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Abstract: Wind and solar energy are two popular forms of renewable energy
used in microgrids and facilitating the transition towards net-zero carbon
emissions by 2050. However, they are exceedingly unpredictable since they
rely highly on weather and atmospheric conditions. In microgrids, smart
energy management systems, such as integrated demand response programs,
are permanently established on a step-ahead basis, which means that accu-
rate forecasting of wind speed and solar irradiance intervals is becoming
increasingly crucial to the optimal operation and planning of microgrids.
With this in mind, a novel “bidirectional long short-term memory network”
(Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE)
forecasting model for predicting short-term solar irradiation and wind speed
was developed and evaluated in MATLAB. To create a deep stacked S2SAE
prediction model, a deep Bi-LSTM-based encoder and decoder are stacked
on top of one another to reduce the dimension of the input sequence, extract
its features, and then reconstruct it to produce the forecasts. Hyperparameters
of the proposed deep stacked S2SAE forecasting model were optimized using
the Bayesian optimization algorithm. Moreover, the forecasting performance
of the proposed Bi-LSTM-based deep stacked S2SAE model was compared
to three other deep, and shallow stacked S2SAEs, i.e., the LSTM-based deep
stacked S2SAE model, gated recurrent unit-based deep stacked S2SAE model,
and Bi-LSTM-based shallow stacked S2SAE model. All these models were
also optimized and modeled in MATLAB. The results simulated based on
actual data confirmed that the proposed model outperformed the alternatives
by achieving an accuracy of up to 99.7%, which evidenced the high reliability
of the proposed forecasting.
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Index of Notation and Abbreviations

ANFIS Adaptive network-based fuzzy inference system
ANN Artificial neural network
ARIMA Autoregressive integrated moving average model
ARMA Autoregressive moving average model
Bi-LSTM Bi-directional long short-term memory networks
BP-NN Backpropagation neural network
CART Classification and regression tree
CNN Convolutional neural networks
DBN Deep brief networks
DL Deep learning
ELM Extreme learning machine
GBDT Gradient boosting decision tree
GHI Global horizontal irradiance
GPR Gaussian process regression
GR-NN Generalized regression neural network
GRU Gated recurrent unit
LSSVM Least-squares support vector machine
LSTM Long short-term memory networks
M5Tree Model five tree
MAPE Mean absolute percentage error
MLP-NN Multi-layer perception neural network
RBF-NN Radials basis function neural network
RMSE Root mean square error
RNN Recurrent neural networks
S2SAE Sequence-to-sequence autoencoder
SAE Stacked autoencoder
SVM Support vector machine←−
ht Backward hidden state−→
ht ) Forward hidden state
xi Input
b Bias term
h Hidden representation
h[t] Cell’s output
s[t] Cell state
tanh Hyperbolic tangent activation function
W Weight matrix
σ Sigmoid activation function
fg Input of forget gate
ig Input of input gate
og Input of output gate
p Activation function
q Activation function
u Update signal
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1 Introduction

With the rapid development of smart grids, microgrids have been garnering increasing interest
as a unique method of power delivery. A microgrid is a small-scale self-sustained intelligent power
system designed to deliver electricity to regional and local users, e.g., businesses. It may function
in an islanded state during grid disruptions or can be grid-connected. Notably, such solutions have
the potential to minimize energy delivery costs, increase load-point dependability, improve power
quality, reduce emissions from power generation, manage investment costs in power transmission,
and also improve the susceptibility of large-scale power systems [1]. However, traditional microgrids
still face a significant challenge posed by the erratic nature of renewable energy sources. Industry
4.0 aims to encourage the integration of industrial multi-energy microgrids and the application of
internet technologies to renewable energy through smart energy management systems such as demand-
response programs. Renewable energy sources, including water [2–4], waste, sunlight, wind, and heat
from the Earth, are naturally replenished and produce negligible amounts of greenhouse gases and
air pollution. Globally, the US Department of Energy has defined Demand Response as “a tariff or
program established to motivate changes in electric use by end-use customers, in response to changes
in the price of electricity over time, or to give incentive payments designed to induce lower electricity
use at times of high market prices or when grid reliability is jeopardized” [5].

Two of the most popular RES used in multi-energy microgrids are wind and solar energy. However,
both are exceedingly unpredictable as they are highly reliant on weather and atmospheric conditions,
which means they need suitable controllers to extract constant maximum power [6,7] and are often
used in tandem with energy storage devices [8]. Therefore, accurate forecasting of wind speed and
solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning
of microgrids [9]. Demand response programs are permanently established on a step-ahead basis;
therefore, accurate wind speed and solar irradiance forecasting play an essential part in their successful
deployment. However, the unpredictability inherent in wind and sun conditions makes developing
accurate forecasting models tricky. Deep learning methods (DL) based on artificial intelligence have
gained enormous popularity as a promising subfield of machine learning in recent years [10].

The many benefits offered by DL, including superior generalization capabilities, the ability to
process large datasets, and support for both supervised and unsupervised learning algorithms, have
proven invaluable in the development of forecasting solutions. The supervised learning method uses
algorithms to learn the mapping functions between the input and output variables of an originally
labelled dataset. The machine learning model can associate the signal dataset with an activity class
thanks to supervised learning algorithms. In contrast, the unsupervised learning algorithms work on
unlabeled data and can recover the learning features from raw data datasets and rebuild the patterns
[11,12].

What distinguishes the supervised and unsupervised learning algorithms is the large-scale hierar-
chical data representation and several linear layers of processing. Therefore, increased computational
complexity and a higher number of layers can contribute to a more intricate design of DL models. DL
algorithms may be used to assess and utilize critical aspects of big data by facilitating the extraction of
complicated patterns from enormous datasets, data tagging, semantic indexing, quick information
retrieval, and the refinement of discriminating tasks [13]. Bi-directional long short-term memory
networks (Bi-LSTM), stacked autoencoder (SAE) coding, convolutional neural networks (CNN),
gated recurrent units (GRU), and recurrent neural networks (RNNs) are just a few examples of the
methods used in DL for load forecasting and monitoring applications in smart grids [14–16].
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Various cutting-edge DL-based methodologies have been proposed in the literature (as discussed
in Section 2) to improve prediction accuracy and encourage prospective innovation in the sector.
However, those methodologies are not without some significant drawbacks: (i) expertise is needed
to choose the number of data points that will be fed into a model, making the model less trustworthy
and less effective in extracting nonlinear features [17]; (ii) gradient disappearance, over-fitting, and
excessive network training are all problems with these models, and their lack of generalization capacity
makes it difficult for them to learn complicated patterns; and (iii) the hyperparameters are not
sufficiently fine-tuned to account for lacking data. Given the above, the presented study addresses
said drawbacks by evaluating the effectiveness of deep-stacked S2AEs in solar irradiation and wind
speed time series prediction. There is a need to test the effectiveness of deep and shallow stacked
sequence-to-sequence autoencoders (S2SAE) when applied to forecasting both solar irradiation and
wind speed. In this context, the presented study offers the following research contributions:

• A novel Bi-LSTM-based deep stacked S2SAE for improving the accuracy of short-term solar
irradiation and wind speed predictions was developed and evaluated in MATLAB.

• The forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was
compared to three other deep and shallow stacked S2SAEs, i.e., the LSTM-based deep stacked
S2SAE model, GRU-based deep stacked S2SAE model, and Bi-LSTM-based shallow stacked
S2SAE model.

• Bayesian optimization was used to optimize the hyperparameters of all the forecasting models.
The simulated results evidenced the superior performance of the proposed Bi-LSTM-based
deep stacked S2SAE forecasting model relative to other models.

• All the models were optimized using at least 30 objective function evaluations using Bayesian
optimization capabilities.

• The proposed model returned highly accurate results (up to 99.7%) when faced with unknown
data and did not show evidence of vanishing gradient, over-fitting, or excessive network training
problems.

The subsequent parts of the paper are organized as follows: Section 2 reports on the literature
review conducted, Section 3 details the methodology followed, Section 4 discusses the results, and
Section 5 draws a conclusion and offers recommendations for the future.

2 Literature Review

An accurate forecasting model is challenging to develop because of the apparent problems
with fluctuations in wind speed and solar irradiance. As a result, various cutting-edge DL-based
methodologies have been proposed in the literature to improve prediction accuracy and encourage
prospective innovation in this sector. Hourly intervals of solar irradiance and wind speed were
forecasted by authors in [18] using a nonlinear autoregressive model with exogenous input based on
a neural network. The proposed model required additional environmental input, such as temperature
or wind direction readings. Furthermore, increasing the number of hidden layers in such conventional
models was observed to yield better results. To predict the short-term wind speed, the authors in [19]
created an LSTM neural network using a decomposition approach and a grey wolf estimator.

The performance and accuracy of wind speed and solar irradiation forecasting models may also
be enhanced by combining various methodologies to create a hybrid prediction model. For instance,
the authors of [20] did excellent work predicting short-term solar irradiation using CNN and LSTM
algorithms. Data input characteristics were extracted from predictor factors with the help of a CNN
and then absorbed by LSTM for forecasting. Similarly, to improve the reliability of wind speed
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forecasts, the authors of [21] developed a nonlinear hybrid model using LSTM, a nonlinear hybrid
mechanism, a differential evolution method, and a hysteretic extreme learning machine. Although it
was hard to balance, the differential evolution algorithm was used to improve the model. Moreover,
ensemble empirical mode decomposition and a Bi-LSTM neural network were proposed in [22] for
forecasting wind speed. The model’s capacity for data denoising and disintegration improved the
accuracy values.

Approaches to solar irradiation and wind speed forecasting include both time series and regression
models [23]. A time series collects of relevant data often presented in a sequential format. Typically,
time-series models attempt to predict the following observation in the series, not unlike extrapolation.
For instance, wind speed, solar radiation, temperature variables, precipitation, and relative humidity
were all forecasted using the LSTM neural network trained on a time series model, as described in
[24]. Such models can handle several kinds of meteorological information.

Moreover, time series can be associated with parallel series, and forecasting can also be applied
to these parallel series (so-called ‘multivariate time series’). For example, a multivariate time series
forecasting-based Bi-LSTM neural network was used in a study presented in [25] to forecast the daily
load performance during the COVID-19 pandemic lockdown in the UK. Wind power, solar radiation,
biomass concentration, and temperature were considered forecasting model inputs. In addition, the
model was characterized by significant overfitting, as indicated by a high root mean square error
(RMSE) value.

In turn, regression forecasting models are often described as an interpolation technique. Time-
series forecasting can also be done via regression. For example, a time-series auto-regression solar
irradiation model has been proposed by [26]. However, regression may also be used with non-ordered
series in which the values of the target variable are influenced by the values of other variables known
as features, e.g., air temperature and relative humidity [27]. Predictions are made by feeding new
values of respective features into regression models, which then return an estimate for the target
variable. For example, a boosted decision tree regression model was proposed in [28] to forecast solar
irradiation fluctuations and compared to traditional regression methods such as neural network and
linear regression methods.

A detailed literature review on DL and machine learning methods currently used to forecast
solar irradiation can be found in [29,30]. Fig. 1 summarizes the methods discussed in this paper
and literature generally relevant to global solar irradiance and wind speed forecasting. Popular
“artificial neural network”(ANN)-based feedforward networks include ”multi-layer perception neural
networks” (MLP-NN) [31], “backpropagation neural networks” (BP-NN) [32], “radials basis function
neural networks (RBF-NN)” [33], CNN, “adaptive network-based fuzzy inference systems (ANFIS)”
[34], extreme learning machines (ELM) [35], generalized regression (GR-NN) [36], deep brief networks
(DBN) [37]. Recursive deep NN is RNN, Bi-LSTM, and LSTM.

Kernel-based popular forecasting models include the “support vector machine” (SVM) [38],
Least-squares SVM (LSSVM) [39], and Gaussian process regression (GPR). Tree-based solar irra-
diance and wind speed forecasting models can be categorized into “Gradient boosting decision tree”
(GBDT), random forest, Model five tree (M5Tree), and “Classification and regression tree” (CART)
[40]. The last category of other models includes autoregressive (AR), “Autoregressive moving average
model” (ARMA), “Autoregressive integrated moving average model” (ARIMA) [41,42], SAEs, and
fuzzy logic-based forecasting models [43].
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Figure 1: Machine learning models used for global solar irradiance and wind speed forecasting [30]

As follows from the above literature, the described DL-based forecasting algorithms needed
expertise to choose the correct number of data points, making the model less trustworthy and
less effective in extracting nonlinear features. Some models also suffered from the problems of
gradient disappearance, over-fitting, and excessive network training, while their lack of generalization
capacity prevented them from learning complicated patterns. Moreover, the hyperparameters are
not sufficiently finetuned to account for the lack of data. Therefore, the present study aimed to
address these drawbacks by evaluating deep stacked S2AEs’ effectiveness in solar irradiation and
wind speed time series prediction. It was necessary to test the effectiveness of Bi-LSTM-based deep-
stacked S2SAE for wind speed and solar irradiance forecasting. Therefore, a novel Bi-LSTM-based
deep stacked S2SAE for short-term solar irradiation and wind speed prediction was developed and
evaluated in MATLAB. The forecasting performance of the proposed Bi-LSTM-based deep stacked
S2SAE model was compared to three other deep and shallow stacked S2SAEs, i.e., the LSTM-based
deep stacked S2SAE model, GRU-based deep stacked S2SAE model, and Bi-LSTM-based shallow
stacked S2SAE model. Bayesian optimization was used to optimize the hyperparameters of all the
forecasting models. The simulated results confirmed the superior performance of the proposed Bi-
LSTM-based deep-stacked S2SAE forecasting model relative to other models.

3 Methodology

The following section will explain the basic concepts of deep SAE and Bi-LSTM networks
before detailing the proposed novel Bi-LSTM-based deep stacked S2SAE forecasting model for solar
irradiance and wind speed forecasting.

3.1 Deep-Stacked Autoencoders

Autoencoders are among the most significant neural network-based deep learning designs falling
under unsupervised machine learning. They operate within three distinct layers: input, hidden, and
output. Encoding is handled by the hidden layer, whereas decoding is performed by the output layer.
The network is taught to produce a replica of the input. This is made possible by the hidden layer
that learns the depictions of the inputs. Because autoencoders are taught to reproduce their input xi,
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they require a uniform dimensionality between their input and output layers. As it uses the encoder,
an autoencoder functions as a feed-forward neural network that transforms input xi into a hidden
representation h with the help of weight W and bias b variables and p and q activation functions, as
shown in Eq. (1) [44]. Subsequently, it engages the decoder to retrieve the original input x̂i from the
decoded representation by employing the squared error loss function J (θ), as shown in Eq. (1).⎧⎪⎪⎨
⎪⎪⎩

h = p (Wxi + b) ,

x̂i = q(Wh + c),

J(θ) = m
1
m

∑n

i=1

∑n

j=1

(
x̂ij − xij

)2

⎫⎪⎪⎬
⎪⎪⎭

(1)

When autoencoding, the autoencoder can be either under or over-complete. The hidden layer
dimensions in an under-complete autoencoder are less than those in the input layer, whereas, in an over-
complete autoencoder, they are more. The essential features of the inputs can be captured by an under-
complete autoencoder. To train these networks, the backpropagation technique is used. Autoencoders
can be used to represent either a linear or a nonlinear transformation. Under-complete autoencoders
can be stacked and are used mainly in dimensionality reduction and data denoising [45]. When many
autoencoders are stacked in a manner that uses each layer’s output as input to the next, a deep stacked
under-complete autoencoder is obtained. The layers are trained unsupervised and independently of
one another, and the results from one layer are used to train the next, as shown in Fig. 2. After all of the
layers have been trained, the whole network undergoes supervised fine-tuning using backpropagation
to optimize its performance by reducing the prediction error.

Figure 2: Basic-level architecture of proposed deep SAE

3.2 Deep Bi-directional Long Short-Term Memory Networks

To address the issue of vanishing gradients in RNNs, LSTM networks have been developed [46].
They achieve this by creating a model that can retain data for extended periods. Memory cells in an
LSTM network typically include self-loops, as seen in Fig. 3. An input gate, forget gate, and output
gate are depicted in the image as the three gates responsible for information flow in an LSTM cell.
Memory cell states may be read via the output gate, written into via the input gate, and erased via the
forget gate. The self-loops of an LSTM network allow for storing any sequential information that can
be encoded on the state of the memory cell.
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Figure 3: LSTM network single-cell structure [8]

The following equations describe how a single LSTM network cell functions [14]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ig = σ
(
i[t]Wix + o[t−1]Wim + bi

)
fg = σ

(
i[t]Wfx + o[t−1]Wfm + bf

)
fg = σ

(
i[t]Wox + o[t−1]Wfo + bo

)
u = tanh

(
i[t]Wux + o[t−1]Wum + bu

)
s[t] = (

fg ◦ st−1 + ig ◦ u
)

h[t] = (
og ◦ tanh(u)

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where fg, og, and ig represent the respective inputs on the forget, output, and input gates; u is the update
signal, s[t] is the cell’s state, h[t] is the cell’s output, tanh and σ represent hyperbolic tangent and sigmoid
activation functions, b and W are the bias and weight matrix of a one LSTM cell. Moreover, since the
sigmoid activation function modifies the input value into a number between 0 and 1, it permits full or
no information flow through the gates. The hyperbolic tangent activation function tanh addresses the
vanishing gradient issue, as its second derivative provides a wide range of values before progressively
decreasing to zero.

LSTM cells can be stacked on top of each other to create a deep or multi-layered network.
Therefore, each LSTM layer consists of several hidden cells. The LSTM layers used in this study are
bidirectional, meaning that the input sequence may be run either forwards or backward [47]. The
number of memory cells is doubled in every layer of a Bi-LSTM network. Learning from past and
future values gives it an edge over unidirectional LSTM. Fig. 4 depicts the Bi-LSTM layer architecture
used in the present study. The difference between an LSTM and a Bi-LSTM layer is that the latter
learns and remembers information from input in both the forward and reverse orientations. The
forward direction is used to remember past input values, while the backward direction remembers
future values. At every time step t, both historical and future data are accessible thanks to the
combination of two hidden states storing the information separately (

←−
ht (backwards hidden state)

and
−→
ht (forward hidden state)). The final hidden state ht is computed as ht = ∂(

←−
ht ,

−→
ht ) which ∂ it can

be a concatenating, summation, average, or multiplication operation; this combines the hidden state
sequences going forwards

−→
ht and backward

←−
ht . Moreover, Bi-LSTM cell outputs at every time step t

are calculated by applying the regular LSTM unit’s functional equations as given in Eq. (2).
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Figure 4: Bi-LSTM layer architecture used for developing a deep stacked autoencoder [14]

3.3 Proposed Bi-LSTM-Based Deep Stacked Autoencoder Sequence-to-Sequence Architecture

This study aimed to evaluate the effectiveness of a novel Bi-LSTM-based deep-stacked S2SAE
designed for short-term predictions of both solar irradiation and wind speed. To create a deep-stacked
S2SAE prediction model, six Bi-LSTM network layers were stacked on top of one another. The
proposed deep model was inspired by [48], where the authors presented the first iteration of an RNN
encoder-decoder. There are two main components to the proposed S2SAE methodology: an encoder
and a decoder, as already shown in Fig. 2. Fig. 5 depicts the detailed architecture of the proposed Bi-
LSTM-based deep stacked S2SAE. The encoder comprises three Bi-LSTM layers that take in the input
sequence data, reduce its dimensions, and flatten it into a single vector, known as the repeat vector.
This vector contains information about the complete input sequence and is repeated for t timesteps
to reconstruct the original encoded sequence. The t timesteps represent the required number of future
predictions [49].

It is worth mentioning that the hidden states of every B-LSTM layer are fed as an input to a
dropout layer, which is included to prevent the network from overfitting the data and consequently
underperforming with novel values. The dropout layer is designed to operate at the probability of
0.05, which prevents overfitting by arbitrarily assigning 5% of inputs to zero. Similarly, the decoder is
composed of three Bi-LSTM layers that receive this vector as an input and utilize it to generate a target
sequence. The encoder uses Bi-LSTM cells to turn the input into a hidden state. Therefore, the hidden
state of the most recent Bi-LSTM cell is the output vector generated by the encoder. Subsequently, the
repeat vector’s reconstructed original sequence input is fed into the first Bi-LSTM-based hidden layer
of the decoder. The layer uses this vector as its first hidden state, and the last time step’s output value
is fed into the subsequent Bi-LSTM cell for the step-ahead forecast.

By gathering information from several Bi-LSTM layers, the model’s forecasting performance may
enhance, and it can understand more complex representations of time-series data in the model’s hidden
layers [50]. The outputs from the final dropout layer are sent to the fully connected layer, which converts
the outputs into a single number representing the hour-ahead wind speed or solar irradiation for that
time step. Finally, a regression output layer is linked so that the performance of the loss function can
be tracked as the proposed Bi-LSTM-based deep stacked S2SAE network is being trained.
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Figure 5: Proposed Bi-LSTM based deep stacked S2SAE

When developing an ML model, it is crucial to select optimum values of hyperparameters,
i.e., parameters whose values are set before the model’s training begins. In RNN, hyperparameters
generally include the maximum number of iterations, mini-batch size, number of hidden layers, initial
learning rate, momentum, activation functions, and regularization factor. Model-specific considera-
tions dictate specific hyperparameters to be used. There is no optimal set of hyperparameters common
to all the models. In the presented study, these included the initial learning rate, the number of hidden
neurons in every Bi-LSTM layer, and the L2 regularization (weight decay) factor. The initial learn-
rate aids in finding generic patterns in the input sequence, and L2 regularization improves the model’s
generalization and prevents overfitting, leading to more accurate forecasts. All the hyperparameters
used were optimized using a Bayesian optimization method [51].

Bayesian optimization uses previous knowledge about the function and updates the knowledge
gained via experimentation to minimize losses and increase the model’s accuracy. Other parameter-
tuning methods, such as a grid and random search, were not used due to their inherent limitations.
The shortcomings of a grid search become more apparent as the number of dimensions increases.
In contrast, a random search is more akin to the greedy strategy because it stops at local optimum
solutions rather than pursuing the global best [52]. These limitations can be solved with the help of
Bayesian optimization, which efficiently reveals the black box function of the RNN’s global optima. It
handles noisy input smoothly, exploits non-continuous regions, and scales effectively concerning these
factors, allowing it to find global minima.

The activation function of a rectified linear unit “ReLU” was used with every Bi-LSTM layer while
training the proposed deep stacked S2SAE forecasting model to deal with vanishing gradients. It also
speeds up and improves the learning process [53]. In addition, Adam was selected as the optimization
technique because it is fast, uses little memory, is resistant to gradient rescaling, and can deal with
massive datasets [54]. The end of the training was determined based on two criteria: maximum epochs
and early stopping. Early stopping is a regularization method which terminates training before a
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predetermined number of iterations have been completed by regulating validation loss. In MATLAB,
the “ValidationPatience” parameter controls how many times a loss on the validation set can be greater
than or equal to the previous lowest loss before the network training process is terminated. This
parameter was set to 6, and the maximum number of epochs was 400. The training was automatically
stopped when either of these stopping criteria was met.

Figs. 6 and 7 show the training progress of the proposed Bi-LSTM-based deep stacked S2SAE
model for solar irradiation and wind speed forecasting, respectively, at optimum hyperparameter
values. As is apparent, both training and validation losses and RMSEs were rather significant at the
outset of the training but began to decrease as the epochs progressed. Generally, a forecasting model
is said to be working effectively when the training and validation loss graphs meet at an intersection.
Four hundred epochs were used in the model training, and from epoch 140 onwards in the case of solar
irradiation and epoch 100 in the case of wind speed, and the training loss and validation loss curves
were met. As such, the graph corroborates the performance of the proposed Bi-LSTM-based deep-
stacked S2SAE model. However, for further performance validation and to support conclusions about
the deep stacked S2SAE forecasting model’s efficacy in comparison to three other benchmark stacked
S2SAEs, “mean absolute percentage error”(MAPE), RMSE, and R-squared (R2) performance metrics
were calculated, as given in Eq. (3) [14]. Lower MAPE and RMSE would represent a better forecasting
model, and R2 value closer to 1 would indicate a better fit between the forecasting model and the data
given.⎧⎪⎪⎨
⎪⎪⎩

MAPE = 1
N

∑N

i=1

Xi
R−Xi

E
Xi

R
× 100

RMSE =
√

1/N
∑N

i=1
(Xi

R−Xi
E)

2

Xi
R

⎫⎪⎪⎬
⎪⎪⎭

(3)

where X i
R is the reference/observed value, X i

E is the estimated/forecasted value, and N represents the
total number of simulation steps/time steps.

Figure 6: Training progress of proposed the Bi-LSTM-based deep stacked S2SAE model for solar
irradiation forecasting
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Figure 7: Training progress of the proposed Bi-LSTM-based deep stacked S2SAE model for wind
speed forecasting

4 Results and Discussion

The forecasting performance of the proposed novel Bi-LSTM-based deep stacked S2SAE model
for solar irradiation and wind speed forecasting was compared to three other deep and shallow stacked
S2SAEs, i.e., the LSTM-based deep stacked S2SAE model, GRU-based deep stacked S2SAE model,
and Bi-LSTM based shallow stacked S2SAE model. Shallow stacked S2SAE has one hidden layer
after the input layer on the encoder side and one hidden layer before the output layer on the decoder
side, whereas a deep stacked S2SAE has two hidden layers on both sides. All the above stacked S2SAE
forecasting models were developed and optimized using Bayesian optimization in MATLAB.

All the models were evaluated relative to annual (January 2021 to January 2022) global horizontal
irradiance (GHI) and wind speed hourly data obtained from the “NREL Solar Radiation Research
Laboratory (BMS)” publicly available dataset [55]. To save computational time, 2,000 data points were
used for training, validating, and testing the S2SAE forecasting models. In the case of solar irradiation
stacked S2SAE forecasting models, the training data included hourly GHI readings (W/m2) from
January 1, 2021, to March 11, 2021, and validation data included hourly GHI readings (W/m2) from
March 12–18, 2021, and the testing data included hourly GHI readings (W/m2) from March 19–25,
2021. In the case of wind speed stacked S2SAE forecasting models, the training data included hourly
wind speed readings (m/s) from January 1, 2021, to March 10, 2021, and validation data included
hourly wind speed (m/s) from March 11–18, 2021, and the testing data included hourly wind speed
(m/s) data from March 19–25, 2021. The GHI values from January 1–6, 2021, are shown in Fig. 8a),
and the wind speeds from January 1–5, 2021, are shown in Fig. 8b). Moreover, as some values were
missing from the wind data, they were pre-processed using the moving median method to complement
the missing values.
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Figure 8: (a) GHI training dataset values (January 1–6, 2021) (b) Wind speed training dataset values
(January 1–5, 2021)

The hyperparameters for each deep-stacked S2SAE forecasting model were optimized using at
least 30 objective function evaluations using Bayesian optimization. The objective function was to
minimize the MAPE. As deep learning models are sensitive to data scaling, the training and validation
data were normalized to have unit variance and zero mean. MAPE measures the extent of the network’s
underprediction or overprediction, and how successfully the network adopts new, unknown data is
measured by the validation RMSE value. Therefore, the iteration with the lowest MAPE and validation
RMSE values was selected as the optimal outcome of the experiment. Optimized hyperparameter
values used for all the wind speed and solar irradiation forecasting Bi-LSTM-based deep stacked
S2SAE models are shown in Table 1. Figs. 9 and 10 compare actual GHI and forecasted hour-ahead
GHI values using the proposed Bi-LSTM-based deep-stacked S2SAE.
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Table 1: Optimized hyperparameters values for all the forecasting models

Input layer
number of
hidden units

Total network
layers
(Input+hidden
layers)

Learn rate L2 regular-
ization
weight decay

Wind speed
forecasting

Shallow stacked
Bi-LSTM S2SAE

108 4 0.0015 0.0001

models Deep-stacked GRU
S2SAE

250 6 0.0010 0.0001

Deep-stacked LSTM
S2SAE

61 6 0.0209 1.4729e-5

Proposed deep-stacked
Bi-LSTM S2SAE

250 6 0.0037 0.0001

Solar
irradiation

Shallow stacked
Bi-LSTM S2SAE

247 4 0.0030 0.0001

forecasting
models

Deep-stacked GRU
S2SAE

228 6 0.0018 1.4046e-5

Deep-stacked LSTM
S2SAE

248 6 0.0030 0.0001

Proposed deep-stacked
Bi-LSTM S2SAE

172 6 0.0149 0.0001

Figure 9: Comparison of actual GHI data with forecasted data using the proposed deep-stacked
S2SAE
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Figure 10: Comparison of actual wind speed data with forecasted data using the proposed deep-stacked
S2SAE

Table 2 compares the forecasting performance of the proposed model to three other benchmark
models. All the models were developed, trained, and implemented in MATLAB 2022a. It can be seen in
Table 2 that in comparison to the other benchmark models, the proposed model achieved the lowest
MAPE of 0.2763% when forecasting GHI and the lowest MAPE of 1.58% when forecasting wind
speed. Similarly, in comparison to the other benchmark models, it was able to achieve the lowest RMSE
value of 0.0358 when forecasting wind speed.

Table 2: Comparison of the proposed forecasting model to benchmark models

Wind speed Solar irradiation

MAPE R∧2 RMSE MAPE R∧2 RMSE

Shallow stacked Bi-LSTM S2SAE 2.32 0.98 0.056 2.00 0.98 2.06
Deep-stacked GRU S2SAE 6.87 0.44 0.099 4.20 0.91 2.03
Deep-stacked LSTM S2SAE 5.96 0.1916 0.0988 9.10 0.78 4.70
Proposed deep stacked-Bi-LSTM S2SAE 1.58 0.99 0.0358 0.2763 0.99 3.03

Moreover, when forecasting GHI, its RMSE value was 3.03, which was better than the LSTM-
based deep stacked S2SAE and comparable to the GRU-based deep stacked S2SAE and Bi-LSTM-
based shallow stacked S2SAE. Likewise, R-squared values reached 0.99 in both cases and were greater
than the R-squared values for all the other models, confirming that the developed forecasting model is
highly reliable. The lower values of MAPE indicate that the proposed Bi-LSTM deep stacked S2SAE-
based forecasting model is 99.7% and 98.42% accurate for solar irradiation and wind speed forecasting,
respectively. This would imply that the overall forecasts were only about 0.2763% and 1.58% off from
the actual values. Similarly, lower RMSE values indicate that the observed data are very close to the
predicted data.

Since the proposed Bi-LSTM-based deep stacked S2SAE can successfully learn crucial unob-
served characteristics from time series and subsequently provide accurate predictions, we can con-
fidently say that it is an effective method. The proposed Bi-LSTM-based deep encoder reduces
the input dimension and produces a single vector representation of input time sequence data. Next,
the Bi-LSTM-based deep decoder uses this single vector to learn and generate the target sequence. The
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proposed deep-stacked S2SAE model was able to effectively reconstruct the input sequence and use
the reconstruction error to forecast GHI and wind speed, demonstrating its high efficacy. Although
LSTM and GRU are not affected by the vanishing gradient problem, they both overfitted and failed
to capture the non-linearities in the time sequence data. At each time step, every single Bi-LSTM layer
combines the results of the forward and backward layers to generate output. Moreover, unlike other
prediction methods, every Bi-LSTM forecast is based on the entire data sequence. Another advantage
of the proposed model is that the deep-stacked S2SAE is made without flip the source/target sequence
since the Bi-LSTM layer can learn in both forward and reverse directions.

5 Conclusion and Future Research

A novel Bi-LSTM-based deep stacked S2SAE for short-term solar irradiation and wind speed
predictions was developed and evaluated in MATLAB 2022a. The forecasting performance of the
proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep and shallow
stacked S2SAEs, i.e., the LSTM-based deep stacked S2SAE model, GRU-based deep stacked S2SAE
model, and Bi-LSTM based shallow stacked S2SAE model. Bayesian optimization was used to
optimize the hyperparameters of all the forecasting models. The simulated results demonstrated the
superiority of the proposed Bi-LSTM-based deep stacked S2SAE forecasting model over the other
models. Compared to the other benchmark models, the proposed model achieved the lowest MAPE
of 0.2763% when forecasting GHI and of 1.58% when forecasting wind speed. It was also able to
achieve the lowest RMSE value of 0.0358 when forecasting wind speed. Moreover, the R-squared
value reached 0.99 in both cases and was higher than in all the other models, confirming that the
developed forecasting model is highly reliable. The presented study also explored the optimization of
the initial learning rate, number of hidden neurons, and regularization factor at constant pre-defined
values of other hyperparameters such as momentum and mini-batch size. On this basis, future research
can consider optimizing such hyperparameters using nature-inspired algorithms such as artificial bee
colony [56] or devising new transfer learning or reinforcement learning-based optimization algorithms.
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