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Abstract: Soil classification is one of the emanating topics and major concerns
in many countries. As the population has been increasing at a rapid pace,
the demand for food also increases dynamically. Common approaches used
by agriculturalists are inadequate to satisfy the rising demand, and thus they
have hindered soil cultivation. There comes a demand for computer-related
soil classification methods to support agriculturalists. This study introduces a
Gradient-Based Optimizer and Deep Learning (DL) for Automated Soil Clas-
sification (GBODL-ASC) technique. The presented GBODL-ASC technique
identifies various kinds of soil using DL and computer vision approaches. In
the presented GBODL-ASC technique, three major processes are involved.
At the initial stage, the presented GBODL-ASC technique applies the GBO
algorithm with the EfficientNet prototype to generate feature vectors. For soil
categorization, the GBODL-ASC procedure uses an arithmetic optimization
algorithm (AOA) with a Back Propagation Neural Network (BPNN) model.
The design of GBO and AOA algorithms assist in the proper selection of
parameter values for the EfficientNet and BPNN models, respectively. To
demonstrate the significant soil classification outcomes of the GBODL-ASC
methodology, a wide-ranging simulation analysis is performed on a soil
dataset comprising 156 images and five classes. The simulation values show the
betterment of the GBODL-ASC model through other models with maximum
precision of 95.64%.
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1 Introduction

Soil classification is the most emanating topic and a major affair in several countries, and its
features play a crucial role in estimating different agriculture-relevant jobs and, thus, have an influence
on the engineering sector of farming [1]. Perceiving soil features might lay out valuable data to
develop well-circumspect management and better logical system and utilize them in farming sectors.
Climate, Biota, and ecological antiquity were the major aspect that affected the physical and chemical
characteristics of the soil excessively (regional and continental scale), whereas crucial factors would
be topography and human activity controls soil characteristics at a minimal level [2]. The important
component of soil is the distinct fragments (quartz grains, plant fragments, and clay minerals) that
could be observed in disintegration using an optical microscope. Soil structure can be intrinsically
linked to the shape, sharpness, voids, spatial arrangement, contrast frequency, and size of crucial
particles [3]. Furthermore, a lot of traits are based on the magnification and constituent alignment
used. Traditionally, there exist different techniques for determining the colour and texture of the
soil. Several approaches for field and laboratory use are the Munsell colour chart method, pipette
technique, elutriation technique, and decantation technique [4]. Also, for soil categorization, the
triangle technique exists. The disadvantage of this method is such; these are time-consuming and
labour-intensive. Thus, soil classification has received considerable interest in the utilization of image
processing and computer vision-oriented techniques for soil categorization [5].

Deep learning (DL) is modelled by simulating the anatomical structure of the human brain and
has made breakthroughs in applications, including speech recognition and image recognition [6]. The
widely applied classification technique, Support Vector Machines (SVMs), is a Machine Learnings
(MLs) procedure related to statistical learning concepts. The concept behindhand SVM is that the
input sample was projected from lower to higher dimension space through non-linear mapping that
allows information in the lower dimensional space that isn’t linearly separable to convert into a
linearly separable dataset in the higher dimensional space [7]. In contrast, the DL algorithm is to
convert the original signals layer-wise and converts the feature representations in the original to novel
feature space. Also, it learns to obtain the hierarchical feature representations automatically, and
the classification outcome is accomplished [8]. Convolution Neural Network (CNN) is a network
architecture in the DL method that has better effects in the classification of images and makes the
CNN technique extensively applied in several domains [9]. CNN is a non-destructive and emerging
technique for the applications of quality monitoring of agriculture products, involves the grading and
detection of vegetables, fruits, and so on, and has accomplished better outcomes [10]. Usually, CNN
is utilized for classification modelling with a larger sample size.

This study introduces a Gradient-Based Optimizer and Deep Learning for Automated Soil
Classification (GBODL-ASC) technique. The presented GBODL-ASC technique identifies various
kinds of soil using DL and computer vision approaches. In the presented GBODL-ASC technique,
three significant processes are involved. At the initial stage, the presented GBODL-ASC technique
applies the GBO algorithm with the EfficientNet prototype to generate aspect vectors. For soil
categorization, the GBODL-ASC method uses Arithmetic Optimization Algorithms (AOAs) with
Back Propagation Neural Networks (BPNNs) model. The design of GBO and AOA algorithms assist
in the proper selection of parameter values for the EfficientNet and BPNN models, respectively. To
demonstrate the significant soil classification outcomes of the GBODL-ASC methodology, a wide-
ranging simulation analysis is performed.
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The balance research is arranged in the following. Section 2 defines the literature reviewing,
and Section 3 offers the suggested models. Next, Section 4 provides experimental validation, and
Section 5 completes the study.

2 Related Works

In [11], an innovative optimized multi-output Generalized Feed-Forward Neural Networks
(GFNNs) structure utilizing fifty-eight Piezocone Penetration Test Points (CPTs) to produce a
digitalized soil categories map in the South-West region of Sweden was formulated. The presented
GFNN structure was assisted by the Generalized Shunting Neurons (GSNs) method calculating
units for raising the ability of non-linear restrictions of categorized paradigms. In [12], the author
modelled a technique that forecasts soil sequence with land category, and as per the assessment, this
can recommend suitable crops. Numerous ML techniques like Gaussian Kernel-based SVM, Weighted
K-Nearest Neighbor (k-NN), and Bagged Trees were employed for categorizing soil. In [13], the soil
test report values will be employed for classifying numerous soil features like village-wise soil fertility
indices of Available Boron (B), Phosphorus (P), Organic Carbon (OC), and Available Potassium (K),
along with the parameter Soil Reaction (pH). These five classifier issues were solved with the use of
fast learning classifier approach called Extreme Learning Machine (ELM) with various activation
functions, namely triangular basis, Gaussian radial basis, hyperbolic tangent, hard limit, and sine-
squared.

Escorcia-Gutierrez et al. [14] intend to devise an intellectual soil nutrition and pH categoriza-
tion utilizing the Weighted Voting Ensemble DL (ISNpHC-WVE) method. The target of devised
ISNpHC-WVE approach is to categorize the presence of nutrients and pH levels existing in the soil.
Furthermore, 3 DL techniques named Bidirectional Long Short-Term Memory’s (BiLSTMs), Gated
Recurrent Units (GRUs), and Deep Belief Networks (DBNs) are employed for predictive analysis.
Moreover, the hyper-parameter optimization of 3 DL techniques has been carried out through the
manta ray foraging optimization (MRFO) method. Dinh et al. [15] formulated an ML method related
to SVM for soil erosion contemplation. The SVM acts as the chief predictive equipment accomplishing
a non-linear function that maps take influencing elements for precise forecasts. Additionally, history-
related adaptive discrepancy evolution, including Linear Population Size Reduction and Population-
Wide Inertia Term (L-SHADE-PWI), was leveraged for identifying the finest set of constraints for
SVM for enhancing the prototype’s accuracy.

Vu et al. [16] devise an advanced data-driven approach that depends on the Social Spider
Algorithms (SSAs), Metaheuristic and Multivariate Adaptive Regression Splines (MARS), which
are used to estimate soil erosion susceptibility. Temporarily, the SSA meta-heuristic was intended to
enhance the MARS efficiency by spontaneously tuning its hyperparameter. In [17], a new technique
was formulated in this work for zonation and soil classification in 2D vertical cross-section utilizing
Cone Penetration Test (CPT). The modelled technique has three main components: soil layer or zone
delineation utilizing an edge recognition algorithm, 2D interpolation of CPT Datasets utilizing 2D
Bayesian compressive sampling, determining Soil Behavior Type (SBT) utilizing an SBT chart at all
locations in the 2D section, which includes areas with unsampled locations and measurements.

3 The Proposed Model

In this research, an automatic soil categorization technique, named GBODL-ASC technique,
using DL and computer vision approaches, is presented. In the presented GBODL-ASC technique,
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three major processes are involved, namely EfficientNet feature extraction, BPNN classification, and
parameter optimization. Fig. 1 illustrates the working technique of the GBODL-ASC method.

Figure 1: Working procedure of GBODL-ASC method

3.1 Module I: Feature Extraction Process

The introduced GBODL-ASC method applies the EfficientNet model to generate feature vectors.
EffcientNet is developed to optimize the efficiency and accuracy of CNN through a uniform scaling
mechanism to each dimension, viz., network resolution, depth, and width, yet scaling down the model
[18]. Generally, convNet scales up or down by altering the resolution, depth, or width of the network,
but scaling individual dimensions of the network augments accuracy. Hence, to accomplish the best
efficiency and accuracy, it is significant to uniformly scale each dimension of network depth, width,
and resolution.

The compound scale model uses grid searching to discover the associations amongst the distinct
scale dimension of the baseline networking in static resource constraints. In the presented technique,
an adequate scaling feature for depth, width, and resolution dimension is defined. This coefficient
was employed for scaling the baseline networking to the anticipated goal. This kind of structure
is named the EfficientNet model, and it has eight dissimilar variations between EfficientNet B0 to
EfficientNet B7. The precision of EfficientNet rises explicitly as the procedure count rises. They were
termed EfficientNet since they accomplished the best efficiency and accuracy than the preceding CNN.

The essential component of the EfficientNet families can be the inverted bottleneck MBConv that
is resulting from MobileNetV2 developed. The block of MBconv was an inverted residual blocking
encompassing levels that initially widened and expanded the channel. Hence the straight connection
is utilized between bottlenecks that interconnect a less amount of channels when compared to the
expansion layer. Additionally, this framework employs in-depth separable convolution that brings
down computation by nearly a k2 factor than typical layers, whereas k represents kernel size. For
working with inverted residual connection and to enhance accuracy, a novel activation function named
Swish activation was utilized rather than the ReLu activation function. To construct the variant of
baseline models, distinct values will be replaced for the compound coefficient psi [18].

Depth : d = αψ (1)

Width : w = βψ (2)
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resolution : r = γψ (3)

α ≥ 1, β ≥ 1, γ ≥ 1

whereas α, β, γ denotes constant fixed through grid search. ψ represents user-determined coefficients
which control how much resources are available for model scaling, whereas α, β, γ define how to
assign this extra resource to the resolution, width, and depth of the network correspondingly. With
baseline EfficientNet-BO, a compound scaling model can be used to scale up through the subsequent
two steps

• Utilizing determined α, β, γ values as constant enhance baseline networks for creating
EfficientNet B1 to B7 with ψ value.

• Define the better value for α, β, γ by fixing ψ = 1 through grid searching with the hypothesis
that there exist twice as various resources offered.

Then, the classifier outcomes attained by distinct TL methods are examined. From the outcomes,
it is evident that EfficientNet generates best outcomes than others.

To regulate the hyper-parameters associated with the EfficientNet procedure, the GBO technique
was exploited. Generally, the GBO stimulates gradient-related Newton’s technique [19]. The GBO is
based on two operators for updating the solutions, namely the Gradient Search Rules (GSRs) and
the Local Escaping Operators (LEOs). Initially, it is utilized for improving the exploration and then
improving the exploitation capability. The primary process in GBO is to create a population X with
N solution, generated randomly using Eq. (4) [19]:

χi = χmin + rand × (xmax − xmin), i = 1, 2, . . . , N (4)

In Eq. (4), χmin and xmax denote the boundaries of the search space, and rand ∈ [0, 1] indicates
the random integer. Next, the fitness values for all the solutions are calculated, and later the better
solution is defined. Thus, the direction movement (DM) and gradient search rule (GSR) is employed
for updating the solution (xIi

i , i = 1, 2, . . . , N) in the direction (xb − xIt
i ) (whereas xb represents the

better solution). This updating procedure can be accomplished by calculating x1It
i , x2It

i and x3It
i as

follows [19]:

x1Ii
i = xIt

i − GSR + rand × ρ1 × (
χb − xIt

i

)
(5)

From the expression, ρ1 is utilized for enhancing the balance between exploitation and exploration,
and it can be formulated by Eq. (6):

ρ1 = 2 × rand × α − α (6)

whereas:

α = |β × sin(3π/2 + sin(β × 3π/2))|
β = βmin + (βmax − βmin) × (

1 − (It/MaxIt)
3
)2

Now, βmin = 0.2 and βmax = 1.2. Iter signifies the existing iterations, and MaxIt shows the overall
iteration count:

GSR = randn × ρ2 × 2 × 	x × xIt
i

ypi − yqi + e
(7)

	x = rand (1: N) × ∣∣((xb − xIt
r1

) + δ)/2
∣∣
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δ = 2 × rand × (| (xIi
r1 + xIt

r2 + xIt
r3 + xIt

r4

)
/4 − xIt

i |
)

where rand(1: N) represent a random vector whose dimensions, r1, r2, r3, and r4, indicate random
number within [1, N]. ypi and yqi positions are upgraded as follows [19]:

ypi = rand × (xs + χi)/2 + rand × 	x (8)

yqi = rand × xs + xIt
i

2
− rand × 	x (9)

xs = xIt
i − randn × ρ1 × 2 × 	x × xIt

i

xb − xworst + e
(10)

x2It
i = χb − GSR + rand × ρ2 × (

xIt
r1 − xIt

r2

)
(11)

x3Ii
i = xIt

i − ρ1 × (
x1It

i − x2Ii
i

)
(12)

By using x1It
i , x2It

i , and x3It
i positions, a new solution at It + 1 iteration can be attained:

xIt+1
i = ra × (

rb × x1Ii
i + (1 − rb) × x2Ii

i

) + (1 − ra) × x3Ii
i (13)

In Eq. (13), ra and rb represent two random values. Furthermore, the LEO is employed for
improving the exploitation capability of GBO. This can be accomplished by upgrading the solution xIt

i

through the subsequent formula based on pr probability:

xIt+1
i =

{
xIt

i + f1 × W1 + f2 × ρ1 × W3 + u2 × W2/2 pr < 0.5
χb + f1 × W1 + f2 × ρ1 × W3 + u2 × W2/2 otherwise

(14)

W1 = (
u1 × xb − u2 × xIt

k

)
,

W2 = (
xIi

r1 − xIt
r2

)
,

W3 = (
u3 × (

x2It
i − x1It

i

))
Now, f1 ∈ [−1, 1] and f2 correspondingly denotes a random integer and u1, u2, and u3 indicates

three random values determined by the following expression:

u1 = L1 × 2 × rand + (1 − L1) (15)

u2 = L1 × rand + (1 − L1)

u3 = L1 × rand + (1 − L1)

whereas L1 indicates a binary variable (assigned to zero or one). Thus, the novel solution can be
attained through the succeeding formula:

xIt
k = L2 × xIt

p + (1 − L2) × xrand (16)

In Eq. (16), L2 is the same as L − 1, xIt
p indicates the solution selected from X , and xrand represents

a random solution attained by Eq. (4).
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3.2 Module II: Soil Classification Process

For soil classification, the feature vectors are passed into the BPNN prototype. The BPNN is a NN
form that is extensively applied in different scenarios due to its self-adaptive capabilities and stronger
non-linear mapping [20]. It comprises implicit, output, and input layers. Where O signifies the output
and xj represents the input. Fig. 2 depicts the infrastructure of BPNN. Meanwhile, the output is a
score, the number of outputs is fixed as 1, and the input comprises of distinct index dataset, and the
number of inputs is fixed as 13, and it can be framed as mentioned in the following [20]:

hid−num = √
m + n + a (17)

Figure 2: Structure of BPNN

In Eq. (17), hid−num indicates the neuron count in the Hidden Layer (HL), m denotes the neuron
number in the input layer, n indicates the neuron count in the output layer, and a indicates an integer
with 1 ≤ a ≤ 10. Afterwards, defining the fundamental architecture of the NN, the nodes of the input
and output in the HL are consequently computed. The input of j-th neurons in the HL is evaluated as
follows [20]:

Hidj =
∑n

i=1
wijxj − θ 1

i (18)

In Eq. (18), n indicates the input count, wij denotes the connecting line weight from i-th to j-
th neurons, xj shows the input value, and θ 1

i indicates the threshold value of j-th HL, and it can be
expressed as follows [20]:

Oj = f
( ∑n

j=1
wijxj − θ61j

)
(19)

In Eq. (19), function f represents the excitation function, and it is given in the following expression:

y =
∑k

i=1
wjOj + θ 2 (20)

Finally, the BPNN parameters can be chosen optimally by the AOA. AOA uses mathematical
operators in arithmetic [21]. AOA provides an uncomplicated application that is regulated to overcome
novel optimization problems. Also, AOA does not require altering several parameters. Similarly, the
AOA’s parameters of random and adaptive hastened the convergence and divergence of searching
resolutions. The fundamental AOA operations are exploitation, initialization, and exploration.
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(a) Initialization. As demonstrated in Eq. (21), candidate solutions (XA) are arbitrarily produced.
The existing populace can be denoted as the matrix XA. The dimension is represented as DM. The
number of persons can be indicated as NP as follows [21].

XA =

⎡
⎢⎢⎣

xa1,1 · · · xa1,DM−1 xa1,DM

xa2,1 · · · xa2,DM−1 xa2,DM

... · · · ...
...

xaNP,1 · · · xaNP,DM−1 xaNP,DM

⎤
⎥⎥⎦ (21)

The search phrase was selected as an exploitation or exploration stage with the use of the math
optimizer accelerated (MOA) function in Eq. (22).

MOA (iter) = miniter + iter ×
(

max iter − min iter
Miter

)
, (22)

whereas Miter indicates the maximal amount of iterations. The existing iteration can be represented as
iter. The minimal and maximal MOA values represent miniter and maxiter correspondingly. miniter
and maxiter are variables and fixed as 0.2 and 1, correspondingly.

(b) Exploration. When r1 > MOA(r1 represents an arbitrary value), the Division (D) or
Multiplication (M) operators are performed [21].

xai,j (iter + 1) =
{

best
(
xaj

) ÷ (MOP + ε) × ((
UBj − LBj

) × μ + LBj

)
, r2 > 0.5

best
(
xaj

) × MOP × ((
UBj − LBj

) × μ + LBj

)
, r2 ≤ 0.5′ (23)

whereas r2 indicates a random integer. Best(xa) indicates the j-th location in the optimum solution. ε

represents a smaller value. The upper and lower limits of the j-th location are indicated as UBj, and
LBj.μ are fixed as 0.5.

MOP(iter) = 1 − iter1/α

Miter1/α′ (24)

whereas α denotes the sensitive parameter that is set equivalent to 5.

(c) Exploitation. When r1 ≤ MOA, the Subtraction (S) or Addition (A) operators are performed
[21].

xai,j (iter + 1) =
{

best
(
xaj

) − MOP × ((
UBj − LBj

) × μ + LBj

)
, r3 > 0.5

best
(
xaj

) + MOP × ((
UBj − LBj

) × μ + LBj

)
, r3 ≤ 0.5

(25)

Lastly, the optimum solution for the existing iteration is the best. The current optimal fitness is
related to the preceding better fitness, and the lowest values are applied to compute the final optimum
solution.

The AOA algorithm makes Fitness Function (FF) derivation to get an enhanced categorizer result.
It defines positive values as indicating the superior result of the candidate’s resolutions. In this study,
the mitigated categorizer error rate will be regarded as the FF, as demonstrated in Eq. (26) [21].

fitness (xi) = ClassifierErrorRate (xi) = number of misclassified samples
total number of samples

∗ 100 (26)

4 Experimental Validation

In this segment, the experimental validation of the GBODL-ASC method on the soil classification
process is well studied on a dataset [22] comprising 156 images and five classes, as defined in Table 1.
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Fig. 3 illustrates the trial pictures. The dataset includes images with 300 dpi resolution, 250 m spatial
resolution, three band spectral resolution, RGB colour system, and three channels.

Table 1: Particulars of the dataset

Class No. of images

Black 37
Cinder 30
Laterite 30
Peat 30
Yellow 29

Total number of images 156

Figure 3: Sample images
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The soil categorization results of the GBODL-ASC model under distinct epochs are represented
in Fig. 4. The figure accentuated that the GBODL-ASC procedure has recognized five different kinds
of soil. On epoch 50, the GBODL-ASC model has categorized 25 samples into Black, 18 samples
into Cinder, 21 samples into Laterite, 12 samples into Peat, and 13 samples into Yellow. Moreover,
on epoch 200, the GBODL-ASC approach has categorized 31 samples into Black, 23 samples into
Cinder, 23 samples into Laterite, 26 samples into Peat, and 25 samples into Yellow. Furthermore, on
epoch 250, the GBODL-ASC system has categorized 30 samples into Black, 24 samples into Cinder,
26 samples into Laterite, 26 samples into Peat, and 24 samples into Yellow. At last, on epoch 300, the
GBODL-ASC technique has categorized 31 samples into Black, 25 samples into Cinder, 28 samples
into Laterite, 27 samples into Peat, and 28 samples into Yellow.

Figure 4: (Continued)
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Figure 4: Confusion matrices of GBODL-ASC structure (a) Epoch50, (b) Epoch100, (c) Epoch150,
(d) Epoch200, (e) Epoch250, and (f) Epoch300

Table 2 reports a brief set of soil classification outcomes of the GBODL-ASC model under distinct
epochs. The experimental values signified the GBODL-ASC model had obtained improved outcomes
under every epoch. For instance, on 50 epochs, the GBODL-ASC model has attained an average accuy

of 82.82%, precn of 60.71%, recal of 56.48%, Fscore of 56.54%, receiver operating characteristic (ROC)
curve ROCscore of 72.85%, and Jaccardindex of 39.59%. Also, on 100 epochs, the GBODL-ASC system
has reached an average accuy of 91.54%, precn of 78.97%, recal of 79.17%, Fscore of 79.01%, ROCscore of
86.93%, and Jaccardindex of 65.47%. Along with that, on 200 epochs, the GBODL-ASC technique has
accomplished an average accuy of 92.82%, precn of 82.55%, recal of 82%, Fscore of 82.14%, ROCscore of
88.74%, and Jaccardindex of 69.79%. Finally, on 300 epochs, the GBODL-ASC system has achieved an
average accuy of 95.64%, precn of 89.17%, recal of 89.40%, Fscore of 89.11%, ROCscore of 93.35%, and
Jaccardindex of 80.52%.

Table 2: Soil categorization result of GBODL-ASC system under distinct measuring and epochs

Class Accuracy Precision Recall F-score ROC score Jaccard index
Epoch-50

Black 81.41 59.52 67.57 63.29 76.64 46.30
Cinder 85.90 64.29 60.00 62.07 76.03 45.00
Laterite 76.28 42.86 70.00 53.16 73.89 36.21
Peat 85.90 75.00 40.00 52.17 68.41 35.29
Yellow 84.62 61.90 44.83 52.00 69.26 35.14
Average 82.82 60.71 56.48 56.54 72.85 39.59

Epoch-100
Black 88.46 77.14 72.97 75.00 83.13 60.00
Cinder 92.95 82.76 80.00 81.36 88.02 68.57

(Continued)
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Table 2: Continued
Class Accuracy Precision Recall F-score ROC score Jaccard index

Epoch-50

Laterite 90.38 75.86 73.33 74.58 83.89 59.46
Peat 91.67 75.76 83.33 79.37 88.49 65.79
Yellow 94.23 83.33 86.21 84.75 91.13 73.53
Average 91.54 78.97 79.17 79.01 86.93 65.47

Epoch-150
Black 92.95 90.62 78.38 84.06 87.93 72.50
Cinder 92.95 80.65 83.33 81.97 89.29 69.44
Laterite 92.95 80.65 83.33 81.97 89.29 69.44
Peat 92.95 77.14 90.00 83.08 91.83 71.05
Yellow 97.44 96.30 89.66 92.86 94.43 86.67
Average 93.85 85.07 84.94 84.79 90.55 73.82

Epoch-200
Black 90.38 77.50 83.78 80.52 88.11 67.39
Cinder 93.59 88.46 76.67 82.14 87.14 69.70
Laterite 91.67 79.31 76.67 77.97 85.95 63.89
Peat 93.59 81.25 86.67 83.87 90.95 72.22
Yellow 94.87 86.21 86.21 86.21 91.53 75.76
Average 92.82 82.55 82.00 82.14 88.74 69.79

Epoch-250
Black 93.59 90.91 81.08 85.71 89.28 75.00
Cinder 92.95 82.76 80.00 81.36 88.02 68.57
Laterite 92.31 76.47 86.67 81.25 90.16 68.42
Peat 94.87 86.67 86.67 86.67 91.75 76.47
Yellow 92.95 80.00 82.76 81.36 89.02 68.57
Average 93.33 83.36 83.43 83.27 89.64 71.41

Epoch-300
Black 95.51 96.88 83.78 89.86 91.47 81.58
Cinder 94.23 86.21 83.33 84.75 90.08 73.53
Laterite 94.87 82.35 93.33 87.50 94.29 77.78
Peat 95.51 87.10 90.00 88.52 93.41 79.41
Yellow 98.08 93.33 96.55 94.92 97.49 90.32
Average 95.64 89.17 89.40 89.11 93.35 80.52

The Training Accuracy (TACC) and Validation Accuracy (VACC) of the GBODL-ASC procedure
under distinct epochs are evaluated on soil categorization achievement in Fig. 5. The image pointed
out that the GBODL-ASC algorithm has demonstrated precipitated accomplishment with precipitated
values of TACC and VACC. It is noticeable that the GBODL-ASC system has attained higher TACC
results.
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Figure 5: TACC and VACC analysis of GBODL-ASC system

The Training Loss (TLS) and Validation Loss (VLS) of the GBODL-ASC system under varying
epochs on soil classification accomplishment in Fig. 6. The image referred that the GBODL-ASC
procedure has exhibited optimum accomplishment with lessened TLS and VLS values. The GBODL-
ASC methodology has given an outcome in reduced VLS results.
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Figure 6: Evaluation of TLS and VLS GBODL-ASC technique

An apparent precision-recall analysis of the GBODL-ASC system in distinct epochs is described
in Fig. 7. specified that the GBODL-ASC procedure had given an outcome in greater precision-recall
values in several categories.
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Figure 7: Precision-recall investigation of the GBODL-ASC method

An overall ROC research of the GBODL-ASC approach in distinct epochs is illustrated in Fig. 8.
The result emphasized by the GBODL-ASC method has exposed its capability in cataloguing in several
classes.

Figure 8: ROC curve inspection of GBODL-ASC method

Comparative soil classification results of the GBODL-ASC method with recent methods are
portrayed in Table 3. The obtained values inferred the betterment of the GBODL-ASC model
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compared to recent methods. For example, based on accuy, the GBODL-ASC method has obtained
an improved accuy of 95.64% while the Particle Swarm Optimization (PSO), Gravitational Search
Algorithm (GSA), Decision Tree (DT3), Artificial Neural Network (ANN), SVM, and hybrid Fuzzy
C-Means with Crow Search Optimization (FCM-CSO) models have reached reduced accuy of 76.30%,
77.20%, 87.99%, 88.81%, 88.64%, and 94.32% respectively.

Table 3: Comparative investigation of the GBODL-ASC system with current procedures

Methods Accuracy Precision Recall F1-score

GBODL-ASC 95.64 89.17 89.40 89.11
PSO model 76.30 78.10 79.75 78.07
GSA model 77.20 78.54 76.86 77.75
DT3 algorithm 87.99 86.12 87.74 87.86
ANN model 88.81 87.23 88.50 86.91
SVM algorithm 88.64 86.72 87.87 88.85
Hybrid FCM-CSO model 94.32 89.15 88.93 88.90

Also, concerning precn, the GBODL-ASC approach has reached an enhanced precn of 89.17%
while the PSO, GSA, DT3, ANN, SVM, and hybrid FCM-CSO approaches have attained lower precn

of 78.10%, 78.54%, 86.12%, 87.23%,86.72%, and 89.15% appropriately. These outcomes guaranteed
the capability of the GBODL-ASC prototype in the automated soil classification process.

5 Conclusion

In this study, an automated soil classification technique is introduced, named the GBODL-ASC
technique using DL and computer vision approaches. In the presented GBODL-ASC technique, three
major processes are involved. At the initial stage, the presented GBODL-ASC technique applies the
GBO algorithm with the EfficientNet procedure to generate feature vectors. For soil categorization,
the GBODL-ASC procedure uses an AOA with the BPNN model. The design of GBO and AOA
algorithms assist in the proper selection of parameter values for the EfficientNet and BPNN models,
respectively. To demonstrate the significant soil classification outcomes of the GBODL-ASC method,
a wide-ranging simulation analysis is performed. The experimental outcomes show an enhanced
GBODL-ASC model than other techniques.
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