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Abstract: Offline signature verification (OfSV) is essential in preventing the
falsification of documents. Deep learning (DL) based OfSVs require a high
number of signature images to attain acceptable performance. However, a lim-
ited number of signature samples are available to train these models in a real-
world scenario. Several researchers have proposed models to augment new
signature images by applying various transformations. Others, on the other
hand, have used human neuromotor and cognitive-inspired augmentation
models to address the demand for more signature samples. Hence, augmenting
a sufficient number of signatures with variations is still a challenging task. This
study proposed OffSig-SinGAN: a deep learning-based image augmentation
model to address the limited number of signatures problem on offline signa-
ture verification. The proposed model is capable of augmenting better quality
signatures with diversity from a single signature image only. It is empirically
evaluated on widely used public datasets; GPDSsyntheticSignature. The qual-
ity of augmented signature images is assessed using four metrics like pixel-
by-pixel difference, peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM), and frechet inception distance (FID). Furthermore,
various experiments were organised to evaluate the proposed image aug-
mentation model’s performance on selected DL-based OfSV systems and to
prove whether it helped to improve the verification accuracy rate. Experiment
results showed that the proposed augmentation model performed better on
the GPDSsyntheticSignature dataset than other augmentation methods. The
improved verification accuracy rate of the selected DL-based OfSV system
proved the effectiveness of the proposed augmentation model.
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1 Introduction

A signature is the name or identity of the person written by someone in a document as a sign
of acknowledgement. A handwritten signature is a well-known biometric attribute made by humans
consciously. Over the recent years, the research in various biometrics research areas has increased
significantly. However, Offline signature verification (OfSV) remains a frequently used approach to
confirm people’s identities in financial and administrative areas due to its non-invasive signature-
gathering process and the users’ familiarity with this method. OfSV, a two-class pattern classification
problem, is used to identify the given signature image as either genuine or forged. There are three
types of forged signatures: simple, random, and skilled. In a simple forged signature, the forger is
aware of the signer’s real name but is unfamiliar with the signer’s genuine signature. Therefore, the
forger imitates the signature in its own style. In the case of a random forged signature, the forger has
the information about the signer’s name or genuine signature, but the forger uses its own signature
instead. However, in the case of a skilled forged signature, the signer’s name and the signer’s genuine
signature are in the knowledge of the forger to imitate the signer’s signatures [1]. Forensic handwriting
experts have handled offline signature verification tasks over the past few decades using traditional
manual verification methods. But still, high accuracy is not always attained due to the variations in
handwriting style and forgers’ professionalism. However, with the advancement of many machine
learning (ML) models, mostly neural networks, these manual methods are replaced by automatic
offline signature verification systems. In ML-based OfSV, usually, a model is trained over a learning
set of user signatures and then used for verification.

There are two types of ML-based models; traditional ML-based and deep learning (DL) based
models. Traditional ML-based models have a rather simple structure, such as linear regression or
a decision tree. On the contrary, DL-based models are based on a multi-layered artificial neural
network, which is like a human brain, complex and intertwined. The most significant difference
between these two models is how well they perform when there is an increase in the data. However,
when DL-based models are trained with a small dataset, they don’t perform well because a large
amount of data is needed for their perfect understanding. Compared to traditional ML-based models,
convolutional neural networks (CNN) and other DL-based models have recently attained state-of-the-
art performance in automatic signature verification tasks [2,3]. However, the error rate of the signature
verification task in DL-based models is below the acceptance performance because they require a large
number of image samples for model training [4–6].

One of the best DL-based models for augmenting realistic images is generative adversarial
networks (GAN), and its augmented images are often indistinguishable from actual ones [7]. GANs
have attracted much attention in terms of image generation. They are widely employed in image
synthesis [8,9], image editing [10], image restoration [11], image resolution [12], image-to-image
translation [13], and many other computer vision applications. Recently, the SinGAN proposal [14]
largely solved the problem of generating images from a single natural image using GANs. It employed
unconditional generation for image manipulation by mapping noise to images. Moreover, it achieved
great results in image synthesis from a single natural image, but to the best of our knowledge, it is
not previously utilised for offline signature image augmentation. Therefore, this research proposed
a novel SinGAN-based image augmentation model to tackle offline signatures’ verification accuracy
rate problem. This study also considered and analysed the various improved variations of the SinGAN
and made them part of our proposed image augmentation model process. These variations include
Improved SinGAN [15], ESinGAN [16], Conditional SinGAN [17], SinGAN-Seg [18], ConSinGAN
[19], SinIR [20], SA-SinGAN [21] and ExSinGAN [22].
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The rest of the paper is organised as follows: In Section 2, we introduced essential concepts
to understand offline signature verification systems, generative adversarial networks, and image
augmentation. In Section 3, we gave details of the proposed image augmentation method. Section
4 evaluated the augmented images on four quality metrics and compared the results with the baseline
model. Section 5 describes the comparison result with the six state-of-the-art image augmentation
models and discusses the experimental results. In Section 6, the performance evaluation results of the
proposed model on the DL-based OfSV system are highlighted. Lastly, Section 7 concludes the paper.

2 Background Concepts
2.1 Offline Signature Verification Systems

Biometric systems can recognise people based on biological characteristics like fingerprints, iris,
and faces. When such systems are employed in offline signatures, they are widely known as offline
signature verification systems. Verification and identification are the two main purposes for such
systems. A verification system aims to discriminate automatically if a given sample signature is indeed
from one person, while identification systems are responsible for identifying the owner of the given
sample signature. Another important concept about offline signature verification systems refers to the
acquisition method. Depending on the image acquisition method, the offline signature verification
process can be done online or offline. Dynamic signature verification is the term referring to the
online method, whereas static signature verification is the term referring to the offline method. Tablets,
pressure-sensitive pens, and other devices are used to capture online signatures where the inherited
dynamic information of the signature is collected over a series of time intervals. The inclination,
pressure, and position of the pen are all included in this dynamic information. On the other hand,
an offline signature is acquired by a scanning procedure.

Any OfSV system’s main objective is automatically distinguishing a genuine offline signature
from a forged one. Contrary to the online signature verification (OnSV) system, the OfSV system
does not use any inherent dynamic information to identify forged signatures. As only OnSV systems
have this inherent dynamic information. OfSV system is more complicated than OnSV system because
recovering offline signatures from scanned signature images is very difficult. The OfSV system can be
categorised as writer-dependent, writer-independent or hybrid. The most common approach, known
as the writer-dependent (WD) approach, yields higher classification accuracy and is more secure [23].
In this approach, a separate model is used for every writer. Although this technique is more accurate,
it will be highly complex and costly in practical applications where a new user is enrolled every day
[23]. On the other hand, a writer-independent (WI) approach requires a single model for all the writers;
when a new person is joined, we have to update the verification system without adding any new model.
However, WI-based systems do not require retaining the model when new users are incorporated. But
they can need several signatures of each user to perform the verification. Thus, the WI approach can
be employed with a single signature sample, making it more popular than the WD approach [23].
The hybrid WD-WI OfSV system is another approach developed by toggling between WD and WI
approaches.

Several OfSV systems have been presented in the literature and successfully used to verify whether
a signature image is genuine or forged. Shanker et al. [24] proposed a dynamic time-warping approach,
extracting the vertical projection feature from signature images and comparing reference and probe
feature templates using elastic matching. Kiani et al. [25] presented a feature extractor method using
local Radon Transform to differentiate between genuine and forged signatures. Other researchers
proposed several novel methods to verify individual signatures, including the pixel matching technique
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[26], structural features [27], and an eigenvalue method on the upper and lower signatures envelopes
to evaluate the system [28]. However, most recent studies rely on feature learning representation
and deep neural networks (DNN) to verify signatures. Such as a DNN-based method proposed
by Hafemann et al. [29] acquires features from input images instead of using handcrafted features.
Similarly, the SigNet model, another DNN-based method presented by Dey et al. [30], used a Siamese
network built on CNN and Euclidean distances for the writer-independent class of offline signature
verification. Yapici et al. [31] developed a CNN-based method for writer-dependent and writer-
independent signature verification.

2.2 Generative Adversarial Networks

A generative adversarial network (GAN) is a framework in which two neural networks (a
generator network G and a discriminator network D) are simultaneously trained and then compete
with each other to become more accurate in their predictions. The generator seeks to generate
new samples, whereas the discriminator aims to identify between augmented and genuine signature
samples. Explaining the generative process, a generative model G receives a sample noise z (normal
or uniform distribution) input representing the latent features of the generated image. In practice, the
generative model is a convolutional neural network, basically performing transposed convolutions
to upsample the input z. As a result, model G generates new images from this input. On the other
hand, the discriminator model D takes genuine and augmented images as inputs and discriminates
between them, estimating the probability that a sample comes from a genuine or augmented sample. As
a result, the discriminator learns features contributing to recognising genuine images. GANs achieved
remarkable achievements in image synthesis and attracted much attention in image generation [32].
However, with limited training data, how to stable the training process of GANs and generate realistic
images gained more attention.

2.3 Image Augmentation

Addressing the challenge of a limited number of training samples, the research community
has adopted various human neuromotor [33,34], cognitive-inspired [5,6] and deep learning (DL)-
based [4] image augmentation models. These augmentation models are classified into two categories:
duplication samples and signature synthesis. In the duplication samples model, the signature samples
are augmented from existing ones. The signature synthesis model uses global characteristics from a
signature database to augment new samples with a unique identity. Recently, Maruyama et al. [35]
presented a comprehensive taxonomy of various duplication methods, shown in Fig. 1. To increase
the number of signatures, traditional image augmentation models such as geometrical transformation
usually employ rotation, scaling, displacement, and wrapping [36]. These models can be employed to
improve the accuracy performance of verification systems by adding natural and unnatural distortions
[36]. However, duplicated signatures don’t need to be visually similar to genuine signatures. Although
geometrical transformation-based duplication models can increase the performance of signature
verification systems, they ignore a crucial feature of handwriting: the writer’s behaviour. To bridge that
gap, several bio-inspired models have been proposed in the literature. These models can be divided into
three categories: genetic algorithms, deep learning, and behavioural approaches [35].

Several duplication methods have been proposed in the literature. The researchers used various
approaches for these duplication methods. These approaches include generation using geometrical
transformation or generative learning models, utilising images from a relative domain (such as hand-
written text documents) and augmentation on feature space (after the feature extraction stage). Diaz-
Cabrera et al. [37] proposed a human neuromotor-based offline signatures augmentation approach.
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Melo et al. [38] used a deep CNN-based approach to augment the offline signatures. Yapıcı et al. [4]
proposed a Cycle-GAN-based generative learning model to augment new images. Melo et al. [38] used
a deep CNN-based approach to augment the offline signatures. Yonekura et al. [39] presented a Con-
ditional Deep Convolutional Generative Adversarial Networks (cDCGAN) method for signature aug-
mentation. Jayasundara et al. [40] generated new signatures using a realistic augmentations approach,
which adds random controlled noise to reflect actual handwriting variations. Mersa et al. [41] proposed
a novel transfer learning approach which used the handwriting text for the feature learning phase to
augment new signatures. Tsourounis et al. [42] processed the handwritten text data to augment new
signature images. Maruyama et al. [35] proposed a method to generate offline signatures in the image
and the feature space.

Figure 1: Duplication method’s taxonomy [35]

3 The Proposed Image Augmentation Model

This section elaborates on the overall research methodology adopted to augment the offline
signature images using the GAN-based model. The research methodology comprises six stages:
data collection, image preprocessing, DL-based image augmentation model development, quality
assessment of augmented images, performance comparison with the existing six state-of-the-art offline
signature image augmentation models and performance evaluation on DL-based OfSV system. For
comparison purposes, these models used genuine images re-augmented using the proposed image
augmentation model. The publicly available benchmark datasets GPDSsyntheticSignature was used
for the data collection stage. A few essential tasks, such as binarising the signature images using
the Otsu algorithm, removing the background noise, trimming the image border white spaces,
normalisation (centralisation, cropping, resizing the images by maintaining aspect ratio) and placing
the dataset signatures on a canvas of height (H) width (W) size; which this study chose 220 × 155 were
performed during the image preprocessing stage. In the third stage, the DL-based image augmentation
model architecture was created. Thereafter in stage four (Section 4), quality metrics such as pixel-to-
pixel difference, structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and
frechet inception distance (FID) were used to evaluate augmented signature images. Performances
of the proposed DL-based image augmentation model with the existing six state-of-the-art offline
signature image augmentation models were compared based on image quality assessment metrics
in the fifth stage (Section 5). At stage six (Section 6), the proposed model augmented images and
other augmented images were fed to the DL-based OfSV system to check the effect on its verification
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accuracy rate performance. All six stages of the overall research methodology are described in detail
in the following sections.

3.1 Data Collection

This study used the publicly available signature datasets, GPDSsyntheticSignature, for signature
augmentation experiments. It is important to mention that explicit usage permission has been
taken for GPDSsyntheticSignature public datasets from its respective licensor. The GPDS dataset
is one of the most employed datasets in the field of offline signature verification. It consists of
four different signature subsets datasets, namely, GPDS960signature, 4NSigComp2010 Scenario
2, GPDS960GRAYsignature, and GPDSsyntheticSignature [43]. However, the first three datasets
mentioned were no longer available due to the General Data Protection Directive (EU) 2016/679
(“GDPR”). Therefore, this study employed the GPDSsyntheticSignature dataset. It comprised 4000
signers, each with 24 genuine and 30 forged signatures, for a total of 4000 × 24 = 96,000 genuine
signatures and 4000 × 30 = 120,000 forged signatures. The signatures were in “jpg” format with a 600
dpi resolution.

3.2 Image Preprocessing

The employed dataset, i.e., GPDSsyntheticSignature, contain signature images of different sizes.
However, deep learning-based generative models require inputs with a fixed size. Therefore, the
preprocessing step was crucial to make images of fixed size and for the stability of the model. This
study used various preprocessing techniques for the signature images. We placed the dataset signatures
centrally on a canvas of height (H) and width (W) of the image size. This study chose the image size
220 × 155 for all augmented images because this image size can be used for the proposed model
evaluation on a selected DL-based OfSV system, which takes input images of size 220 × 155. Besides
this, we cropped the signature image to the desired final size to fit into the model development; we
also maintained the aspect ratio between height and width for these images. Other than resizing,
we binarised the images using the Otsu algorithm [44] to remove background noise according to a
threshold and then find their center of mass. We adopted this method because our recent literature
study [45] revealed that the Otsu was the most commonly used algorithm for preprocessing offline
signatures.

3.3 DL-Based Model Development

Recently, many researchers used GAN-based models to augment new images in different applica-
tions. For instance, Ma et al. [46] developed a pose-guided person image generator capable of creating
images in any position given a target pose using a CGAN architecture. Similarly, Yapıcı et al. [4]
introduced a new use of Cycle-GAN as a data augmentation method to overcome the problem of
insufficient data in signature verification. This model uses a generator network to generate new-style
images and another network in reverse order to reconstruct the genuine images. Ledig et al. [47]
presented a GAN-based network which can infer photo-realistic natural images for upscaling factors
of 4x. Zhang et al. [48] developed a model capable of generating 256 × 256 pixel photo-realistic images
through a sketch refinement process.

This study utilised one of the GAN’s architectures, i.e., “SinGAN [14]”, as a baseline model to
augment the offline signature images. It’s the first unconditional generative model that could be trained
from a single image and add variation and diversity to the augmented images. Due to this ability, the
SinGAN model was best suited for DL-based offline signature verification scenarios, where in most
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cases, very few signature samples are available for training. A few other recent improvements were
made to the SinGAN model, which is discussed with their suggested improvements in Table 1. To the
best of our knowledge, the SinGAN model and its recent improvements have never been employed
in the field of offline signature verification. The model proposed in this study is fully generative
(i.e., it maps noise to image samples). It can capture the internal statistics of complex signature
image structures at different scales. However, due to the GAN’s unstable adversarial training process,
developing a GAN-based generative model to augment high-resolution images was challenging. In
addition, the proposed model was trained on a single genuine or forged signature image and learns a
pyramid of GANs to increase image resolution gradually.

Table 1: Suggested improvements in SinGAN architecture by various researchers

SinGAN-based method Improvements performed in SinGAN

Improved SinGAN [15] Integrates attention mechanism for higher resolution images. Features are
extracted and compressed to augment sample images. Applicable and tested
on remote sensing images.

ESinGAN [16] Uses the pixel attention mechanism to focus limited attention on critical
information. Captures crucial information and augments higher-resolution
output. The quality of augmented images is assessed using PSNR and SSIM.

Conditional SinGAN
[17]

Better controlling with multi-objective scene images. A combination of the
CGAN and the SinGAN. Supervisory conditions are added to discriminator
and generators

SinGAN-Seg [18] Input and output are both four-channel images. The four-channel image is
made up of the input RGB image and the single-channel ground truth mask.

ConSinGAN [19] Reduced model capacity with training several stages in parallel and
propagating feature maps to the next stage. Overall training time was
reduced to 20–25 min. Produced feature maps rather than images at each
stage.

SinIR [20] Faster (33.5 times) than SinGAN at the training stage. A
reconstruction-based framework trained on a single natural image for image
manipulations. Used autoencoder approach instead of GANs.

SA-SinGAN [21] A reduced learning rate was used at lower stages to understand the
relationships between global features. The effect of the learning rate on the
network was compared after spectral normalising. Artificial vision and
model evaluation approaches were used to assess the model performance.

ExSinGAN [22] A hierarchical framework for constructing a single image. Learns from the
given image’s internal patches and the external prior to the given image. A
new re-scaling method was proposed for speeding up training.

The literature study revealed that SinGAN did not address the importance of feature pixels on
the feature map [15,19]. Pixel attention mechanisms performed well in capturing pixel-wise features
in various computer vision applications, such as image captioning [49], image classification [50], and
visual question answering [51]. Therefore, this study introduced improved Pixel Attention (iPA) to
focus limited attention on critical information in offline signatures, as recommended in ESinGAN
[16] for natural images. To the best of our knowledge, ESinGAN’s pixel attention mechanism was
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not used for offline signatures before. However, after a few experiments with their suggested pixel
attention mechanism, we altered it for offline signatures. We removed the last conv-block from
their suggested pixel attention mechanism and evaluated it with an offline signature augmentation
process. Furthermore, similar to the ESinGAN, we also introduced iPA to both the generator (G) and
discriminator (D) to render distinct weights to pixels. In this way, iPA was able to add distinct specific
weights to pixels so that attention focuses on the feature map’s most important pixels. By doing this,
we were able to quickly obtain the most useful internal statistical information in the offline signature.
The complete architecture of the proposed model is shown in Fig. 2.

Figure 2: Architecture of OffSig-sinGAN, the proposed image augmentation model

The addition of iPA to the generator and discriminator not only improved the offline signature
images visually, but we were also able to augment higher-resolution signature images. The iPA contains
the combination of three (3) convolution layers, three (3) ReLU layers, a single sigmoid layer and an
element-wise multiplication product, as shown in Fig. 3.

Figure 3: The proposed image augmentation model improved Pixel Attention (iPA) mechanism

The experiments on the baseline model revealed that the augmented offline signatures were not
of good quality and had a blurred, noisy background issue with every augmented image. Therefore, to
attain good-quality signature images, this study replaced the Tanh activation function with the ReLU
activation function in the last conv-block of the generator at each scale in the baseline model. ReLU
is preferred over Tanh activation function due to its ability to address the vanishing gradient problem
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in GANs adequately. Furthermore, this study did not use normalisation or activation in the last conv-
block of the discriminator at each scale, as it was used in the baseline model. The proposed model
was trained using a multi-resolution, multi-stage approach, where the first stage starts with a very low
resolution of 25 × 25 pixels. The training process was divided into multiple stages, with each stage
adding more layers to the generator to improve image resolution. Furthermore, the lower layers of the
generator were frozen at each stage, leaving only the newly added layers to be trained. It is important
to be mentioned here that the experiment on the baseline model, i.e., SinGAN, revealed that it could
generate better quality images when we set the “Learning Rate = 1”. Therefore, this study kept the
“Learning Rate = 1” in the proposed model from the very start. After all of these fine-tuning, it was
identified that the proposed image augmentation model runs at the same speed as the baseline model
in the same experimental protocol but with improved augmented image quality.

The proposed model’s multi-scale architecture provided control over the amount of variability
between samples by selecting the scale from which to start the generation at test time. This will help
to minimise another research problem in this domain, i.e., intra-personal variability. Furthermore,
the weights of the generator and discriminator were initialised from the previously trained scale at
each scale (except for the coarsest scale or when changing the number of kernels, in which cases we use
random initialisation). We alternated between three gradient steps for the generator and three gradient
steps for the discriminator in each iteration, and each scale has undergone 2000 iterations of training.
We employed the Adam optimizer and used momentum parameters as β1 = 0.5 and β2 = 0.999. For
negative values, all LeakyReLU activations had a slope of 0.2. Training took about 2 h on an RTI-2080
GPU for an image of size 220 × 155 pixels.

For the experiment purpose and to check the augmentation capability of the proposed model,
we feed genuine and forged offline signatures from the same standard dataset employed in this study,
i.e., the GPDSsyntheticSignature. The experiment result can be found in Fig. 4, where the first row
contains the examples augmented with a single GPDSsyntheticSignature genuine image. The second
row contains examples augmented with a single GPDSsyntheticSignature forged image. In Fig. 4, we
can see that the seed and augmented images look similar; however, their differences can be found using
various quality assessment metrics, as explained in Section 4.

Figure 4: GPDSsyntheticSignature augmented signatures using proposed image augmentation model

4 Quality Assessment of Augmented Offline Signature Images

Understanding the quality of the augmented images and guaranteeing that the augmented images
are different from each other and the genuine ones was an essential step in the image augmentation
process. For this reason, we evaluated the augmented signature in two ways. At first, the augmented
images were compared with the genuine ones using some quality assessment metrics. Secondly, the
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same procedure was adopted for the baseline model’s augmented images so a comparison between
both models’ augmented images could be made.

4.1 First Quality Assessment Experiment

For the first quality assessment, we augmented four images, two each (one genuine and one
forged) from GPDSsyntheticSignature using the proposed image augmentation model. Fig. 4 shows
these augmented images. However, we can see that there was not a considerable variability or
difference between the augmented samples and their corresponding seed samples. Therefore, there
was a need to check that augmented images were different among themselves and with the seed
sample. Thus, we calculated the pixel-by-pixel difference of each augmented signature image with the
genuine ones (seed sample) to find the absolute difference between each pixel pair. For this purpose,
two genuine signatures (seed samples) from the GPDSsyntheticSignature were compared with their
respective augmented images one by one. Similarly, two forged signatures (seed samples) from the
GPDSsyntheticSignature were compared with their respective augmented images one by one.

After analysing the absolute difference (pixel-by-pixel difference) between each pixel pair in both
the seed and augmented images, the similarity between them was calculated using three more quality
assessment metrics. Two of them were suggested by Sun et al. [16]; peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM). The third quality metric frechet inception distance
(FID), was also employed, as Yan et al. [52] suggested. The first quality metric, PSNR [53], is the
ratio of a signal’s maximum power to the power of distortionary noise that impacts the accuracy of its
representation. This ratio is most often used to assess the quality of a genuine and augmented image.
The higher the PSNR value, the better the image has been reconstructed to match the genuine. The
fundamental drawback of this metric is that it only compares numerical values and takes no account
of any biological aspects of human vision [54]. This study calculated PSNR for both the augmented
and seed images. The large distances between pixel intensities, despite the higher PSNR values, do not
always imply that the contents of the images are different [53]. Thus, to get another measure of the
real difference between genuine (seed images) and augmented images, this study used SSIM [55] as
the second quality assessment metric. It is a perception-based model that considers an image’s change
in structural information as image degradation. In other words, it recognises the differences in the
structural information of an image. The SSIM values range from −1 to 1, with 1 representing perfect
similarity, 0 indicating the exact opposite, and −1 representing just theoretical resemblance. This
method calculates the fidelity of two images based on three computation terms: luminance, contrast,
and structural fidelity. FID [56] was employed for the augmented and genuine (seed images) for the
third quality assessment metric. The FID is also a measure of similarity between two images. It is
a metric that estimates the distance between calculated feature vectors and measures the difference
between the distribution of deep features in augmented and genuine images. The lower FID scores
imply that the two groups of images are more comparable or have similar statistics. The score of 0.0
shows that both images are identical. FID is mainly used to capture internal statistics.

Fig. 5 compares the four genuine images (seed samples) and their corresponding four augmented
images. These images were analysed with all four quality assessment metrics for comparison purposes.
The pixel-by-pixel difference between the seed and the augmented images is highlighted with red lines
in all the images. In Fig. 5, all augmented images were generated using the proposed augmented model
for comparison purposes. The first row of this image shows the four-quality assessment metric compar-
ison of the GPDSsyntheticSignature genuine signature (GPDS-c-001-01) with augmented signatures.
The second row contains the quality assessment metric comparison of the GPDSsyntheticSignature
forged signature (GPDS-cf-001-01) with its three augmented signatures.
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Figure 5: Pixel-by-pixel difference between genuine and augmented signature images with their
respective PSNR, SSIM and FID values

4.2 Second Quality Assessment Experiment—Comparison with Baseline Model

The second quality assessment task was to determine whether the augmented images of the
proposed model were better than the baseline model. The complete comparison of quality metrics
assessment analysis is shown in Fig. 6. There are two columns in this image. The left column shows
the baseline model results, whereas the right column comprises the proposed model’s results. In the
first row of both columns, one GPDSsyntheticSignature genuine image (GPDS-c-001-01) is shown
along with its corresponding augmented images. The augmented image in the left-side column was
augmented using the baseline model, whereas the right-side column contains the proposed model
augmented image. The four-quality metrics result is also shown in both columns. Similarly, one forged
GPDSsyntheticSignature image (GPDS-cf-001-01) is in the second row. These were analysed using the
same four quality metrics as stated above.

Figure 6: Quality metrics assessment comparison: baseline model vs. proposed model
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After applying these metrics to every augmented image and comparing it with the genuine one, it
was revealed that the average PSNR of the baseline model was 39.38 dB. In comparison, the average
PSNR of the proposed model was 40.50 dB. It means both models were augmenting signature images
with almost the same quality. However, the proposed model’s SSIM was higher than the baseline
model’s, which shows that the proposed model was gathering the structural information better than
the baseline model. Similarly, the FID value of the proposed model was much lower than the baseline
model, showing that the proposed model was capturing internal statistics of the seed images better
than the baseline model. If we conclude, based on this quality assessment metrics analysis, we can say
that the proposed model performed better compared to the baseline model.

5 Image Quality Assessments with Six (6) state-of-the-Art Image Augmentation Models

In this section, we compared the image quality assessment results of the proposed model’s
augmented images with six published DL-based offline signature image augmented models in the
literature. Brief descriptions of the selected augmented models can be found in Table 2. These
augmentation models were selected based on availability and the quality of their augmented images.
In this experiment, we fed the same genuine images (seed images) to the proposed model for
augmentation, which was used in the selected corresponding augmentation models. After this, both
models’ augmented images (proposed and selected augmentation) were compared using the four-
quality metrics, i.e., pixel-by-pixel difference, PSNR, SSIM and FID. The detailed comparison results
of these models can be found in Figs. 7 to 12, respectively. Unfortunately, comparing the six selected
models was difficult since few of them did not keep their high-quality augmented images on their
coding websites. Therefore, their augmented images were acquired after scanning from their original
papers, which were not of good quality as they could be. Every selected DL-based augmentation model
was analysed and compared in the following sections with the proposed image augmentation model.

Table 2: The compared augmentation models

Sr. no. Augmentation model Description

COMP-1 Cognitive inspired model to generate
duplicated static signature images [57].

This model used motor equivalence theory
for the duplication of offline signatures and
achieved them with natural variability.

COMP-2 Generation of duplicated offline
signature images for verification
systems [5].

This model used a cognitive-inspired
algorithm for duplicating offline signature
images. It is based on the combination of
nonlinear and linear transformations.

COMP-3 Image processing based signature
duplication and its verification [58].

The cognitive-inspired model was used For
the duplication of signatures.
Intra-Component and Inter-Component
variability were used to generate signatures
that look like human signatures.

COMP-4 Static signature synthesis: a
neuromotor inspired approach for
biometrics [33].

The motor equivalence mechanism was used
by dividing the human handwriting into
various steps.

(Continued)
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Table 2: Continued
Sr. no. Augmentation model Description

COMP-5 Deep learning-based data
augmentation model and signature
verification system for offline
handwritten signature [4].

Cycle-GAN-based data augmentation
model was proposed to address the problem
of a limited number of samples in signature
verification.

COMP-6 Intra-personal parameter
optimisation for offline handwritten
signature augmentation [35].

A neuromotor-based signature duplication
model addressed the problem of insufficient
data in signature verification.

Figure 7: Quality metrics assessment comparison: COMP-1 augmenting model

Figure 8: Quality metrics assessment comparison: COMP-2 augmenting model
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Figure 9: Quality metrics assessment comparison: COMP-3 augmenting model

Figure 10: Quality metrics assessment comparison: COMP-4 augmenting model

The image quality assessment comparison results for the selected six offline signature image
augmentation models with the proposed image augmentation models are depicted in Table 3 and
Figs. 7 to 12. The comparison results were made using the four-quality metrics, i.e., pixel-by-pixel
difference, PSNR, SSIM and FID and mentioned in the said table. The same classes of images were
used for both the selected augmenting models and the proposed augmentation model for comparison
purposes. Out of these selected six augmentation models, the COMP-5 augmentation model used the
Cycle-GAN for image augmentation; however, the proposed model also showed better performance
on all quality assessment metrics than this Cycle-GAN image augmentation model. After comparing
these values on all augmentation models (the selected six offline signature image augmentation
models and the proposed model), it was concluded that the proposed image augmentation model
performed better than all six selected augmentation models. The proposed model acquired the
structural information better than all these models. Similarly, it gathered the internal statistics of the
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genuine images (seed samples) better than these selected models. Furthermore, the augmented image
contained almost the same quality as other augmented models’ augmented images in all cases. The
SSIM measure, the most important quality assessment metric, which recognises local variations and
the image structure of both the real and the augmented images, was 92.21% on average for the proposed
model and better than all the selected six offline signature image augmentation models.

Figure 11: Quality metrics assessment comparison: COMP-5 augmenting model

Figure 12: Quality metrics assessment comparison: COMP-6 augmenting model
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The proposed augmentation model has performed better in both types of experiments, either
comparing the proposed augmentation model with the baseline augmentation model or with the
selected offline signature augmentation models. Therefore, the proposed model can be used to
augment the offline signatures for the DL-based OfSV systems and can improve their verification
accuracy rates. As the proposed model augments images with variations, this will also be beneficial in
lowering the intra-personal variability issue of offline signatures.

Table 3: Quality metrics assessment comparison results of COMP-1 to COMP-6

Augmentation
model

Signature
sample

M-SSIM
(avg) %

M-PSNR
(avg) dB

M-FID
(avg)

OffSig SSIM
(avg) %

OffSig PSNR
(avg) dB

OffSig
FID (avg)

COMP-1 sample_1_2 0.80 40.02 31362 0.85 38.99 3931
COMP-2 sample_2_1 0.74 43.19 nan 0.95 46.14 469
COMP-3 sample_3_1 0.85 39.24 125506 0.89 38.46 41609
COMP-4 sample_4_1 0.86 40.25 358682 0.98 38.53 14322
COMP-5 sample_5_2 0.71 38.57 254412 0.77 37.34 6832
COMP-6 sample_6_2 0.74 38.39 154517 0.92 37.28 18020

6 Performance Evaluation on the DL-based OfSV System

This study chose one of the state-of-the-art DL-based writer-independent OfSV systems (SigNet
[30]), to evaluate the proposed model’s augmented signatures. SigNet is a Siamese neural network,
i.e., a network consisting of twin CNNs with shared weights and the same parameters, accepting two
distinct signature images that are similar or dissimilar. This study conducted all its experiments with the
GPDSsyntheticSignature dataset to determine the effectiveness of the proposed image augmentation
model. Three different performance evaluation scenarios were used, and the results were compared
according to the validation accuracy. The complete block diagram of the performance evaluation
process on the DL-based OfSV system is illustrated in Fig. 13. The following three experiments
scenarios were used for evaluation on the SigNet OfSV system:

1. Without any augmentation processes (WDA).
2. With conventional augmentation techniques like rotation, flipping, and mirroring (CDA).
3. With the proposed augmentation model (PDA).

In the first experiment, i.e., the WDA scenario, all signature samples in the GPDSsyntheticSig-
nature dataset, without any augmentation process, were used. In the second experiment, i.e., the
CDA scenario, the signatures of each person were increased five (5) times (54 × 5 = 270 signatures)
using conventional augmentation techniques like mirroring, flipping, and rotation. Keras Image
Augmentation API was used for this augmentation process. In the last experiment, i.e., the PDA
scenario, the proposed augmentation model was used to increase each person’s signature by ten (10)
times (54 × 10 = 540 signatures). In order to understand the success of the proposed model, the image
augmentation process was applied to all genuine and forged signature samples for each signer in CDA
and PDA scenarios.

This study utilised the Pytorch-based freely and publicly available SigNet source code from
GitHub [59] to evaluate verification accuracy performance. In all three experiment scenarios,
GPDSsyntheticSignature was used, which contains images of different sizes. However, SigNet OfSV
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model needs the input image with the size of 220 × 155 [30]; therefore, this study preprocessed
(including resizing all images to 220 × 155 size) the dataset images in all three scenarios using the
OpenCV library.

Figure 13: Block diagram of performance evaluation process on DL-based OfSV system

Furthermore, since SigNet OfSV model requires a pair of signatures as input, all used signatures
were organized to create signatures pairs. Thus, two types of pairs were created, the genuine-
genuine pairs with label 1 and the genuine-skilled forgery pairs with label 0. It should be noted
that, due to computation limitations to augment images using the proposed DL-based model (one
augmentation process took 2 h), this study performed all experiments on the first ten (10) signers of
the GPDSsyntheticSignature dataset and selected M signers from the K (where K > M) randomly.
Therefore, in all experiments, K = 10 and M = 8 (following the same ratio of 5:4, as used by SigNet
for GPDSsyntheticSignature). We kept all the genuine and forged signatures of these M signers for
training and the rest of the K − M signers for testing.
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In first scenario i.e., WDA, the dataset contains 24 genuine signatures for each signer, therefore,
24C2 = 276 (genuine, genuine) signature pairs were available for each signer. Similarly, the dataset in
this scenario contains 30 forged signatures for each signer; therefore, 24 × 30 = 720 (genuine, forged)
signature pairs can be obtained for each signer. To ensure the balance of similar and dissimilar sample
pairs, we randomly selected 276 (genuine, forged) signature pairs from each of the writers in this
scenario. This protocol results in M × 276 (genuine, genuine) as well as (genuine, forged) signature
pairs for training and (K − M) × 276 for testing in WDA scenario. Similarly, in the CDA scenario,
where each person’s signatures were increased by five (5) times, the number of (genuine, genuine) pairs
would be 120C2 = 7140. Furthermore, 120 × 150 = 18000 (genuine, forged) signature pairs can be
obtained for each signer in this scenario. We randomly selected 7140 (genuine, forged) signature pairs
from each of the writers in this scenario to avoid imbalanced data issue. This protocol results in M
× 7140 (genuine, genuine) as well as (genuine, forged) signature pairs for training and (K − M) ×
7140 for testing. As, the signatures of each person signatures were increased by ten (10) times in PDA
scenario, therefore the number of genuine-genuine and genuine-forged pairs available would be 240C2 =
28680. Furthermore, 240 × 300 = 72000 (genuine, forged) signature pairs could be obtained for each
signer. In order to avoid sampling bias, 28680 (genuine, forged) signature pairs were randomly chosen
from each of the writers in this scenario. This protocol results in M × 28680 (genuine, genuine) as well
as (genuine, forged) signature pairs for training and (K − M) × 28680 for testing. Table 4 shows the
detailed experimental values for different datasets scenarios considered for our experiments.

Table 4: Detailed experimental values used in all three dataset scenarios

Dataset route K M Total signatures Genuine-genuine
pairs

Genuine-forged pairs

Without any augmentation
processes (WDA)

10 8 10 × 54 = 540 276 276 out of 720

With conventional
augmentation (CDA)

10 8 10 × 270 = 2,700 7,140 7,140 out of 18,000

With the proposed
augmentation model (PDA)

10 8 10 × 540 = 5,400 28,680 28,680 out of 72,000

This study utilised the resized images as input images in all three scenarios, and both the images
of the pair were passed to the model, where they split into left_image and right_image. They were
trained separately to extract the features using various layers. They were then combined and passed
to the model, where the dense layers were produced on both sides of the Siamese network and were
measured by a similarity metric containing Euclidean distance. Euclidean distance is the metric used
to measure the similarity between the two images. SigNet OfSV system used Contrastive Loss as the
model loss function and RMSProp as the model’s optimiser. The model was fit to the training dataset
for 20 epochs and batch sizes of 64 owing to the GPU memory limitation.

For testing the model, the labelled dataset was again used without randomisation after every
epoch, and the performance was derived. To simplify performance comparison and contrast the
efficacy of the proposed methodology, the performance (accuracy graphs) of all three experiment
scenarios is presented with graphs for every training phase, which are illustrated in Fig. 14.
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Figure 14: Performance evaluation graphs for WDA, CDA and PDA experimental routes

In Fig. 14, we can see that the first experimental scenario, i.e., WDA, in which no image
augmentation process was used, model is clearly overfitting. We believe that the employed SigNet
OfSV model is overfitting in this training phase due to the insufficiency of signature data. Even on
increasing the epochs, the model is still clearly overfitting, and the model overfits after 6 epochs. That
is why the validation accuracy (val_accuracy) is relatively lower than the training accuracy (accuracy).
In the second experimental scenario, i.e., CDA, in which the conventional augmentation method was
utilised, its training and verification accuracy rates are closer to each other. It clearly indicates how
important the large training data quantity is to the success of the DL-based OfSV models. The third
experimental scenario’s training and validation accuracy rates employing the proposed augmentation
method (PDA) are very close to each other. Although the proposed model’s augmented images used
in the PDA experimental scenario looked identical, however, the four quality assessment metrics
comparison, shown in Figs. 5 and 6, confirms the addition of new features in the augmented image.
These new features improved the SigNet OfSV accuracy in the PDA experiment.

SigNet OfSV has attained the highest accuracy in the WDA scenario is 59.32%; in the CDA
scenario is 61.37%, and in the PDA scenario is, 62.23%. The overall accuracy improvement attained
using the proposed model’s augments images is 2.91% higher than the WDA scenario. Though this
improvement is not very big, still, it’s very encouraging that the proposed model’s augmented images
were able to improve the verification accuracy rate of the DL-based OfSV system. With further
experiments on the proposed model, it is quite possible that there would be more improvement in the
verification accuracy rate. Overall, all these results show the success of the proposed image augmenta-
tion model. All three experimental results demonstrate that the proposed image augmentation model
improved the verification accuracy rate of the SigNet OfSV system for the GPDSsyntheticSignature
dataset.

7 Conclusion

Offline signature verification systems are used to verify a person’s identity in various security
systems. The limited number of samples per user is one of the most significant challenges in this
field. Generally, the amount of information about each person is limited to three or four signatures
presented in one official document, which makes biometric verification a challenging task and restricts
the performance of real applications. This work proposed an image augmentation model based on
the SinGAN basic architecture and its latest modified/improved versions to increase the number of
signatures for such systems. Using experimental evaluation, we found that this model can generate
high-quality signature images to be used as extra data for offline signature verification systems,
creating many times more signatures than the input and finally achieving the proposed objective, i.e.,
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the higher verification accuracy rate for the DL-based OfSV system. One of the main advantages
of our model is the automatic generation of new samples with reasonable structural information
and meaningful features collaborating with the training of offline signature verification systems.
Furthermore, this method can prove an alternate solution to DL-based OfSV systems, which depends
on utilising large offline datasets like GPDS-960, which is no longer publicly available due to GDPR
issues. From a research perspective, this work mainly contributes to opening a different view to the
research community about the application of deep learning models in the augmentation of offline
signature samples and in improving the verification accuracy rate of offline signature verification
systems.

Limitation: The offline signature images used in the comparative analysis in a few state-of-the-
art augmentation models were acquired after the scanning process from their original papers. These
images were not available in any online repository. Therefore, the comparison result could be changed
a little if the original high-quality offline signature images were available. Furthermore, the selected
augmentation models were restricted to offline signature image augmentations only. The comparison
with other studies was also challenging due to the poor quality of their available augmented images.

Future Work: In brief, working on enhancements to the variability of the augmented images, then
creating a network capable of receiving and producing images of different sizes. Furthermore, testing
other generative models are investigation to be carried out. Additionally, it is essential to examine the
proposed image augmentation model on various state-of-the-art OfSV models other than SigNet to
understand the impact on their final results.
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