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Abstract: A brain tumor is a mass or growth of abnormal cells in the
brain. In children and adults, brain tumor is considered one of the leading
causes of death. There are several types of brain tumors, including benign
(non-cancerous) and malignant (cancerous) tumors. Diagnosing brain tumors
as early as possible is essential, as this can improve the chances of suc-
cessful treatment and survival. Considering this problem, we bring forth a
hybrid intelligent deep learning technique that uses several pre-trained models
(Resnet50, Vgg16, Vgg19, U-Net) and their integration for computer-aided
detection and localization systems in brain tumors. These pre-trained and
integrated deep learning models have been used on the publicly available
dataset from The Cancer Genome Atlas. The dataset consists of 120 patients.
The pre-trained models have been used to classify tumor or no tumor images,
while integrated models are applied to segment the tumor region correctly.
We have evaluated their performance in terms of loss, accuracy, intersection
over union, Jaccard distance, dice coefficient, and dice coefficient loss. From
pre-trained models, the U-Net model achieves higher performance than other
models by obtaining 95% accuracy. In contrast, U-Net with ResNet-50 out-
performs all other models from integrated pre-trained models and correctly
classified and segmented the tumor region.

Keywords: Brain tumor; deep learning; ensemble; detection; healthcare

1 Introduction

Brain tumors are a significant cause of death for both children and adults. When cells grow
abnormally, abnormal tissue expansions occur, and that fibrous web of uncontrolled tissue that
expands uncontrollably is known as a tumor or neoplasm [1]. The brain controls the functionality
of the other body organs and decision-making and the completion of intentional and unintentional
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functions performed by the human body [2]. A tumor can raise the pressure inside the skull, disrupt
the brain’s standard functionality, and be life-threatening, whether cancerous or non-cancerous [3].

Every year almost 11,000 people across the globe are diagnosed with deadly diseases and brain
tumors. Nearly 500 of them are youngsters on average; it takes the lives of almost 5000 people [4].
Benign and Malignant are two classifications of brain tumors. A benign brain tumor is uniform in
structure and does not contain active cells; hence it is not cancerous. On the other hand, a malignant
tumor is cancerous and heterogeneous (non-uniform) in its structure. Benign tumors, low-grade
tumors, are further categorized as Gliomas and Meningiomas. Glioblastoma and Astrocytoma are a
sub-category of high-grade tumors. According to World Health Organization (WHO) and American
Brain Tumor Association, to distinguish benign and malignant tumor types, a scale from grade I to
grade IV is used [5].

Magnetic Resonance Imaging (MRIs), Computed Tomography (CT), X-rays, and Ultrasound
are different medical imaging techniques and methods used for patient diagnosis and treatment with
significant impact [6]. In neurology, Magnetic Resonance Imaging (MRI) is used to get the tiniest detail
within the human body. MRI is commonly used to diagnose brain lesions and other abnormalities.
MRI can visualize anatomy in all three planes: coronal, axial, and sagittal, and can offer precise detail
of spinal cord, brain, and vascular anatomy. Segmentation is performed to differentiate healthy tissues
from an area with a tumor, improving the chances of effective and successful tumor treatment. The
image is separated into regions based on identical properties like boundaries, grey level, contrast,
and texture [7]. Manually examining MRI images of the patient is a hectic job for a neurologist.
The results obtained from a manual examination may have several flaws influencing the need for
an automatic detection system. For segmentation purposes, partially automatic and fully automatic
techniques and methods are used [8]. For cancer diagnosis and treatment, segmenting the tumor is
crucial. The motivating factor behind computer-aided detection of abnormal brain tissue growth is
reducing human error to achieve maximum accuracy.

Over the past few years, machine-learning techniques have emerged in the medical field to make
medicines, study diseases, and treat patients. Researchers in tumor detection have done massive
work with the help of a machine learning algorithm. For pattern classification in tumor detection,
machine learning methods such as Support Vector Machine, Visual Geometry Group (VGG) 16 and
19, and Random Forest are used as they are superior in image analysis disciplines, including image
classification and object detection, and semantic segmentation [9–14]. The deep learning techniques
for automatically segmenting brain tumors through multimodal MRIs have achieved high accuracy.
Convolution Neural Networks segment and classify brain tumors, which perform image recognition
and prediction. Other techniques such as Adaboost, K-Nearest Neighbor (KNN) classifier bagging,
Fuzzy C Means Neural Network, or Mathematical Morphological Reconstruction extract features
from images [15–18].

Researchers have extensively employed machine learning techniques for prediction and detection
in recent years. However, these single methods have the potential to produce a wide range of forecasts
and variations in model performance. Ensemble methods have been proposed to address this issue,
which involves using a collection of individually trained classifiers whose predictions are combined.
This approach is more efficient and accurate for brain tumor detection. The main objective of this
research is to identify the most precise model for detecting tumor regions. In an ensemble method,
the predictions made by different learning machines are merged, and the class predicted by most
algorithms is considered the overall result. This proposed work uses an ensemble model to classify
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affected patients, comprising U-Net, VGG-16, VGG-19, and ResNet-50 architecture. The ensemble
model has been applied to the Cancer Genome Atlas and Cancer Imaging Archive data. Using such
computer-aided systems based on this novel integration would assist radiologists in determining the
tumor stages with greater accuracy.

The remaining paper is divided into four sections; the first section explains the system model of
the proposed work, followed by the results, discussion, and conclusion.

2 Related Work

Various methods have been used for brain tumor segmentation, including Graph cut, Fuzzy-C-
Means, Gaussian Mixture Model, and K-means.

In [19], authors proposed that automatic segmentation of brain tumors can be used using MRI
over ROI as a Magnetic resonance image creates high-quality clusters of tumorous tissues. Brain
tumor segmentation involves identifying the tumorous region known as the region of interest (ROI) to
produce high-quality clustering for segmenting and segmenting those tumorous tissues from MRI
images using spectral superpixels. The methods used to segment brain tumors are divided into
supervised segmentation techniques (which require sizable datasets with valid truth) and unsuper-
vised segmentation techniques (which do not depend on datasets yet yield correct results with less
complexity).

In [20], the Greedy Snake Model and Fuzzy C Means (FCM) optimization suggest an effective
automatic brain tumor segmentation procedure. The snake model is employed to address the general
issues of segmentation. To make the clustering process more efficient, fuzzy C-Means assign each data
piece to a specific cluster. The ROI is determined using this procedure, and the non-tumor portion is
eliminated using the two dilatation and erosion techniques. It is optimized using the FCM technique.
Using the Hausdorff distance, the outcomes of this segmentation are also contrasted with those of the
Ground test.

In [21], authors proposed a model which uses MR images to detect brain tumors using an
optimization-driven method called Whale Harris Hawks Optimization (WHHO). In which rough set
theory and cellular automata are used to produce segmentation. The WHHO Algorithm is designed
by combining the Whale Optimization Algorithm (WOA) and Harris Hawks Optimization (HHO)
algorithms to enhance the detection of tumor cells. In preprocessing, steps have improved the quality
of the images. This segmentation technique offers the tumor’s size, Local Optical Oriented Pattern,
Mean, Variance, and Kurtosis. The maximum accuracy, specificity, and sensitivity of this suggested
WHHO-Deep CNN approach were 0.816, 0.791, and 0.974, respectively.

In [22], U-Net architecture segments the brain tumor cells. This U-Net model is helpful as it
helps detect the location and context. This approach also provides better results for segmentation
tasks. The Single Level UNet3D architecture with block modifications has been utilized with arduous
and attention convolutions. The use of atrous convolution has enhanced the performance of the
segmentation in many ways. The three primary reasons for using this architecture are avoiding the loss
of spatial information, multiple residual attention blocks (MRAB) capturing specific features, and
each block of MRAB making the mechanism sensitive to the segmentation process. This architecture
model is trained using the Brain Tumor Segmentation (BraTS) 2018, 2019, 2020, and 2021 challenge
datasets.
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The authors of [23] proposed a Deep Convolutional Neural Networks (CNNs) model to segment
brain tumors. It is used for both high- and low-grade gliomas through MRI images. A hybrid model
of dynamic focal Dice loss and symmetric attention module is presented. Relaxation and restriction
techniques maintain a balance between featuring the morphological and spatial details related to the
multi-class brain tumor segmentation task.

In [24], a hybrid model for detecting and segmenting brain tumor cells and integrating a CNN
and the support vector machine (SVM). The CNN model detects brain tumors, and SVM is used to
segment the tumorous region. The output of the CNN model acts as an input for the SVM model to
provide an auto-segmented tumor region. This model uses various parameters like dice coefficient,
sensitivity, and accuracy to execute the values. This method has an accuracy of 0.98%, and the
evaluation is based on the BraTS 2020 dataset. This method is highly suitable for helping radiologists
detect the early stages of brain tumors.

In [25], a model for diagnosing the affected parts related to a brain tumor. Many medical imagining
techniques have been introduced to identify and locate the brain’s tumor cells. The many methods
included in this proposed methodology, morphological procedures, pixel subtraction, threshold-based
segmentation, and image filtering, aid in segmenting the tumor tissues. The diagnosis of brain disorders
is carried out using the medical imaging technique known as magnetic resonance imaging. The
suggested strategy includes three steps (preprocessing for MRI imaging, segmentation of tumorous
region, and filtering to remove noise). The Cancer Imaging Archive is used to obtain the MRI pictures.

3 System Model

This section covers the structure of the methodology. Different factors are used for the presented
models during the execution. The detail is given below: there are two steps that the process follows:
methods for collecting dataset and information and dataset preprocessing. Preprocessing of the dataset
is divided into sub-categories such as cleaning, noise removal, resizing, and dataset distribution in test,
train, and validation sets. The preprocessed data is fed into the pre-trained and integrated CNN model
in the final step. The workflow of the proposed work has been shown in Fig. 1.

3.1 Dataset Description

The dataset used in our proposed model was collected in TCGA (The Cancer Genome Atlas)
and TCIA (The Cancer Imaging Archive). The number of identified patients from a lower grade of
malignant tumors of the nervous system of TCGA was 120. Individuals had preoperative imaging data,
a minimum of one containing an inversion recovery process with fluid attenuation. Ten patients were
ignored in this dataset because they needed to be made aware of the available genomic constellation
facts. The final group that remained in this dataset consisted of the remaining 110 patients. A detailed
list of patients has been provided in Online Resource 1. The total remaining patients were divided into
22 separate, non-overlapping clusters.
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Figure 1: Workflow of the proposed work

Each cluster contains five patients. The process was completed for the evaluation with a cross-
validation technique. The imaging dataset used in our research work was captured from Imaging
Archive. Sample images with their mask are shown in Fig. 2. This dataset consists of the patients’
images related to TCGA and subsidized by the National Cancer Hospital. We used all the treatments
when available, but when one was not, we only used FLAIR. Six patients lacked the pre-contrast
sequence, nine lacked the post-contrast sequence, and 101 had all the relevant series. The resource has
published all of the patients’ information in total 1. Among 20 to 80 patients received the number
of slices. We only looked at bilateral data to detention the initial pattern of tumor progression. The
genomic dataset used in this investigation included measurements of the IDH mutation 1p/19q co-
deletion and DNA methylation, gene expression, DNA copy number, and microRNA expression. We
consider six previously discovered genetic classifications of LGG in our research, which are known to
be connected with some tumor form aspects.

• Molecular subtype based on 1p/19q co-deletion and IDH mutation
• 4 RNA clusters
• 5 DNA methylation clusters
• 3 microRNA clusters
• 4 micro-RNA clusters
• 3 Cluster of clusters
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Figure 2: Sample images with mask

3.2 The U-Net Architecture

The network used by U-Net is entirely based on the network based on Convolutional layers for
performing semantic segmentation tasks like fully convolutional networks (FCN) and SegNet [26–
29]. U-Net architecture is based on the symmetric model with an encoder and decoder. The encoder
works as an extractor of geometrical characteristics from the image. A decoder’s purpose is to build a
segmentation map from encoded features. Encoders go along with the distinctive approach of CNN. It
suggests a series of two 3 × 3 convolution operations, two 2 × 2 max-pooling operations, and a stride
of size two followed by each. The process is repeated four times, and the number of filters doubles
after each down-sampling in the convolutional layers. Finally, the Encoder and Decoder are connected
by a series with two 3 × 3 convolution procedures. Alternatively, the decoder uses the 2 × 2 altered
convolution procedures for up-sampling the features map, which reduces the size of the feature channel
by half. An order of two 3 × 3 convolution procedures is repeated. The up-sampling and convolution
procedures are repeated four times, just like with the encoder, which reduces each stage’s filter count by
half. The final step involves performing a 1 × 1 convolution operation to create the segmentation map.
All layers used the ReLU activation function in the pre-described model architecture by excluding the
final layers for map segmentation.

The U-Net architecture uses two 3 × 3 convolutional layers in succession after each pooling layer
and transposed convolutional layer. This categorization of two 3 × 3 convolutional operations looks
like a 5 × 5 convolutional operation. As a result, using the Inception network’s methodology, the easiest
way to provide U-Net with a multi-resolution analysis proficiency is to add 3 × 3 and 7 × 7 convolution
processes in parallel to the 5 × 5 convolution operation. The model can reconcile the features learned
from images at various scales when the convolution layers are replaced with blocks akin to those in
Inception.
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3.3 VGG-Net

A typical Convolutional neural architecture with multiple layers is called the Visual Geometry
Group. A group of visual geometry at the University of Oxford develops VGGNet [30–32]. VGG 16
and VGG 19 are the most typical model of VGGNet. These models have shown tremendous success
in the field of image detection. VGG-16 consists of 16 convolutional layers. It is one of the primary
grounds for pattern and image recognition. The convolutional neural network known as the VGG
model, which supports 16 layers, is also known as the VGG16 network. The VGG16 model achieves
top-5 test accuracy of about 92.7 percent in ImageNet. About 14 million images are available in
ImageNet’s collection, categorized into over 1000 categories. It was also one of the models in which
the 2014 ILSVRC received the most significant interest. Sequentially substituting multiple 33 kernel-
sized filters for large kernel-sized filters outperforms AlexNet. VGG network is used for our dataset
adaption. As mentioned earlier, the VGGNet-16 has 16 layers and can categorize images into 1000
classes. The model also features the picture of input size 224 × 224. VGG-16 relies on the essential
features of a convolutional neural network. VGG-16 consisted of tiny convolutional filters. This
structure comprises 13 convolutional layers and three fully connected layers. In the VGG-16 algorithm,
a max-pooling layer with a 2 × 2 kernel size follows each convolutional layer. A convolutional layer’s
function is to store the training weights. Three fully connected layers are AI layers of a classifier that
make up the VGG-16’s next layer. The number of parameters is determined by the fully connected
layer and convolutional layers since they can store the weights of training results.

The convolutional layers used by VGG-16 have a small receptive field (3 × 3), the smallest size that
still effectively catches left-right and up-down movement. In addition, the input is linearly transformed
using 11 convolution filters. The ReLU unit is another key AlexNet innovation that dramatically
cuts training time. A piecewise linear function called the rectified linear unit activation function
(ReLU) outputs zero if the input is negative. To maintain spatial resolution after convolution, the
convolution stride is set at 1 pixel (stride is the number of pixels that shifts over the input matrix).
All the VGG network’s hidden layers employ ReLU. Local Response Normalization (LRN), which
lengthens training and memory requirements, is hardly used in VGG. Additionally, it has no impact
on total accuracy. The VGG-16 is composed of three layers. There are 4096 channels in the first two
layers and 1000 channels in the third layer, one for each class.

The 16 layers of a deep neural network are represented by the number 16 in the name VGG (VGG-
16). VGG16 is a massive network with approximately 138 million parameters, according to this. It
is a vast network, even by today’s standards. The VGGNet16’s architecture, on the other hand, is
intriguing because of its simplicity. Its architecture is highly uniform simply looking at it. After a few
convolution layers, the image is pooled to reduce the image height and width. Regarding the possible
filter combinations, we have about 64 options, which we may increase to about 128 and 256. We can
utilize 512 filters in the final levels. The VGG-19 concept is the same as that of the VGG-16 but with
a difference in the convolutional layers, as VGG-19 got 19 weighted convolutional layers compared to
the 16 layers of VGG-16. VGG-19 can be trained with more than a million images from the imageNet
database, and it is a deeper network that can classify images into 1000 objects.

3.4 ResNet-50

ResNet-50 was the first Residual network introduced [33–35]. It was created to add shortcut links
to transform a simple network into a residual network. ResNet-50 is a deep CNN model with 50
layers. An RN Network is a network comprising a stack of blocks from artificial neural networks
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stacked on top of one another. This model was quite effective, as seen by the fact that its ensemble
won the ILSVRC 2015 classification competition with an error rate of just 3.57 percent.

Additionally, it took first place for ImageNet detection, ImageNet localization, COCO detection,
and COCO segmentation in the 2015 ILSVRC and COCO competitions. There are several different
versions of ResNet, each with a different number of layers. A variant that can operate with 50 neural
network layers is known as ResNet-50.

The initial experiments were implemented using different models like ResNet101, DenseNet,
ShuffleNet, etc. In this study, Resnet101 shows the best results against other proposed networks.
The convolutional networks include 3 × 3 filters, while the plain network was influenced by VGG
neural networks (VGG-16, VGG-19). Adversely, ResNets have fewer filters and are less complex than
VGGNets. The performance of the 50-layer ResNet is 3.8 billion FLOPs, compared to 3.6 billion
FLOPs for smaller 34-layer ResNets.

Additionally, it followed two straightforward design principles: to preserve the time complexity
per layer, each layer had the same number of filters for the same output feature map size, and the
number of filters doubled if the output feature map size was cut in half. There were 50 weighted layers
in total. IN ResNet-50 architecture, the building block is modified over the bottleneck for the concerns
over time, taking in the training of layers. Three layers stack is used in it. The ResNet-50 architecture
was created by swapping out each of the Resnet 34’s 2-layer blocks with a 3-layer bottleneck block.

4 Result

This section covers the details of our findings. We have used python as a scripting language with
the following libraries: os, NumPy, pandas, matplotlib, seaborn, zip file, cv2, skimage, TensorFlow,
TensorFlow Keras, random, glob, and sklearn preprocessing. These libraries helped us in data
preprocessing, model training, and testing. There are two classes in the dataset: No Tumor and Tumor,
with 2556 and 1337 images. The dataset was divided into training, validation, and testing with 70%,
15%, and 15%, respectively. Image data generator (IDG) generates tensors of training, testing, and
validation folders. IDG parameters consist of target size (256, 256), class mode (categorial), shuffle
(true), shuffle (false) only for the test folder, and batch size (16). Pretrained and integrated models
take an input shape (256, 256, 3) with Adam optimizer and a learning rate of le-3 in 25 epochs. IDG
parameters feed into proposed models for the required results. Several performance parameters are
involved in the proposed models to understand consequences better. Training and validation loss of
pre-trained and integrated pre-trained models results are shown in Fig. 3. These parameters have been
listed below:

Accuracy: Regarding machines, learning accuracy is the correct data classification against any
input or dataset. This is the measurement used to define which model is best for the pattern
identification between the dataset variables of a dataset.

Validation Accuracy: Validation accuracy is also known as testing accuracy. Validation accuracy
is not the accuracy that is calculated by applying the ML model to the training dataset. However, this
accuracy is calculated after applying the ML model to the testing dataset.

Loss: Loss in machine learning is a number that predicts how an ML model makes many wrong
predictions. If the model makes the correct prediction, the loss value remains 0. If the predictions are
inaccurate, the loss value will exceed 0. The aim of training a model is to find a set of weights and
biases that, on average, have low loss across all examples.
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Validation Loss: A matrix called “validation loss” is used to evaluate how well the model performed
on the validation data. The validation loss will be zero if a model predicts the future perfectly and more
than zero if the model does not.

Dice Coefficient: The IoU and the Dice coefficient are similar. They are positively associated; thus,
if one claims that model A is superior to model B at image segmentation, the other will also claim
the same. They range from 0 to 1, with 1 denoting the highest resemblance between expected and
truth, akin to the IoU. It is a statistical validation parameter to assess the performance of automated
probabilistic fractional segmentation of MR images and the reproducibility of manual segmentations
about spatial overlap accuracy. Intersection over Union: An evaluation metric called intersection over
union assesses an object detector’s precision on a specific dataset.

Figure 3: (Continued)
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Figure 3: Training loss and validation loss of (a) ResNet-50 (b) U-Net (c) VGG16 (d) VGG19 (e) U-Net
with ResNet-50 (f) U-Net with VGG16 (g) U-Net with VGG19

Dice Coefficient Loss: The dice coefficient is a popular statistic for determining how similar two
images are in computer vision.

Jaccard Distance: The Jac- card Index, often known as the Jaccard similarity coefficient, is a
statistic used to analyze the similarities between sample sets. Formally speaking, the measurement
is the size of the intersection divided by the size of the union of the sample sets and emphasizes the
similarity between finite sample sets. The Jaccard distance gauges the dissimilarity between sample
sets, much as the Jaccard Index, which measures similarity. Finding the Jaccard index and deducting
it from one or dividing the differences by the intersection of the two sets yields the Jaccard distance.

Mean: A dataset’s mean is calculated by dividing the total values by the sum of all the values. It is
sometimes called the “average” and is the most widely used central tendency metric.

Standard Deviation: One of the most important ways to evaluate a machine learning model’s
correctness concerning actual data is to use this metric to determine the variability of a population
or sample. Standard deviation can also be used to gauge how confident one is in a model’s statistical
findings.

25th Percentile: The first or lower quartile is often called the 25th percentile. The value at which
25% of the answers fall below it and 75% of the responses fall above it is known as the 25th percentile.

50th Percentile: The 50th percentile is also referred to as the median. The data set is divided in half
by the median. Half of the responses fall below the median, while the other half rise beyond.

75th Percentile: The third or higher quartile is another name for the 75th percentile. The value
at which 25% of the answers are above that value, and 75% below that value is known as the 75th
percentile. As explained earlier, different criteria for evaluating the ML model performance exist.
Accuracy plays an essential role in the version of a model. Our proposed approach uses different
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machine learning algorithms to assess the model’s performance. Different algorithms show different
results, as explained below.

4.1 Pre-Trained ResNet-50 Model

Concerning 25 epochs, the ResNet-50 algorithm offers us roughly 95 percent validation and
99 percent training accuracy. The maximum Dice coefficient loss during training was 0.01, and the
maximum Dice coefficient loss during validation was approximately 0.02. About 99 percent of the
union was gained throughout training and 98 percent during validation. The Dice coefficient was
almost 99 percent during training and 98 percent during validation. Jaccard’s distance was roughly 0.02
during validation and 0.01 during training. During training, the loss was equal to 0; during validation,
it was approximately 0.01.

The number of epochs utilized to train our ResNet-50 model, Count, is displayed in Table 1 for
reference. The mean value fluctuates concerning other factors from 0.01 to 0.98. The value of the
standard deviation ranges from 0.01 to 2.23. The 25th percentile’s value might vary from 0.006 to
0.97. The 50th percentile’s weight ranges from 0.01 to 0.989. The value of the 75th percentile ranges
from 0.02 to 0.99. The maximum parameter factor ranges from 0.11 to 16.13.

Table 1: ResNet-50 statistical model analysis

Count Mean Std Min 25% 50% 75% Max

Loss 25 0.136 0.14 0.021 0.054 0.085 0.167 0.779
Acc 25 0.95 0.055 0.708 0.942 0.973 0.982 0.993
DC 25 0.982 0.018 0.912 0.977 0.989 0.993 0.997
DCL 25 0.018 0.018 0.003 0.007 0.011 0.023 0.088
IoU 25 0.98 0.02 0.905 0.975 0.988 0.992 0.997
JD 25 0.02 0.02 0.003 0.008 0.012 0.025 0.095
VL 25 0.707 2.237 0.159 0.266 0.328 0.503 16.132
VACC 25 0.889 0.09 0.641 0.891 0.922 0.938 0.959
VDC 25 0.968 0.027 0.885 0.968 0.978 0.982 0.989
VDCL 25 0.032 0.027 0.011 0.018 0.022 0.032 0.115
VIoU 25 0.964 0.028 0.877 0.964 0.975 0.98 0.988
VJD 25 0.036 0.028 0.012 0.02 0.025 0.036 0.123

4.2 Pre-Trained U-Net Model

Regarding accuracy, the U-Net method offers us 25 epochs of training and validation data with an
accuracy of almost 100% in both cases. The maximum Dice coefficient loss during training was −0.7;
during validation, it was roughly 0.65. The difference between union gains made during training and
validation was approximately 66 percent and 55 percent, respectively. Between training and validation,
the Dice coefficient varied between 65 and about 80 percent. Jaccard’s distance was −0.6 during
training and about −0.55 during validation. A loss of about −0.7 was experienced during training,
while about −0.65 was experienced during validation.

According to Table 2, Count is the number of epochs used to train our U-Net model. The mean
value varies to other factors from −0.6 to 0.99. The value of the standard deviation ranges from 0.009
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to 0.16. The 25th percentile’s value is from −0.7 to 0.99. The 50th percentile’s weight ranges from 0.66
to 0.99. The range of the 75th percentile value is from −0.57 to 0.99. The maximum parameter value
ranges from −0.2 to 0.99.

Table 2: U-Net model statistical analysis

Count Mean Std Min 0.25 0.5 0.75 Max

Loss 25 −0.627 0.11 −0.739 −0.705 −0.663 −0.576 −0.268
Acc 25 0.991 0.01 0.946 0.992 0.994 0.995 0.995
DC 25 0.627 0.11 0.268 0.576 0.663 0.705 0.739
DCL 25 −0.627 0.11 −0.739 −0.705 −0.663 −0.576 −0.268
IoU 25 0.485 0.105 0.172 0.427 0.517 0.563 0.603
JD 25 −0.485 0.105 −0.603 −0.563 −0.517 −0.427 −0.172
VL 25 −0.558 0.165 −0.734 −0.659 −0.587 −0.51 −0.06
VACC 25 0.992 0.004 0.975 0.991 0.994 0.995 0.995
VDC 25 0.558 0.165 0.059 0.518 0.581 0.661 0.738
VDCL 25 −0.558 0.165 −0.738 −0.661 −0.581 −0.518 −0.059
VIoU 25 0.425 0.145 0.035 0.374 0.432 0.522 0.602
VJD 25 −0.425 0.145 −0.602 −0.522 −0.432 −0.374 −0.035

4.3 Pre-Trained VGG16 Model

The VGG 16 algorithm gives us approximately 65.5 percent training accuracy and 65 percent
validation accuracy for 25 epochs. The maximum dice coefficient loss during training was 0.1100;
during validation, the most significant loss was around 0.1095. The union increased by about 88
percent during training and 88 percent during validation. The Dice coefficient was approximately
89 percent during training and 89.5 percent during validation. The Jaccard distance was 0.1175
during training and around 0.1173 during validation. The loss was equal to 0.644 during training
and approximately 0.646 during validation.

According to Table 3, Count is the number of epochs used to train our VGG16 model. The mean
value varies with other parameters from 0.10 to 0.89. The value of the standard deviation ranges from
0.00035 to 0.0044. The 25th percentile’s value might range from 0.10 to 0.89. The 50th percentile’s
weight ranges from 0.10 to 0.89. The range of the 75th percentile value is 0.10 to 0.89. The maximum
parameter value ranges from 0.11 to 0.89.

Table 3: VGG16 model statistical analysis

Count Mean Std Min 25% 50% 75% Max

Loss 25 0.645 0.001 0.644 0.644 0.645 0.645 0.646
Acc 25 0.656 0.001 0.654 0.655 0.656 0.656 0.658
DC 25 0.89 0 0.89 0.89 0.89 0.891 0.891

(Continued)
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Table 3: Continued
Count Mean Std Min 25% 50% 75% Max

DCL 25 0.11 0 0.109 0.109 0.11 0.11 0.11
IoU 25 0.883 0 0.882 0.882 0.883 0.883 0.883
JD 25 0.117 0 0.117 0.117 0.117 0.118 0.118
VL 25 0.65 0.003 0.646 0.648 0.649 0.651 0.657
VACC 25 0.647 0.004 0.634 0.644 0.647 0.65 0.653
VDC 25 0.89 0.001 0.888 0.889 0.89 0.89 0.892
VDCL 25 0.11 0.001 0.108 0.11 0.11 0.111 0.112
VIoU 25 0.882 0.001 0.881 0.882 0.882 0.882 0.884
VJD 25 0.118 0.001 0.116 0.118 0.118 0.118 0.119

4.4 Pre-Trained VGG19 Model

VGG 19 algorithm provides us approximately 65.5% training accuracy and about 64.3% validation
accuracy against 25 epochs. The maximum dice coefficient loss gained during the training was 0.890,
and the validation dice coefficient loss was approximately 0.89. Intersection over union gained during
training was about 0.883, and during validation was 0.882. The Dice Coefficient during training was
appr 0.109, and during validation was 0.110. The value of Jaccard distance during training was 0.1175
and, during validation, was appr 0.118. The loss value during training was 0.644, and during validation
was appr 0.66.

According to Table 4. the Count is the number of epochs used to train our VGG19 model. The
mean value varies with other parameters from 0.10 to 0.89. The value of the standard deviation ranges
from 0.0005 to 0.005. The 25th percentile’s value might range from 0.10 to 0.89. The 50th percentile’s
weight ranges from 0.10 to 0.89. The range of the 75th percentile value is 0.10 to 0.89. The maximum
parameter value ranges from 0.11 to 0.89.

Table 4: VGG19 model statistical analysis

Count Mean Std Min 25% 50% 75% Max

Loss 25 0.648 0.017 0.644 0.644 0.645 0.646 0.73
Acc 25 0.655 0.002 0.646 0.655 0.656 0.656 0.657
DC 25 0.89 0.001 0.888 0.89 0.89 0.891 0.891
DCL 25 0.11 0.001 0.109 0.109 0.11 0.11 0.112
IoU 25 0.883 0.001 0.881 0.882 0.883 0.883 0.883
JD 25 0.117 0.001 0.117 0.117 0.117 0.118 0.119
VL 25 0.648 0.003 0.642 0.646 0.648 0.65 0.655
VACC 25 0.65 0.006 0.638 0.647 0.65 0.653 0.659
VDC 25 0.89 0.001 0.887 0.889 0.89 0.891 0.892
VDCL 25 0.11 0.001 0.108 0.109 0.11 0.111 0.113
VIoU 25 0.882 0.001 0.879 0.882 0.882 0.883 0.884
VJD 25 0.118 0.001 0.116 0.117 0.118 0.118 0.121
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4.5 Integration of U-Net with ResNet-50

Integrating U-Net with ResNet-50, the Dice Coefficient for testing was 90% and 80% for
validation data by applying 25 epochs. The dice coefficient loss gained during training was −0.90,
and during validation, the loss was −0.85. The value of testing intersection over union was 0.80, and
validation IoU was 0.68. The Testing Jaccard distance value was −0.75, and the validation Jaccard
distance was −0.68. The loss value for testing data was 0.18; for validation, the loss was 0.22.

The results count from integrating the U-Net with ResNet-50 is displayed in Table 5—the mean
value changes to other parameters between −0.75 and 0.75. The value of the standard deviation ranges
from 0.04 to 0.061. The 25th percentile’s score can go from −0.79 to 0.71. The 50th percentile’s weight
ranges from −0.76 to 0.76. The value of the 75th percentile ranges from −0.71 to 0.79. The maximum
parameter value ranges from −0.63 to 0.82.

Table 5: U-Net with ResNet-50 model statistical analysis

Count Mean Std Min 25% 50% 75% Max

Loss 25 0.259 0.053 0.181 0.22 0.245 0.295 0.38
DC 25 0.753 0.051 0.638 0.72 0.767 0.791 0.828
DCL 25 −0.753 0.051 −0.828 −0.791 −0.767 −0.72 −0.638
IoU 25 0.623 0.061 0.49 0.58 0.638 0.668 0.718
JD 25 −0.623 0.061 −0.718 −0.668 −0.638 −0.58 −0.49
VL 25 0.267 0.051 0.188 0.23 0.258 0.309 0.365
VDC 25 0.746 0.049 0.657 0.706 0.754 0.783 0.821
VDCL 25 −0.746 0.049 −0.821 −0.783 −0.754 −0.706 −0.657
VIoU 25 0.621 0.055 0.52 0.579 0.625 0.662 0.71
VJD 25 −0.621 0.055 −0.71 −0.662 −0.625 −0.579 −0.52

4.6 Integration of U-Net with VGG16

As U-Net was integrated with VGG16, the gained testing Dice Coefficient was 73%, and the
validation Dice Coefficient was 75% by applying 25 epochs.

Training Dice coefficient loss was 0.7, and the validation dice coefficient loss was −0.72. The value
of testing intersection over union was 0.6, and validation IoU was 0.64. The Testing Jaccard distance
value was −0.6, and the validation Jaccard distance was −0.63. The loss value for testing data was 0.3,
and for validation, the loss was 0.3.

The results count from integrating the U-Net with VGG16 is displayed in Table 6. The mean value
fluctuates about other factors from −0.68 to 0.68. The value of the standard deviation ranges from
0.08 to 0.30. The 25th percentile’s score might go from −0.73 to 0.67. The 50th percentile’s weight
ranges from −0.71 to 0.71. The value of the 75th percentile ranges from −0.67 to 0.73. The maximum
parameter value ranges from −0.39 to 1.37.
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Table 6: U-Net with VGG16 model statistical analysis

Count Mean Std Min 25% 50% 75% Max

Loss 25 0.331 0.084 0.259 0.276 0.303 0.342 0.627
DC 25 0.684 0.082 0.39 0.673 0.711 0.736 0.753
DCL 25 −0.684 0.082 −0.753 −0.736 −0.711 −0.673 −0.39
IoU 25 0.542 0.083 0.267 0.526 0.568 0.599 0.619
JD 25 −0.542 0.083 −0.619 −0.599 −0.568 −0.526 −0.267
VL 25 0.55 0.303 0.25 0.352 0.418 0.662 1.371
VDC 25 0.515 0.215 0.015 0.364 0.608 0.668 0.761
VDCL 25 −0.515 0.215 −0.761 −0.668 −0.608 −0.364 −0.015
VIoU 25 0.396 0.187 0.015 0.255 0.464 0.526 0.637
VJD 25 −0.396 0.187 −0.637 −0.526 −0.464 −0.255 −0.015

4.7 Integration of U-Net with VGG19

In applying integration on U-Net with VGG19, we gained 75% Dice Coefficient accuracy and
70% validation Dice Coefficient using 25 epochs. The dice coefficient loss was 0.75, and the validation
dice coefficient loss was −0.7. The value of testing intersection over union was 0.60, and validation
IoU was 0.58. The Testing Jaccard distance value was −0.6, and the validation Jaccard distance was
−0.58. The loss value for testing data was 0.27, and for validation, the loss was 0.3.

The results count from integrating the U-Net with VGG19 is displayed in Table 7. The mean value
fluctuates to other factors from −0.68 to 0.68. The value of the standard deviation ranges from 0.08 to
0.30. The 25th percentile’s score might go from −0.73 to 0.67. The 50th percentile’s weight ranges from
−0.71 to 0.71. The value of the 75th percentile ranges from −0.67 to 0.73. The maximum parameter
value ranges from −0.39 to 1.37.

Table 7: U-Net with VGG19 model statistical analysis

Count Mean Std Min 25% 50% 75% Max

Loss 25 0.343 0.107 0.255 0.283 0.303 0.353 0.753
DC 25 0.672 0.104 0.272 0.662 0.711 0.73 0.757
DCL 25 −0.672 0.104 −0.757 −0.73 −0.711 −0.662 −0.272
IoU 25 0.531 0.1 0.18 0.512 0.567 0.592 0.624
JD 25 −0.531 0.1 −0.624 −0.592 −0.567 −0.512 −0.18
VL 25 0.559 0.257 0.284 0.358 0.514 0.624 1.374
VDC 25 0.502 0.173 0.141 0.405 0.525 0.659 0.732
VDCL 25 −0.502 0.173 −0.732 −0.659 −0.525 −0.405 −0.141
VIoU 25 0.377 0.154 0.078 0.279 0.384 0.521 0.599
VJD 25 −0.377 0.154 −0.599 −0.521 −0.384 −0.279 −0.078
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5 Discussion

According to the above study, brain tumors are currently regarded as one of the leading causes
of death in children and adults. A scale from grade I to grade IV is employed, by World Health
Organization (WHO) and American Brain Tumor Association, to distinguish between benign and
malignant tumor forms. Machine learning techniques are utilized to classify cancer detection studies
because they excel in image analysis, including image classification, object recognition, and semantic
segmentation. For the category of brain tumors, we have used the U-Net, VGG Net, and ResNet-
50 architecture in the suggested study. U-Net is particularly well-suited for image segmentation tasks
because it can accurately locate and segment small objects in images and handle images with varying
shapes and sizes. It has been used in several medical imaging applications, such as segmenting tumors
in MRI images and identifying cells in microscopic images.

Instead of employing enormous fields like AlexNet, VGG Net used small receptive fields like 3 × 3
with a stride of 1. VGG Net has many parameters, making it a powerful model, but it also requires
a large amount of memory and computational power to train and use. Despite this limitation, VGG
Net has been widely used as a base model for our computer vision tasks, such as object detection and
semantic segmentation.

Additionally, ResNet-50 was utilized for training many images while maintaining a low error rate.
ResNet-50 has been trained on the ImageNet dataset and achieved state-of-the-art image classification
results. Due to its good performance and relative simplicity, it has been widely used as a base model
for many computer vision tasks, such as object detection and semantic segmentation. The data for
our suggested model was gathered from the TCIA (The Cancer Imaging Archive) and TCGA (The
Cancer Genome Atlas). The TCIA and TCGA data is a valuable resource for researchers in the field
of cancer genomics, enabling them to use large amounts of data to identify new cancer-causing genes,
understand the mechanisms of cancer development, and identify new targets for cancer therapy. The
data is also used to develop and evaluate cancer diagnosis and prognosis computational models. One
hundred one patients had all the necessary sequences, while six were missing the pre-contrast series,
and nine were missing the post-contrast series.

Applying several techniques to available dataset during this study yields impressive results. The
training and validation accuracy of pre-trained algorithms like ResNet-50, U-Net, VGG16, and
VGG19 is excellent.

The results presented in Tables 1–7 are summary of 12 different metrics for a machine learning
model on a validation set, each with 25 observations. The metrics include loss, accuracy, Dice
coefficient, Jaccard distance, and intersection over union, among others. For each metric, the table
shows the count, mean, standard deviation, minimum, 25th percentile, median, 75th percentile, and
maximum values across the 25 observations. The mean values provide an indication of the performance
of the machine learning model on the validation set, while the standard deviation shows the degree of
variability across the observations. The minimum and maximum values highlight the range of possible
values for each metric, while the percentiles give an idea of the distribution of the observations. Overall,
the tables provide a comprehensive overview of the performance of the machine learning model on the
validation set across different evaluation metrics.

In term of loss, ResNet-50 achieved lowest values 0.136 whereas VGG19 has higher loss value
0.648. In term of accuracy, U-Net got 99% correct classification while VGG16 and VGG19 performed
worst by obtaining 65% accuracy. In term of dice coefficient, ResNet-50 works exponentially and
achieved 98% correct results and U-Net performs worst by taking only 62% correct values. The dice
coefficient loss ranges from 0 to 1, therefore we have not considered negative values. The lowest dice
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coefficient loss values in our proposed study is 0.018 which is claimed by ResNet-50 and higher value
0.11 achieved by VGG16 and VGG19.

In the context of intersection over union, ResNet-50 attained 98% of the predicted region overlaps
while U-Net gets only 48.5%. The Jaccard distance ranges from 0 to 1, where a score of 0 indicates that
the two sets are identical, and a score of 1 indicates that the two sets have no elements in common. In
term of Jaccard distance, highest 0.02 and lowest 0.11 values were obtained by ResNet-50 and VGG
16 respectively. During validation loss, U-Net with ResNet-50 model achieved lowest loss 0.267 while
ResNet-50 faces higher loss 0.707 as compared to other models. U-Net and VGG16 provide validation
accuracy 99% highest and 64.7% lowest respectively as compared to proposed algorithms. In term of
validation dice coefficient, highest and lowest values accomplished through ResNet-50 and U-Net with
VGG19.

As per validation dice coefficient loss, lowest value 0.032 and highest value 0.11 achieved by
ResNet-50 and VGG19. In validation Intersection over union, ResNet-50 achieved higher values while
U-Net with VGG19 got lowest value 96% and 37% respectively. In term of validation Jaccard distance,
ResNet-50 performs better and VGG19 achieve lowest value 0.036 and 0.11 respectively.

The suggested approach extracted data from images of glioma tumors using the principles of
numerous deep-learning techniques. The features were employed with various tested, trained, and
integrated models for better performance.

6 Conclusion

This study proposes a precise and automatic technique for classifying brain tumors using various
advanced algorithms. The proposed system used the idea of several deep-learning techniques to extract
information from photos of glioma tumors. For better performance, the extracted characteristics were
used with multiple tested, trained, and integrated models. The system’s classification accuracy with
the suggested algorithm was the best compared to all the similar works. Our proposed method also
integrated U-Net with other algorithms to assess the system’s performance. The accuracy provided
by the pre-trained U-Net model has higher than others. Higher performance was achieved from
the integration of U-Net with ResNet-50 on the dataset. Parameters like mean, std, min, max, 25th
percentile, 50th percentile, and 75th percentile were also counted. The proposed system used a dataset
of brain scans from cancer patients to train and evaluate the algorithm’s performance. The dataset
was collected from various medical institutions and preprocessed to remove irrelevant information.
The system was tested on a separate dataset to evaluate its performance. The results showed that the
proposed method accurately classified brain tumors. The system correctly identified the type of brain
tumor with an accuracy of more than 95%. This high level of accuracy is a significant improvement
over the existing methods and could lead to more accurate diagnosis and treatment of brain tumors.
In addition to the classification performance, the proposed system has a user-friendly interface that
allows radiologists and medical professionals to use the system for diagnostic purposes easily. The
system can be integrated into existing radiology systems and assist radiologists in diagnosing brain
tumors. Overall, the proposed method demonstrates the potential of using advanced deep learning
techniques and integrating U-Net with other algorithms to classify brain tumors accurately. The
system’s high accuracy and user-friendly interface make it a valuable tool for diagnosing and treating
brain tumors.
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