = 20, 12 of the 20 jobs obtained by NE-GA have the minimum completion time. Compared
with FCFS and PSO, the makespan of NE-GA is reduced by 33.3% and 15.8%, respectively. In terms
of the running time, the three heuristic algorithms are the fastest; they can get the result within 1 s, but
their solving performance is poor. Although the running speed of NE-GA is slower than the heuristic
algorithms, it is better than that of SA and PSO, which can get the result within several seconds and
meet the real-time requirements.

Table 4: Comparison of job completion time and run time when m = 5 and n = 20 (h)

Job j
Algorithms

Job j
Algorithms

FCFS SPT LPT NE-GA SA PSO FCFS SPT LPT NE-GA SA PSO
1 15 17 8 8 14 8 11 24 6 5 5 5 19
2 5 10 23 5 10 18 12 7 8 8 8 7 13
3 5 14 17 8 5 12 13 24 9 20 10 9 15
4 22 20 15 15 17 15 14 23 6 6 6 6 18
5 7 16 16 12 7 10 15 15 3 21 3 9 19
6 20 11 24 15 12 13 16 23 19 13 16 17 11
7 9 5 5 5 8 7 17 12 13 19 9 17 16
8 24 11 23 15 11 19 18 17 5 23 5 11 17
9 22 14 20 11 8 16 19 15 19 11 14 12 9
10 3 3 18 3 14 9 20 11 12 22 11 12 15
Cmax 24 20 24 16 17 19
Running
time (s)

0.07 0.29 0.25 6.20 37.18 13.38

256 CMC, 2023, vol.76, no.1

Table 5: Comparison of job completion time and run time when m = 10 and n = 50 (h)

Job j
Algorithms

Job j
Algorithms

FCFS SPT LPT NE-GA SA PSO FCFS SPT LPT NE-GA SA PSO
1 20 12 15 11 10 23 26 4 16 9 7 12 19
2 10 5 5 8 8 9 27 7 17 11 5 10 15
3 6 16 3 3 3 22 28 22 15 10 8 15 14
4 9 13 11 11 12 12 29 12 10 11 6 11 6
5 12 3 13 5 14 3 30 8 4 14 13 14 24
6 35 15 19 8 11 8 31 19 7 7 6 14 13
7 9 14 17 3 12 24 32 5 12 4 12 4 21
8 17 13 18 5 3 11 33 21 14 8 10 15 22
9 25 2 12 2 12 7 34 16 8 9 10 15 23
10 10 7 9 3 6 17 35 35 13 5 9 13 21
11 29 17 14 6 6 15 36 25 11 13 12 8 10
12 18 10 8 8 9 11 37 10 8 10 4 13 20
13 10 13 11 11 5 12 38 9 12 6 3 14 19
14 28 14 7 7 15 8 39 11 11 3 5 9 17
15 11 14 12 6 4 7 40 7 5 5 7 5 10
16 25 17 10 10 12 4 41 19 19 12 8 15 15
17 11 9 12 8 10 11 42 43 11 7 8 7 23
18 13 12 15 4 8 9 43 24 11 16 11 5 24
19 7 12 6 6 13 16 44 22 12 14 5 14 14
20 41 18 12 11 8 13 45 25 12 8 12 14 17
21 33 15 13 6 10 11 46 24 14 12 13 14 20
22 11 4 4 10 5 13 47 11 11 14 12 13 14
23 15 7 3 3 15 9 48 17 6 16 12 15 20
24 37 22 10 6 6 17 49 7 5 8 9 6 20
25 4 5 15 12 12 23 50 13 11 11 10 11 23
Cmax 43 22 19 13 15 24
Running time 0.22 0.39 0.39 16.50 70.2 36.53
Note: The data in bold in the table indicates the minimum completion time of the corresponding job

5 Conclusions

In this paper, we have investigated the coordinated scheduling problem of parallel machine pro-
duction and transportation in shared manufacturing. A non-cooperative game model was established
when jobs from different customers competed for the shared machines at different locations, and the
jobs took their respective completion times as payoff. The fitness function was constructed based on
the definition of Nash equilibrium, and the Nash equilibrium solution algorithm based on the genetic
algorithm (NE-GA) was designed to find the Nash equilibrium point of the game model. The proposed
model and algorithm were simulated, analyzed with several scheduling examples of different sizes,
and compared with the heuristic algorithms (FCFS, SPT, and LPT) and other intelligent optimization
algorithms (SA and PSO). The results showed that the method performed well in terms of completion
time and makespan for each job and that it balanced the payoffs for multiple customers.

In the future, the coordinated scheduling problem of parallel machine production and transporta-
tion can be studied, considering the transportation capacity limitation in the shared manufacturing

CMC, 2023, vol.76, no.1 257

environment. In addition, the theoretical convergence analysis of the proposed algorithm is also
future work.

Acknowledgement: The authors wish to acknowledge the contribution of Liaoning Key Lab of
Equipment Manufacturing Engineering Management, Liaoning Research Base of Equipment Man-
ufacturing Development, Liaoning Key Research Base of Humanities and Social Sciences: Research
Center of Micro-management Theory of SUT.

Funding Statement: This work was supported in part by the Project of Liaoning BaiQianWan Talents
Program under Grand No. 2021921089, the Science Research Foundation of Educational Department
of Liaoning Province under Grand No. LJKQZ2021057 and WJGD2020001, the Key Program of
Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. B. He, J. Zhang and X. J. Gu, “Research on sharing manufacturing in Chinese manufacturing industry,”

The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1, pp. 463–476, 2019.
[2] E. Brandt, “A vision for shared manufacturing,” Mechanical Engineering, vol. 112, pp. 52–55, 1990.
[3] E. B. Richard, D. Fred, J. H. Cody, E. S. Gary, J. S. Edward et al., “A group technology model to assess

consolidation and reconfiguration of multiple industrial operations—a shared manufacturing solution,”
International Journal of Computer Integrated Manufacturing, vol. 6, no. 5, pp. 311–322, 1993.

[4] N. Rozman, J. Diaci and M. Corn, “Scalable framework for blockchain-based shared manufacturing,”
Robotics and Computer-Integrated Manufacturing, vol. 71, no. 1, pp. 102139, 2021.

[5] P. Y. Yan, L. Yang and A. D. Che, “Review of supply-demand matching and scheduling in shared
manufacturing,” Systems Engineering Theory & Practice, vol. 42, no. 3, pp. 811–832, 2022.

[6] C. Y. Yu, X. Xu, S. Q. Yu, A. Q. Sang, C. Yang et al., “Shared manufacturing in the sharing economy:
Concept, definition and service operations,” Computers & Industrial Engineering, vol. 146, no. II, pp.
106602, 2020.

[7] P. Y. Jiang and P. L. Li, “Shared factory: A new production node for social manufacturing in the context
of sharing economy,” Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering
Manufacture, vol. 234, no. 1–2, pp. 285–294, 2020.

[8] N. Boysen, D. Briskorn and S. Schwerdfeger, “Matching supply and demand in a sharing economy:
Classification, computational complexity, and application,” European Journal of Operational Research, vol.
278, no. 2, pp. 578–595, 2019.

[9] F. F. Zheng, K. Y. Jin, Q. R. Song and M. Liu, “Scheduling strategy for processing resource sharing
considering two-stage transportation,” Journal of Donghua University (Natural Science), vol. 48, no. 3,
pp. 114–120, 2022.

[10] A. Diabat, A. Dolgui, W. Janiak and M. Y. Kovalyov, “Three parallel task assignment problems with shared
resources,” IISE Transactions, vol. 52, no. 4, pp. 478–485, 2019.

[11] Q. Wei and Y. Wu, “Two-machine hybrid flow-shop problems in shared manufacturing,” Computer
Modeling in Engineering & Sciences, vol. 131, no. 2, pp. 1125–1146, 2022.

[12] K. Li, W. Xiao and X. X. Zhu, “Pricing strategies for sharing manufacturing model based on cloud
platform,” Control and Decision, vol. 37, no. 4, pp. 1056–1066, 2022.

[13] Y. K. Liu, X. Xu, L. Zhang, L. Wang and R. Y. Zhong, “Workload-based multi-task scheduling in cloud
manufacturing,” Robotics and Computer Integrated Manufacturing, vol. 45, no. 1, pp. 3–20, 2017.

258 CMC, 2023, vol.76, no.1

[14] Y. F. Xu, R. T. Zhi, P. F. Zhen and M. Liu, “Online strategy and competitive analysis of production order
scheduling problem with rental cost of shared machines,” Chinese Journal of Management Science, in press,
2022.

[15] G. Wang, G. Zhang, X. Guo and Y. F. Zhang, “Digital twin-driven service model and optimal allocation
of manufacturing resources in shared manufacturing,” Journal of Manufacturing Systems, vol. 59, pp. 165–
179, 2021.

[16] Y. K. Liu, L. Zhang, F. Tao and L. Wang, “Resource service sharing in cloud manufacturing based on
the Gale-Shapley algorithm: Advantages and challenge,” International Journal of Computer Integrated
Manufacturing, vol. 30, no. 4–5, pp. 420–432, 2017.

[17] M. Ji, X. Ye, F. Qian, T. C. E. Cheng and Y. W. Jiang, “Parallel-machine scheduling in shared manufactur-
ing,” Journal of Industrial and Management Optimization, vol. 18, no. 1, pp. 681–691, 2022.

[18] G. Zhang, C. H. Chen, B. F. Liu, X. Y. Li and Z. X. Wang, “Hybrid sensing-based approach for the
monitoring and maintenance of shared manufacturing resources,” International Journal of Production
Research, in press, 2022. https://doi.org/10.1080/00207543.2021.2013564

[19] L. Marin, F. Alberto and O. Eva, “Spillover algorithm: A decentralised coordination approach for multi-
robot production planning in open shared factories,” Robotics and Computer-Integrated Manufacturing,
vol. 70, no. 1, pp. 102110, 2021.

[20] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” Computer Science Review, vol. 3, no. 2, pp.
65–69, 2009.

[21] C. J. Wang and Q. Wu, “The supply-demand matching efficiency of single resource based on sequencing
game in sharing economy,” Industrial Engineering and Management, vol. 26, no. 1, pp. 165–173, 2021.

[22] Q. Wei and T. Y. Jiang, “Price of anarchy of a scheduling game with hybrid coordination mechanisms,”
Applied Mathematics A Journal of Chinese Universities, vol. 32, no. 4, pp. 473–486, 2017.

[23] C. A. Xu and F. Li, “Game model analysis of symmetrical enterprise’s manufacturing resources sharing
under environment of clouding manufacturing,” Application Research of Computers, vol. 36, no. 11, pp.
1–10, 2018.

[24] E. S. Qi, T. B. Li and L. Liu, “The evolutionary game analysis of the sharing of manufacturing resource
in the environment of cloud manufacturing,” Operations Research and Management Science, vol. 26, no. 2,
pp. 25–34, 2017.

[25] C. J. Wang and Y. G. Xi, “Modeling and analysis of single machine scheduling based on non-cooperative
game theory,” Acta Automatics Sinica, vol. 31, no. 4, pp. 516–522, 2005.

[26] Q. Q. Nong, S. J. Guo and L. H. Miao, “The shortest first coordination mechanism for a scheduling game
with parallel-batching machines,” Journal of the Operations Research Society of China, vol. 4, no. 4, pp.
517–527, 2016.

[27] M. L. Pinedo, Scheduling: Theory, Algorithms and Systems, 4th ed., USA: Springer, 2012.

https://doi.org/10.1080/00207543.2021.2013564

	Non-Cooperative Game of Coordinated Scheduling of Parallel Machine Production and Transportation in Shared Manufacturing
	1 Introduction
	2 Problem Description and Non-Cooperative Game Model
	3 Nash Equilibrium Solution Algorithm Based on the Genetic Algorithm
	4 Simulation Experiment and Analysis
	5 Conclusions
	References

