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Abstract: Log anomaly detection is an important paradigm for system
troubleshooting. Existing log anomaly detection based on Long Short-Term
Memory (LSTM) networks is time-consuming to handle long sequences.
Transformer model is introduced to promote efficiency. However, most exist-
ing Transformer-based log anomaly detection methods convert unstructured
log messages into structured templates by log parsing, which introduces
parsing errors. They only extract simple semantic feature, which ignores other
features, and are generally supervised, relying on the amount of labeled
data. To overcome the limitations of existing methods, this paper proposes
a novel unsupervised log anomaly detection method based on multi-feature
(UMFLog). UMFLog includes two sub-models to consider two kinds of fea-
tures: semantic feature and statistical feature, respectively. UMFLog applies
the log original content with detailed parameters instead of templates or
template IDs to avoid log parsing errors. In the first sub-model, UMFLog uses
Bidirectional Encoder Representations from Transformers (BERT) instead of
random initialization to extract effective semantic feature, and an unsuper-
vised hypersphere-based Transformer model to learn compact log sequence
representations and obtain anomaly candidates. In the second sub-model,
UMFLog exploits a statistical feature-based Variational Autoencoder (VAE)
about word occurrence times to identify the final anomaly from anomaly
candidates. Extensive experiments and evaluations are conducted on three real
public log datasets. The results show that UMFLog significantly improves F1-
scores compared to the state-of-the-art (SOTA) methods because of the multi-
feature.
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1 Introduction

Modern large-scale systems usually serve millions of users, and as the number of users grows,
the scale of the system becomes larger and larger, which is vulnerable to potential threats [1–3]. Any
system failure caused by unstable factors leads to a large number of economic losses. Therefore, it is
critical to maintain the stable and healthy operation of the system. Anomaly detection can identify
failures and alert the operator in time to mitigate the loss of the system. Most anomaly detection
methods focus on Key Performance Indicators (KPI) [4,5] to find outliers that deviate from normal
indicator data. However, since KPI only contain numerical data, it is hard to know the specific
reason for the anomaly. Instead, log messages record detailed information about the operation of a
system, including operating status, and generate events, which are important data sources for anomaly
detection. For example, “1118147576 2005.06.07 R17-M0-N1-C:J03-U01 2005-06-07-05.32.56.626092
RAS KERNEL FATAL machine check interrupt (bit=0x1d): L2 dcache unit data parity error” is a
log message of the supercomputer, which shows a data parity error occurred on 07/06/2005 at 05:32:56
while machine checking. Log anomaly detection aims to automatically detect all abnormal logs from
log data so that operators can quickly troubleshoot problems and ensure the reliability of the system,
which has attracted extensive research [6–9].

With the popularity and development of Deep Learning (DL) [10,11] and Natural Language
Processing (NLP) [12–15], Recurrent Neural Networks (RNNs) models, such as Long Short-Term
Memory (LSTM) [16] networks, are widely applied to log sequence anomaly detection due to their
memory property for sequence data [17–21]. DeepLog [17] and LogAnomaly [18] use LSTM to
construct unsupervised models to detect anomalies that deviate from normal sequential patterns,
whereas LogRobust [19] and SwissLog [20] build supervised models to detect log anomalies by
combining attention mechanisms into Bidirectional Long Short-Term Memory (Bi-LSTM) networks.
However, both LSTM and Bi-LSTM need to process sequence data in left-to-right or right-to-left
order, which is time-consuming and unsuitable for long sequence data. Typically, the sequence of
logs generated by the system can be relatively long (e.g., in a cloud computing environment such as
OpenStack, the logs are generated by a particular VM instance during its lifecycle from startup to
destruction). Therefore, RNNs-based log anomaly detection has low efficiency.

Recently, the Transformer [22] architecture instead of LSTM stands out in log anomaly detection,
which greatly improves the effect of log anomaly detection [23–30]. Transformer can not only process
the sequence in parallel to solve the long-range dependency problem but also has lower computational
complexity and cost. However, existing works based on Transformer still face the following challenges:

Challenge 1: Most existing methods rely on log parsing to preprocess semi-structured log data.
However, log parsing may introduce parsing errors and information loss because of log evolution,
which affects the performance of anomaly detection [30].

Challenge 2: Existing methods usually exploit One-Hot encoding, Word2vec word embedding, or
random vector initialization to represent the log messages. These methods have poor representation
ability to extract the semantics of log messages, which also impacts the effectiveness of anomaly
detection.

Challenge 3: System logs record the important operations and states of a running system, which
provide rich information (log contents, timestamps, parameters, components, and other information)
for diagnosing and maintaining the system. It is still a tricky problem to fully utilize the rich
information in logs for anomaly analysis.
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Challenge 4: In practice, the number of normal logs is much larger than that of abnormal logs, and
the label cost of abnormal logs is huge. The inability of supervision-based anomaly detection methods
to address imbalanced data issues and detect unknown anomalies is out of step with current industrial
practice.

To overcome the above challenges, this paper proposes an unsupervised log anomaly detection
method based on multi-feature named UMFLog. UMFLog includes two sub-models to consider
two kinds of features: semantic feature and statistical feature, respectively. The first model uses a
hypersphere-based Transformer model to learn log sequence representations and obtain anomaly
candidates. Then, the second model uses a statistical feature-based Variational Autoencoder (VAE)
model about word occurrence times in the log sequence to identify the final anomaly from anomaly
candidates. The main contributions of this paper are summarized as follows:

• To avoid the log parsing error problems in Challenge 1, this paper directly processes the original
content of the log message without log parsing, which preserves the parameters of the log
content and the context order in the log sequence.

• To address the lack of log semantic problems in Challenge 2, this paper constructs a Transformer
anomaly detection model based on hypersphere. The model uses the large pre-trained language
model Bidirectional Encoder Representations from Transformers (BERT) [31] to extract the
semantic information of logs and constructs a compact log sequence representation by the
hypersphere loss to filter out anomaly candidates.

• To solve the lack of log multi-feature representation problem in Challenge 3, this paper
constructs a statistical feature-based VAE model of word occurrence times. The model counts
the occurrences of log sequence tokens to obtain statistical features so as to make full use of
log information, which identifies the final anomaly from anomaly candidates and effectively
reduces false positives.

• UMFLog is an unsupervised model which does not need labeled data for training and can
cope with the label cost problem in challenge 4. Extensive experiments and evaluations are
conducted on three real public log datasets, Blue Gene/L(BGL) [32], Thunderbird [32], and
Hadoop Distributed File System (HDFS) [33]. The results show that UMFLog significantly
improves evaluation scores compared to the state-of-the-art (SOTA) methods.

The remainder of this paper is organized as follows: Section 2 presents related work. Section 3
introduces preliminaries. Section 4 provides an overview and detailed steps of UMFLog. Section 5
conducts experimental evaluations and discusses the results. Finally, Section 6 summarizes the paper
and looks forward to future work.

2 Related Works

This subsection first summarizes the related work on log anomaly detection methods based on
RNNs and Transformers. Then, it summarizes the SOTA methods with hyperspheres and compares
them with UMFLog.

2.1 RNNs-based Methods

DeepLog [17] treats log messages as sequential elements, that follow specific patterns and syntax
rules and build an unsupervised log anomaly detection model by LSTM for the first time. DeepLog
ignores the semantic information of log messages and represents log messages with log template IDs.
Therefore, LogAnomaly [18] proposes Template2Vec to construct a collection of synonym-antonyms
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to extract the semantic information hidden in log templates and construct an unsupervised model
to detect log sequential anomalies and quantity anomalies by LSTM. LogRobust [19] uses a text
representation model called Fasttext to learn the semantic vector of a log template, which solves
the log robustness problem, and constructs a supervised model by Bi-LSTM with attention for log
anomaly detection. SwissLog [20] takes BERT as a sentence encoder to extract log template semantic
embeddings by random initializing the words in the log template, and concatenates the semantic
embeddings with the time interval embeddings. Based on the joint embedding, a supervised model is
constructed by BiLSTM to detect anomalies of log sequence order changes and log interval changes.
LogTAD [21] solves the problem of insufficient target domain data by transferring the source domain
knowledge. Specifically, it uses the adversarial domain network to mix the source domain and target
domain data and trains the LSTM model with the hypersphere loss.

The above RNNs-based method is time-consuming and not suitable for long sequence data.

2.2 Transformer-based Methods

Unsupervised methods based on Transform are proposed. Wibisono et al. [23] use Transformer
to replace LSTM for the first time to solve the problem of long-sequence log anomaly detection.
Chen et al. [24] reproduce the experiments based on Ref. [23] and carry out comparative experiments
to demonstrate the superiority of Transformer in log anomaly detection. Logsy [25] initializes log
template token IDs(refers to TokenID, and the token is what constitutes the content of the log
message) with random vectors to extract the semantic embeddings by Transformer encoder with help
of auxiliary dataset. Finally, it trains the model with a hypersphere loss to obtain compact vector
representations of log events for individual log anomaly detection. LogBERT [26] initializes the log
template IDs (refers to TemplateID) with random vectors and obtains the log sequence vectors by the
Transformer encoder. Finally, it combines two self-supervised training tasks, masked event prediction
and hypersphere volume minimization, to learn patterns of normal log sequences and detect anomalies.
Trine [27] uses three Transformer encoders to construct unsupervised models for anomaly detection
based on Generative Adversarial Networks (GAN). One of the Transformer encoders extracts feature
representations of the system logs, while the other two Transformer encoders serve as generators
and discriminators of the GAN, respectively, to alleviate the class imbalance of the data and detect
log anomalies. CAT [28] proposes a self-attention-based encoder-decoder Transformer framework
to predict the mask subsequences, combined with the hypersphere task for log sequence anomaly
detection.

Some supervised methods based on Transformer are proposed. HitAnomaly [29] leverages Trans-
former encoders to build a hierarchy to extract latent representations of log sequences. NeuralLog [30]
does not perform log parsing, directly uses BERT to extract the semantic features of the original log
messages, and exploits the Transformer encoder to build a supervised model to detect log anomalies.

The above Transformer-based methods solve the long sequence dependency problem in LSTM,
but still face the challenges mentioned in Section 1.

2.3 The Differences between SOTA Methods Based on Hyperspheres and UMFLog

This paper summarizes the aforementioned methods based on hyperspheres and contrasts them
with UMFLog to clearly show the differences, as shown in Table 1. In terms of detection object, Logsy
handles single log message, while the detection objects of other methods are log sequences. In terms of
the input form, LogBERT uses the parsed log template ID (TemplateID) as input, while LogTAD uses
the Template token, which contains more information, but they cannot avoid the log parsing errors
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problem. CAT and UMFLog use the raw log content as input. In terms of feature extraction model and
feature embedding, Logsy and LogBERT do not use separate models and use random vectorization
to represent feature embeddings, while other methods use a separate feature extraction model. But
Word2vec, used by LogTAD, cannot extract context semantic features, and the LSTM model cannot
handle the problem of long-sequence log anomaly detection. CAT is more similar to UMFLog in
input form and embedding method, but CAT focuses on predicting the masked subsequences by the
Transformer encoder and decoder. Finally, none of these methods consider multi-features and do not
take full advantage of the rich information in logs.

Table 1: Comparison of methods based on hyperspheres

Method Detection
object

Input form Feature
extraction
model

Feature
embedding

Detection
model

Loss
function

Logsy Single log
message

Token ID / Random
initialization

Transformer
encoder

Hypersphere
loss

LogBERT Log sequence Template ID / Random
initialization

Transformer
encoder

Masked
event
prediction
loss +
hypersphere
loss

LogTAD Log sequence Template Word2vec Template
embedding

LSTM Domain
adversarial
loss +
hypersphere
loss

CAT Log sequence Content Fine-tuning
BERT

Content
embedding

Transformer
encoder
Transformer
decoder

Masked
subsequence
prediction
loss +
hypersphere
loss

UMFLog Log sequence Content,
Statistical data

BERT-Service Content
embedding

Transformer
encoder +VAE

Hypersphere
loss +
reconstruct
loss

3 Preliminaries

This section introduces some basic concepts about log anomaly detection.

3.1 Log Data

Even when the system malfunctions, the system log still records its operational status. As a result,
logs can help operators identify anomalies and locate the root cause of a problem, increasing the
effectiveness of operation and maintenance.

As shown in Fig. 1, this paper gives an example of HDFS logs. There are three raw log messages.
The raw system log records rich information and has special formats that include data, timestamps,
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Process Identification (PID), components, log contents, etc. The log content is semi-structured text
consisting of constant and variable tokens. The constant tokens are the constant keywords. The
variable tokens are the parameters with dynamic runtime information, which are classified into
character parameters and non-character parameters according to the token category. For example,
Table 2 shows the content, constant token, variable token, character parameters, and non-character
parameters of the third HDFS log in Fig. 1.

Figure 1: HDFS raw log and log format

Table 2: HDFS raw log content and parsing results

Content BLOCK∗ NameSystem.allocateBlock:
/mnt/hadoop/mapred/system/job_200811092030_0001/job.split.
blk_7503483334202473044

Constant token BLOCK∗ NameSystem.allocateBlock:
Variable token /mnt/hadoop/mapred/system/job_200811092030_0001/job.split.

blk_7503483334202473044
Character arguments mnt, hadoop, mapred, system, job, split, blk
Non-character
parameter

200811092030_0001,7503483334202473044

Template BLOCK∗ NameSystem.allocateBlock:

3.2 Log Parsing

Since the log content is semi-structured, it is not conducive to automatic processing. Therefore, log
parsing is introduced to get the structured log content. Generally, log parsing keeps the constant token
and deletes the variable tokens, termed a log template. As shown in Table 2, the log template of the
third log message is “BLOCK∗ NameSystem.allocateBlock: ”. It is obvious that the character
parameters with semantics are also discarded, resulting in the loss of semantic information.

In addition, log parsing may cause parsing errors due to the Out-of-Vocabulary (OOV) of log
evolution or misinterpretation of keywords and parameters. As shown in Fig. 2, the log parsing takes
the keywords “dhcpd”and “httpd”as parameters and produces an incorrect log template “<∗> startup
succeeded”.
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Some recent works detect log anomalies without log parsing because the information loss and
parsing errors caused by log parsing degrade the anomaly detection performance [9,30,34]. This paper
also does not perform log parsing to avoid this problem.

Figure 2: Example of log parsing error

4 Unsupervised Log Anomaly Detection Method Based on Multi-feature

This section first gives problem definitions of log anomaly detection, and Table 3 summarizes the
notations that appear in this paper. Then it introduces the overview and steps of the proposed method
in detail.

Table 3: Notations

Symbol Description

tok token. A token is what makes up the content of a log message.

l l =
{

tok1, tok2, . . . , tok|l|
}

A log content l is a sequence of tokens.

S S =
{
l1, l2, . . . , l|S|

}
A log sequence S is a sequence of chronologically

ordered log content.

s

⎧⎨
⎩tokl1

1 , . . . , tokl1|l1|, . . . , tok
l|S|
1 , . . . , tok

l|S|∣∣∣∣∣l|S|
∣∣∣∣∣

⎫⎬
⎭ A log token sequence s is

the token form of the log sequence.

T T =
{
S1, S2, . . . , S|T|

}
Set of log sequences, including training set T1,

validation set T2, and test set T3

esem The initial embedding vector of the log token generated by the
embedding layer of BERT.

wsem Log token semantic vector
lsem Log content semantic vector
P P = {pos1, pos2, . . . , pos|S|} Sequence of positional embeddings of all log

messages in a window.

Xsem Xsem =
{

x1, . . . , xt, . . . , x|S|
}

Sequence of log vectors, where
xt = lsemt + post

(Continued)
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Table 3: Continued
Symbol Description

Zsem Zsem =
{

z1, . . . , zi, . . . , z|S|
}

A sequence of latent representations of log

messages output by Transformer
RS The compact log sequence vector representation
Rc The hypersphere center vector representation
Statok The normalized occurrences times for tokens after the maximum and

minimum normalization
DT,DV DT = {

tok1 : Statok1 , . . . , toki : Statoki , . . . , tokM : StatokMtrain
}

, DV ={
tok1 : Statok1 , . . . , toki : Statoki , . . . , tokM : StatokMval

}
The standard

statistical value Dictionary of all normal sequences in T1 and T2, Mtrain

and Mval is the total number of all tokens in DT and DV, respectively.
Xsta Log sequence statistical feature vector
G Candidate anomaly log sequence set
LOOV LOOV = {oov1, . . . , oovi, . . .} The list of OOV token

4.1 Problem Definition

Definition 4.1 (Log content). Log content is the detailed content of a log message which consists

of a sequence of tokens. Formally, a log content is denoted by l =
{

tok1, tok2, . . . , tok|l|
}

, where toki

represents the i-th tokens, |l| is the total number of tokens.

Definition 4.2 (Log sequence). A log sequence can be described as a sequence of consecutive logs
in chronological order within an observation window. Formally, a log sequence is denoted by S ={
l1, l2, . . . , l|S|

}
, where li represents the i-th log content, |S| is the total number of log content within

a window.

Definition 4.3 (Log token sequence). A log token sequence is the token form of the log sequence.

Formally, a log token sequence is denoted by s =
⎧⎨
⎩tokl1

1 , . . . , tokl1|l1|, . . . , tok
l|S|
1 , . . . , tok

l|S|∣∣∣∣∣l|S|
∣∣∣∣∣

⎫⎬
⎭, where

|li| represents the total number of tokens for the i-th log content, |s| is the total number of tokens of

the log token sequence, |s| = |l1| + |l2| + . . . +
∣∣∣l|S|

∣∣∣.
Definition 4.4 (Log sequence anomaly detection). Given three disjoint set of log sequences as

training set T1 =
{
S1, S2, . . . , S|T1|

}
, validation set T2 =

{
S1, S2, . . . , S|T2|

}
, and test set T3 ={

S, S2, . . . , S|T3|
}

. Using the training set to train an anomaly detection model, the trained model

can indicate whether the sequence S in the test set is normal or anomalous. The training set T1 of
an unsupervised model only contains normal sequences.

4.2 Overview

To overcome the limitations of existing methods, this paper designs UMFLog, a novel unsu-
pervised multi-feature-based log anomaly detection method, whose framework is shown in Fig. 3.
UMFLog is a two-stage model, including an offline training stage and an online detection stage, and



CMC, 2023, vol.76, no.1 525

each stage is composed of two sub-models, namely a hypersphere-based Transformer model and a
statistical feature-based VAE model.

The process of the offline training stage is as follows:

1. Preprocessing. In order to tackle log parsing errors or information loss problems in Challenge
1, this paper preprocesses the historical raw log message data without log parsing to delete
non-character parameters and obtain the log content l;

2. Log sequence partition. The second step is to use a sliding window or a session window to divide
the log contents into the log sequence S and the log token sequence s;

3. Transformer model based on hypersphere. To fully mine semantic features in Challenge 2, this
paper uses Bert to extract semantic features to represent log sequence and builds a Transformer
model based on hypersphere;

4. VAE model based on statistical features. In order to make full use of multi-feature to improve
anomaly detection accuracy and reduce false positives in Challenge 3, this paper builds a
VAE model based on statistical features about word occurrence times in the log sequence for
statistical feature extraction.

In the online detection stage, the new logs perform the same process as the offline training stage
in data preprocessing and log sequence partition. After that, this paper uses the trained Transformer
model with hypersphere to filter out candidate anomaly log sequences. The trained VAE model further
detects candidate anomaly log sequences to determine the final abnormal log sequence.

Figure 3: The framework of UMFLog
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4.3 Preprocessing

In order to preserve parameter information as much as possible and avoid log parsing errors, this
paper replaces the log parsing with preprocessing and obtains the log content consisting of a set of
word tokens. Specifically, each uppercase letter is first converted into lowercase letters. This paper
then uses common delimiters in logging systems (i.e., spaces, colons, commas, etc.) to split the content
into a set of symbolic tokens and remove all non-character tokens such as operators, punctuation, and
numbers from the symbolic tokens, to get log content. It is worth noting that all character parameters
are preserved for extracting the multi-feature. This is because non-character tokens usually represent
variables and do not provide semantic information. Instead, character parameters always provide
semantic information.

Fig. 3 shows the example of preprocessing the raw log content “BLOCK: NameSystem.allocate
Block:/mnt/Hadoop/mapred/system/job_200811092030_001/job.jar.blk_-1608999687919862906”con-
vert to word tokens “block namesystem allocateblock mnt hadoop mapred system job job jar blk”,
where the non-character tokens “200811092030_001, 1608999687919862906” are deleted, and the
character parameters “mnt hadoop mapred system job job jar blk” are preserved.

4.4 Log Sequence Partition

The order of log messages provides the necessary information for anomaly detection. The order of
log messages represents the execution path of a program, and the wrong execution order may mean an
exception occurred. A single log message without the order and context information cannot provide
enough information or features to detect order anomalies. Therefore, all log contents can be divided
into several log sequences by windows to capture the sequential features. The partition methods include
sliding windows, fixed windows, and session windows. For the session window, all log contents that
belong to a user constitute a log sequence. As a result, the length of log contents within a session
window varies. For fixed and sliding windows, all log contents are divided in chronological order by
the window size, which determines the length of the log contents within the window.

4.5 Transformer Model Based on Hypersphere

To address the lack of log semantic problems in challenge 2, this paper designs the hypersphere-
based Transformer model, which is specialized for extracting semantic information from log content
and mining compact latent representations of log sequences.

4.5.1 Semantic Feature Extraction

The feature representations of log sequences are significant because poor log sequence represen-
tations often affect the effect of anomaly detection models. An ideal representation of a log sequence
should be able to represent the differences between different log sequences, and the representation of
log sequences with the same or similar semantics should be close.

Word embedding methods such as Word2vec have been widely applied to convert words in
log content into vectors representing log messages. However, Word2vec cannot extract the context
semantics. It may encode a word with different contexts and semantics into an identical embedding
vector and two different words with the same or similar semantics into two orthogonal vectors, which
would confuse downstream tasks.

Instead of Word2vec or simply random initialization, this paper utilizes the BERT encoder of the
off-the-shelf online service (BERT-as-service) to perform word embeddings. The reason is that BERT
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can extract context semantics and exploit subword tokenization to handle OOV tokens. Specifically,
subword tokenization splits unknown compound tokens into basic words. For example, the rare word
“publickey” is split into more frequent subwords: {“public”, “key”}. In this way, the number of OOV
tokens is reduced. The embedding of the OOV tokens is expressed by all the base words in its sub-
word set.

The simplified structure of BERT is shown in Fig. 4, which contains 12 layers of Transformer
encoders. Because of the maximum input length limitation in BERT, this paper encodes the log
content for each sequence separately. Firstly, BERT adds two extra tokens for each log content

l
{

tok1, tok2, . . . , tok|l|
}

to get a new sequence
{

CLS, tok1, tok2, . . . , tok|l|, SEP
}

, where Classification

Token (CLS) is the log content start token, and Special Token (SEP) is the log content end token. Then,
the embedding layer generates an initial embedding vector esem for each token and feeds them into the
Transformer encoder. Next, the Transformer encoder adds the position information of each log token
and learns the tokens’ embedding representation by self-attention. This paper takes the embedding
representation of the last layer as the token semantic vector wsem. The log content semantic vector
lsem is defined by the average of its corresponding log token semantic vector, as shown in Eq. (1),

lsem = wsemcls + . . . + wsemi + . . . + wsemsep

|l| + 2
(1)

where wsemcls is the token semantic vector of the start token CLS, wsemsep is the token semantic vector
of the end token SEP, wsemi is the i-th token semantic vector, and |l| is the number of word tokens in
the log content l.

In this way, each log message can be represented by the log content semantic vector lsem.

Figure 4: The simplified structure of BERT

4.5.2 Transformer Model

Transformer is designed for sequence-to-sequence encoding-decoding problems such as language
translation and can process sequences of arbitrary length in parallel. As shown in Fig. 5, the
Transformer model includes a position embedding module and a Transformer encoder module.
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A. Position embedding module

The order in the log sequence implies the execution path. According to feature extraction, BERT
represents a log message as a fixed-dimensional semantic vector lsem, where log messages with similar
semantics are closer. However, these semantic vectors do not contain the order information in the log
sequence.

Therefore, to represent the order information, the position encoding module encodes the position
embedding post of the log message based on the sine and cosine functions, as shown in Eq. (2),

pos(i)
t =

{
sin (wit) , t = 2i
cos (wit) , t = 2i + 1

, wi = 1

10000
2i
d

, i = 0, 1, . . . ,
d
2

− 1 (2)

where posi
t represents the i-th element in this position vector pos, t is the position of the log content

lt in the log sequence S, d is the dimension of the log content semantic vector lsem.

The positional embeddings of all log messages within a window constitute the sequence of
positional embeddings P{pos1, pos2, . . . , pos|S|},where |S| is the total number of log messages in the
window. Then, a new log vector xt is obtained by adding the log semantic vector lsemt and the position

embedding post, that is, xt = lsemt+post. The new sequence of log vectors Xsem
{

x1, . . . , xt, . . . , x|S|
}

is used to extract the representation of the log sequence by the Transformer encoder in the following
Transformer encoder module.

Figure 5: Transformer model

B. Transformer encoder module

Transformer encoder is exploited to extract the features of log sequences. The Transformer
encoder consists of a multi-head self-attention layer and a feed-forward network layer. The multi-
head attention layer computes the attention score matrix for each log message with different attention
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patterns by training the query matrix and key-value matrix of the attention layer. Then, the output of
the self-attention layer is fed back to a feed-forward network (FFN) layer, which contains two fully
connected layers to achieve a combination of different attention scores. Finally, the output of the
Transformer encoder is fed to the Dropout layer and the Normalization layer to obtain a sequence of

latent representations Zsem
{

z1, . . . , zi, . . . , z|S|
}

for the log message.

Then the compact log sequence vector representation RS is obtained by the mean of the latent
representations of all log messages in the sequence, as shown in Eq. (3),

RS = 1
|S|

∑|S|
i=1

zi (3)

where zi represents the latent representation of the i-th log message in a window sequence and |S| is
the total number of log messages in the sequence.

4.5.3 Hypersphere Constraint

As an unsupervised model, this paper takes hypersphere as the loss function. Within the constraint
of the hypersphere, an ideal log message sequence representation should ensure that normal log
sequence vector representations are closer to each other than abnormal log sequence vector repre-
sentations. This paper constrains the normal log sequences for training inside a hypersphere to learn
compact log sequence representations.

The center representation Rc of the hypersphere is the mean of the log sequence vectors of all
training log sequences, as shown in Eq. (4),

Rc = 1
|T|

∑|T|
i=1

RS i (4)

where |T| represents the total number of log sequences in the dataset and RS i represents the i-th log
sequence vector.

The training objective is to reduce the distances between Rs and Rc as much as possible. The
distances are defined by the mean squared error loss Lossmse, as shown in Eq. (5), and the training
objective is to minimize Lossmse.

Lossmse = 1
|T|

∑|T|
i=1

∥∥Rsi − Rc

∥∥2
(5)

The hypersphere loss can capture the intrinsic differences between normal and abnormal log
sequences. The trained model keeps the normal log sequence vector inside the hypersphere as much
as possible, while the abnormal log sequence should be outside the hypersphere and away from the
center. The distance to the center indicates whether the log sequence is abnormal.

4.6 VAE Model Based on Statistical Features

To address challenge 3, which is to make full use of the rich information in logs to construct multi-
features, this paper counts the occurrence times of each token in the log sequences and builds the VAE
model to further improve the accuracy of anomaly detection.
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4.6.1 Statistical Feature Extraction

The occurrences times of each tok in the log sequence directly imply the regularity of normal and
abnormal patterns in the log sequence. Usually, some toks only appear in the abnormal sequences. As
a result, the statistical feature of the log sequence can be extracted to detect anomalies.

For the training set T1, this paper constructs a standard statistic dictionary DT as shown in Eq. (6).

DT = {
tok1: Statok1 , . . . , toki: Statoki , . . . , tokM: StatokMtrain

}
(6)

where toki represents the token, Mtrain is the total number of tokens, Statoki represents the normalized
occurrences times of toki in all log sequences of T1. The normalization method is max-min normaliza-
tion which scale the occurrences times in [0,1].

For a given log token sequence s

⎧⎨
⎩tokl1

1 , . . . , tokl1|l1|, . . . , tok
l|S|
1 , . . . , tok

l|S|∣∣∣∣∣l|S|
∣∣∣∣∣

⎫⎬
⎭, each token looks

up its standard statistical times according to the standard statistic dictionary DT, and constructs a
statistics vector Xsta, as shown in Eq. (7). The dimension is Mtrain + N.

Xsta [j] =

⎧⎪⎨
⎪⎩

DT

[
tokj

]
, if tokj ∈ s, 0 < j ≤ Mtrain

0, if tokj /∈ s, 0 < j ≤ Mtrain

0, if Mtrain < j ≤ Mtrain + N

(7)

where j indicates the index of token in DT, Mtrain is the number of all tokens of DT. Obviously, the first
Mtrain dimension of the statistics vector corresponds to the Mtrain tokens in DT. To handle the tokens
which do not appear in T1, that is, OOV tokens, this paper reserves the latter N dimensions for the
OOV tokens.

Therefore, each log sequence can be represented by a statistical vector Xsta, which helps improve
anomaly detection accuracy.

4.6.2 Variational Autoencoder Model

Variational autoencoder is exploited to learn the patterns implicit in the statistical features of
log sequences. The VAE consists of two Multilayer Perceptron (MLP) neural networks, an encoder
(denoted by Eφ (z|x)) and a decoder (denoted by Dθ (x|z)), as shown in Fig. 6, where x represents
the input data, z represents the latent variable, φ and θ represent the parameters of the encoder and
decoder respectively. The mean μ and the covariance σ are generated by the encoder, and the encoder
converts x into the probability distribution Pθ (z|x) of the latent variables, and then randomly samples
the latent variable z with a standard normal distribution ∈, which is decoded to reconstruct the output
x′ by the decoder.

Figure 6: Variational Autoencoder model
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The loss function consists of the reconstruction term for optimizing the encoder and decoder
and the regularization term for regularizing the hidden space, in Eq. (8). The reconstruction term
is the expectation of the decoder output Pθ (x|z) given the encoder output Qφ (z|x). The larger the
expectation, the smaller the reconstruction loss. The regularization term is the Kullback-Leibler
divergence(KL-divergence) of Qφ (z|x) and Pθ (z|x). The smaller the KL-divergence, the smaller the
difference between the two distributions.
max
φ,θ (Ez∼Qφ(z|x) (log (Pθ (x|z))) − DKL(Qφ(z|x)||Pθ (z))) (8)

where Pθ (x|z) is the Gaussian distribution randomly sampled from the latent variable z, Pθ (z) is
the prior distribution randomly sampled from the hidden variable, and Qφ (z|x) is the Gaussian
distribution used to approximate Pθ (z|x) during variational inference.

4.7 Anomaly Detection

After the offline training, this paper obtains a trained hypersphere-based Transformer model
and a statistical feature-based VAE model for log sequence anomaly detection. When new log
messages arrive, the same preprocessing and log sequence partition steps are performed. Then, the
trained Transformer model with hypersphere extracts compact log sequence representations and filters
candidate abnormal log sequences. Finally, the candidate abnormal log sequence is further detected
by the trained VAE.

4.7.1 Constructing the Candidate Anomaly Log Sequence Set

When the distance between a new log sequence and the center of the hypersphere is larger than
the radius threshold, the log sequence is considered abnormal and added to the candidate set G. This
paper takes the validation set to set the radius threshold. The mean distance between the hypersphere
center Rc and all normal log sequences in the validation set is set as the initial radius threshold, which
is then fine-tuned by all abnormal log sequences in the validation set.

4.7.2 Anomaly Detection Using the Trained VAE Model

Similar to the training set T1, this paper constructs a standard statistical dictionary DV for the
validation set, denoted by Eq. (9).

DV = {
tok1: Statok1 , . . . , toki: Statoki , . . . , tokM: StatokMval

}
(9)

where toki represents the token, which appears in normal log sequences of the validation set and not
in the training set, Mval is the total number of this type of token, Statoki represents the normalized value
of occurrences times of toki in all normal log sequences of T2. This paper creates an OOV token list
LOOV for reserved OOV tokens, which is empty on initialization and then updated.

For each token in a given log token sequence s

⎧⎨
⎩tokl1

1 , . . . , tokl1|l1|, . . . , tok
l|S|
1 , . . . , tok

l|S|∣∣∣∣∣l|S|
∣∣∣∣∣

⎫⎬
⎭ in T2

or G, if it does not belong to DT or DV, it is an OOV token and appended into the list LOOV, denoted
by Eq. (10).

LOOV = {oov1, . . . , oovi, . . .} (10)



532 CMC, 2023, vol.76, no.1

Next, the sequence statistics vector Xsta is constructed according to DT, DV and LOOV, and the
dimension of the vector is Mtrain + N, as shown in Eq. (11).

Xsta [j] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

DT

[
tokj

]
, if tokj ∈ s, 0 < j ≤ Mtrain

DV

[
tokj−Mtrain

]
, if tokj−Mtrain ∈ s, Mtrain < j ≤ Mtrain + Mval

1.5, if oovj−Mtrain−Mval
∈ s, Mtrain + Mval < j ≤ Mtrain + +Mval + |LOOV|

0, if tokj ∈ s, Mtrain + Mval + |LOOV| < j ≤ Mtrain + N
0, if tokj /∈ s, 0 < j ≤ Mtrain + Mval + |LOOV|

(11)

where j is the index, Mtrain is the number of all tokens in DT, Mval is the number of all tokens in DV, and
N is the number of the reserved OOV tokens defined during the training phase.

The VAE model obtains the reconstruction error of the validation set T2, and the ninetieth
percentile of all reconstruction errors is set as the threshold for anomaly detection. For each log
sequence in the candidate abnormal log sequence set G, if the reconstruction error from VAE is greater
than the threshold, the log sequence is abnormal.

5 Experimental Evaluation

This section demonstrates the effectiveness and superiority of UMFLog for log sequence anomaly
detection by answering the following questions:

• RQ1: How effective is UMFLog?
• RQ2: How sensitive is UMFLog to the parameters?
• RQ3: How effective is log multi-feature on log anomaly detection?
• RQ4: How effective are the log data input form, embedding method, and log statistical feature

method of UMFLog?

5.1 Dataset and Experimental Environment

To evaluate the performance of UMFLog, this paper conducts extensive experiments on three
public datasets: HDFS, BGL, and Thunderbird, which are also extensively studied in existing work.

The HDFS dataset contains 11,175,629 log messages collected from the Hadoop distributed file
system on the Amazon EC2 platform. The BGL dataset contains 4,747,963 log messages collected
from the BGL supercomputer at Lawrence Livermore National Laboratory, of which 348,460 logs
were flagged as anomalous. Thunderbird contains 211,212,192 logs collected from real-world super-
computers at Sandia National Laboratories, and this paper uses the first 5 million logs. In addition,
log messages with tokens of less than five are excluded for both the BGL and Thunderbird datasets.
For the HDFS dataset, this paper uses the session window marked by the Block ID to divide the log
sequence, while for the BGL and Thunderbird datasets, it uses the sliding window. The details of the
three datasets are shown in Table 4.

All experiments in this paper are run on Google COLAB, an artificial intelligence development
platform for machine learning and data analysis developed by the Google Research team, equipped
with an NVIDIA TESLA P100 GPU server with 16 G memory. In addition, this paper uses the Python
3.7 environment to build the Pytorch model.
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Table 4: Details of the dataset

Dataset System category Duration # Log messages #Normal log
sequence

#Abnormal
log sequence

HDFS Distributed
Systems

38.7 h 11175629 558223 16838

BGL Supercomputer 214.7 days 1181552 264258 31126
Thunderbird Supercomputer 244 days 4010726 632447 370230

5.2 Evaluation Metrics

The widely used metrics of precision, recall, and F1-Score are used to evaluate the performance.

Precision: The percentage of log sequences that are truly abnormal among all log sequences judged
by the model to be abnormal, as shown in Eq. (12).

Recall: The percentage of abnormal log sequences correctly identified by the model among all
abnormal log sequences, as shown in Eq. (13).

F1-Score: The harmonic mean of precision and recall, as shown in Eq. (14).

Precision = TP
TP + FP

(12)

Recall = TP
TP + FN

(13)

F1−score = 2 * Precision * Recall
Precision + Recall

(14)

whereas TN is the number of normal log sequences correctly detected by the model, FP is the number of
abnormal log sequences incorrectly identified by the model as normal, FN is the number of anomalous
log sequences not detected by the model, and TP is the number of anomalous log sequences correctly
detected by the model.

5.3 Baseline

To verify the rationality and advancement of UMFLog, this paper selects various SOTA unsuper-
vised methods as baselines. A brief introduction to the baseline method is as follows:

PCA [33] is a Principal Component Analysis (PCA)-based approach that extracts major compo-
nents of input sequence features and reports test sequences above the threshold as anomalies.

OC4Seq [35] is a Gated Recurrent Neural Networks (GRU)-based approach with hypersphere
objective loss functions of both global and local perspectives.

DeepLog [17] is an LSTM-based model that predicts the next log template index.

LogAnomaly [18] is an LSTM-based model that extracts semantic information hidden in log
templates by a collection of synonyms and antonyms.

LogBERT [26] is a BERT-like model that trains log template index sequences with both masked
template index prediction loss and hypersphere objective loss.
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CAT [28] is a Transformer-based model that fine-tunes BERT to extract semantic information
from log sequences and trains variable-length log semantic sequences with both masked subsequence
prediction loss and hypersphere objective loss.

5.4 Experimental Settings

This paper uses a sliding window with a window size of 20 and a stride of 4. The training set size
is 160,000 normal log sequences, and the validation set includes 9,000 normal log sequences and 1,000
abnormal log sequences. All the remaining normal and abnormal log sequences are used as test sets.

Other experimental details include that the number of layers L of the Transformer encoder is 2,
the number of multi-head self-attention heads is 12, the hidden layer dimension is 2048, the semantic
embedding dimension D is 768, the encoder encoding dimension de of VAE is 512, and the latent
variable dimension dh is 256.

5.5 RQ1: The Effectiveness of UMFLog

To answer RQ1, this paper first compares UMFLog with all the above baseline unsupervised
methods, and Table 5 shows the best experimental results for the baseline and UMFLog.

In general, most of the baseline methods perform unevenly on the three datasets. Although some
methods perform well on some datasets, they perform poorly on others. For example, PCA achieved
an F1 score of 0.9497 on the HDFS dataset, but performed poorly on both the BGL and Thunderbird
datasets, thus achieving the lowest mean F1 score. Some methods obtain relatively high precision, such
as LogBERT in HDFS and PCA in the Thunderbird dataset, but their recall is relatively low because
many undetected abnormal logs are missed. Some methods also achieve high recall, such as DeepLog
and LogAnomaly in the Thunderbird dataset, but their precision is relatively low, which means that
many false anomaly alerts are generated. In addition, the F1 scores of semantic feature-based methods
(CAT, LogAnomaly) on the three datasets are generally higher than those of other methods without
semantic features (PCA, OC4Seq, LogBERT, DeepLog). This shows the superiority of log sequence
anomaly detection with semantics.

Overall, it can be observed that UMFLog surpasses all baseline methods in F1 scores on all
three datasets with robust performance advantages, demonstrating the superior ability of the proposed
multi-feature method on the task of log sequence anomaly detection.

Table 5: Overall performance evaluation results

Dataset HDFS BGL Thunderbird Average

Method Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

PCA 0.91 0.993 0.9497 0.352 0.1709 0.2301 0.8981 0.5846 0.7082 0.720 0.583 0.629
OC4Seq 0.998 0.955 0.976 0.704 0.795 0.747 0.8783 0.8748 0.8771 0.860 0.875 0.867
LogBERT 0.8702 0.781 0.8232 0.894 0.9232 0.9083 0.9675 0.9652 0.9664 0.911 0.890 0.899
DeepLog 0.95 0.96 0.96 0.88 1 0.93 0.7849 0.9996 0.8795 0.872 0.987 0.923
LogAnomaly 0.96 0.94 0.95 0.97 0.94 0.96 0.7996 1 0.8884 0.910 0.960 0.933
CAT 0.8837 0.9063 0.8947 0.8893 0.9554 0.9233 0.9935 0.9897 0.9916 0.922 0.950 0.937
UMFLog 0.99373 1 0.99685 0.99533 0.99071 0.99301 0.99726 0.99677 0.99701 0.995 0.996 0.996
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5.6 RQ2: The Parameter Sensitivity of UMFLog

In this part, this paper evaluates the parameter stability of UMFLog by conducting experimental
evaluations on the HDFS dataset with different parameters, including Transformer encoder layers L
and VAE encoding dimension de and hidden dimension dh.

The Transformer encoder layer L is set from 1 to 4. As shown in Fig. 7A, UMFLog can achieve
good performance even with only one layer of the Transformer encoder. In addition, as the number of
layers increases, the F1 score increases but then decreases, and the best results are obtained when the
number of layers L is 2. The increase in the number of layers of the Transformer encoder allows the
model to fit more complex log sequence features but may also introduce unwanted training noise,
as well as longer training and prediction times. de and dh are set to 64–128, 128–25, and 256–512
respectively. Fig. 7B shows that UMFLog is not very sensitive to these two dimension parameters
on HDFS data and can achieve stable performance in different situations.

In general, UMFLog is not sensitive to parameters and can obtain stable performance. The
parameters of UMFLog are set to L = 2, de = 512, and dh = 256.

Figure 7: The result of parameter sensitivity experiment

5.7 RQ3: The Effectiveness of Log Multi-feature

This subsection conducts ablation experiments to evaluate the effectiveness of multi-feature.
UMFLog without VAE follows UMFLog and removes the statistical feature-based VAE. As shown in
Figs. 8A–8C, the performance of anomaly detection on all three datasets reduces without the statistical
feature-based VAE model. For Thunderbird logs, the F1 score is reduced by 7%, while precision is
reduced by 13%, which means more false alarms are generated. This proves that the statistical feature-
based VAE model can effectively improve the accuracy of log sequence anomaly detection and reduce
false positives.
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Figure 8: Multi-feature model ablation experiment on three datasets

5.8 RQ4: The Impact of Input Form, Embedding Method, and Log Statistical Feature Method

Section 2 summarizes the existing hypersphere-based log anomaly detection methods, and makes
a detailed comparison between UMFLog and them in terms of input form and feature embedding
method. In order to answer question 4, this subsection further carries out ablation experiments to
discuss the impact of different input forms, embedding methods, and statistical feature methods on
UMFLog.

In term of input form and embedding method, UMFLog uses log content and BERT. There are
other optional methods: log template for input form and Word2vec for embedding. Therefore, there
are four different schemes: Template with Wod2vec, Template with BERT, Content with Word2vec,
and Content with BERT. Only three of these schemes are compared because Content with Word2vec
exceeds the computational capabilities.
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Figs. 9A–9C shows the impact of different input forms and log content embedding methods.
The results show that log content with BERT has the best performance on the three datasets, which
confirms the importance of preserving the character parameters and extracting context semantics.

Figure 9: The performance evaluations with different input forms and log content embedding methods
on three datasets

Next, different ways of statistical features are compared. In Section 4.6.1, this paper constructs a
dictionary-based statistical feature utilizing a standard statistic dictionary and reserved OOV tokens.
It is inspired by the fact that some tokens often appear in abnormal sequences but rarely in normal
sequences. However, the appearance order and co-occurrence pattern of the tokens constituting the log
sequence also contain certain regularities. Based on this intuition, this paper proposes the order-based
statistical feature and compares it with the dictionary-based statistical feature.

For a given log token sequence s

⎧⎨
⎩tokl1

1 , . . . , tokl1|l1|, . . . , tok
l|S|
1 , . . . , tok

l|S|∣∣∣∣∣l|S|
∣∣∣∣∣

⎫⎬
⎭, the order-based

statistical feature constructs the statistical vector according to the appearance order of the tokens.
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According to the training set statistical times dictionary DT, the temporary order statistical vector ssta

is as shown in Eq. (15).

ssta =

⎡
⎢⎢⎢⎣Statok

l1
1 , Statok

l1
2 , . . . , Statok

l|S|
1 , . . . , Sta

tok

l|S|∣∣∣∣∣l|S|
∣∣∣∣∣

⎤
⎥⎥⎥⎦ (15)

where Statoklm
n is the standard statistical time value of the n-th token of the m-th log content in the log

token sequence s, and the dimension of the vector is the length |s| of the log token sequence s.

However, the number of tokens in each log sequence varies. The dimension of the temporary order
statistics vector ssta is not uniform and cannot be fed into the VAE model. Therefore, this paper sets a
unified vector dimension dsta by the average or maximum number of log sequence tokens in all training
sets T1. When the dimension |s| is larger than the unified vector dimension dsta, it is truncated directly,
and only the first dsta dimensions are retained; otherwise, the last dsta-|s| dimensions are padded with 0.

MEAN sets the unified vector dimension as the average value of the token numbers of all log
sequences in the training set T1, while MAX uses the maximum value, and vocabulary (VOCAL) means
dictionary-based statistical features of UMFLog. Figs. 10A–10C shows the results with different
ways of statistical features. The three methods can achieve good performance on the three datasets,
especially the HDFS and BGL datasets. In contrast, on the Thunderbird dataset, the performance
of the three methods is not much different. Dictionary-based statistical features achieve the best
performance compared with order-based statistical features. Order-based statistical features can
provide information about the order of token occurrences, but at the same time, it is redundant because
the same token may appear multiple times. The average method weakens this effect compared with the
maximum method. Obviously, the stable performance results indicate that all three approaches can
provide valid and sufficient statistical features.

Figure 10: (Continued)
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Figure 10: The performance of UMFLog with different statistical features on three datasets

6 Conclusion

Log anomaly detection methods help systems with troubleshooting and problem analysis. Existing
methods still have some challenges, and this paper proposes UMFLog, an unsupervised log anomaly
detection method based on multi-feature, to address these challenges. UMFLog uses a hypersphere-
based Transformer model to learn log sequence representations from the unparsed log and obtain
candidate abnormal sequences, and then uses a statistical feature-based VAE model to identify abnor-
mal sequences among candidate abnormal sequences. Extensive experiments have been conducted on
real-world datasets to evaluate the effectiveness and robustness of UMFLog. The results show that
our approach outperforms the SOTA methods. In the future, we plan to consider other log features
for log anomaly detection to take full advantage of the rich information in logs.
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