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Abstract: Sensors produce a large amount of multivariate time series data to
record the states of Internet of Things (IoT) systems. Multivariate time series
timestamp anomaly detection (TSAD) can identify timestamps of attacks
and malfunctions. However, it is necessary to determine which sensor or
indicator is abnormal to facilitate a more detailed diagnosis, a process referred
to as fine-grained anomaly detection (FGAD). Although further FGAD
can be extended based on TSAD methods, existing works do not provide
a quantitative evaluation, and the performance is unknown. Therefore, to
tackle the FGAD problem, this paper first verifies that the TSAD methods
achieve low performance when applied to the FGAD task directly because
of the excessive fusion of features and the ignoring of the relationship’s
dynamic changes between indicators. Accordingly, this paper proposes a mul-
tivariate time series fine-grained anomaly detection (MFGAD) framework.
To avoid excessive fusion of features, MFGAD constructs two sub-models
to independently identify the abnormal timestamp and abnormal indicator
instead of a single model and then combines the two kinds of abnormal
results to detect the fine-grained anomaly. Based on this framework, an
algorithm based on Graph Attention Neural Network (GAT) and Attention
Convolutional Long-Short Term Memory (A-ConvLSTM) is proposed, in
which GAT learns temporal features of multiple indicators to detect abnormal
timestamps and A-ConvLSTM captures the dynamic relationship between
indicators to identify abnormal indicators. Extensive simulations on a real-
world dataset demonstrate that the proposed algorithm can achieve a higher
F1 score and hit rate than the extension of existing TSAD methods with the
benefit of two independent sub-models for timestamp and indicator detection.
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1 Introduction

Many sensor devices in the Internet of Things (IoT) produce a significant amount of time series
data to record the states of the IoT system dynamically. Anomalies in the time series of states indicate a
malfunction or attack. Detecting and localizing anomalies [1,2] in the time series is an essential method
for detecting malfunction or attack. When an anomaly is detected, treatments can be made to reduce
financial losses. Therefore, anomaly detection plays a vital role in the artificial secure management
of IoT.

In practice, sensors in the IoT often generate multiple indicators1 and form multivariate time
series (MTS). For example, the indicators used in waterworks systems include the water level, water
flow, valve status, water pressure, etc. The MTS in Fig. 1 contains five indicators: the flow meter,
ultra filtration (UF) feed pump, oxidation-reduction potential (ORP) meter, motorized valve, and
level transmitter. MTS can reflect different aspects of a physical device or system and contain more
information than univariate time series data. Therefore, MTS anomaly detection (MTSAD) has
become an attractive field of research.

Figure 1: Anomalies in multivariate time series data. The image depicts a five-indicator multivariate
time series with two abnormal timestamps highlighted in red. In each abnormal timestamp, the ORP
meter is the abnormal indicator

There are several tasks involved in MTSAD. Existing multivariate time series anomaly detection
techniques [3–11] focus primarily on the “timestamp anomaly detection (TSAD)” task. TSAD task
aims to identify the timestamps when the system behavior deviates from the norm because of errors or
attacks. However, it is also necessary to determine which specific indicator is experiencing anomalies at
the time of the abnormal timestamp. Identifying abnormal indicators helps with finding the root causes

1Here, “indicator” refers to the time series of a particular variable.
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and more rapidly applying correct treatments to reduce losses, which refer to as “fine-grained anomaly
detection (FGAD),” “anomaly interpretation [6]”, or “anomaly diagnosis [11,12]” tasks. Taking Fig. 1
as an example, the multivariate time series in waterworks systems contains five indicators and 27000
timestamps. Two abnormal timestamps are highlighted in red. TSAD identifies the two abnormal
timestamps. FGAD identifies the ORP meter as an anomaly on the two abnormal timestamps.

Due to the ability of FGAD to root causes, this paper focuses on the fine-grained anomaly
detection task. The aims of TSAD and FGAD tasks are different and existing methods mostly solve
the TSAD task. Therefore, multivariate time series fine-grained anomaly detection (MFGAD) remains
an open problem and still faces several challenges.

• Although some works [6,11] have noted that further FGAD can be applied based on the
extension of existing TSAD techniques, they do not provide a quantitative evaluation, and the
performance of these extension methods is unknown.

• Some works [13] can identify abnormal indicators; however, these are in a period, meaning that
the exact abnormal timestamp cannot be identified.

• Only a few indicators are abnormal, and most of them are normal within the abnormal
timestamp. The anomaly ratio of the FGAD task is substantially lower than that of the TSAD
task. The imbalance problem is more serious, which makes the FGAD problem more difficult.

Therefore, this paper designs an MFGAD framework and an algorithm based on Graph
Attention Neural Networks (GAT) and Attention-based Convolutional Long-Short Term Memory
Networks (A-ConvLSTM) technique to tackle the FGAD problem. The significant contributions can
be summarized as follows:

• This paper first verifies that extending the TSAD methods [11] does not work well on the FGAD
task. The performance of these extended techniques on the FGAD task is much lower than that
of the original techniques on the TSAD task. The main reason is that these models are prone
to excessive mixing of the indicator-wise features and ignore the relationship’s dynamic changes
between indicators, which are insufficient to distinguish indicators.

• A multivariate time series fine-grained anomaly detection framework is proposed to avoid exces-
sive fusion of features. It constructs two sub-models to independently identify the abnormal
timestamp and abnormal indicator instead of a single model and then combines the two kinds
of abnormal results to detect the fine-grained anomaly.

• Based on the framework, a fine-grained anomaly detection algorithm is implemented by GAT
and A-ConvLSTM. GAT learns temporal features of multiple indicators to detect abnormal
timestamps. A-ConvLSTM captures the dynamic relationship between indicators and extracts
distinct indicators’ features to identify abnormal indicators.

• Extensive simulations on a real-world dataset demonstrate that the proposed framework and
algorithm can achieve a higher F1 score and hit rate than the extension of state-of-the-art
methods.

The remainder of this paper is organized as follows. The related work is reviewed in Section 1.
The problem description and motivation are presented in Section 2. The MFGAD framework and the
detailed steps are outlined in Section 3. The performance of the proposed framework is evaluated via
experiments in Section 4. Section 5 concludes this work and discusses future work.
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2 Related Works

Nowadays, anomaly detection methods are mainly based on deep learning [14]. Although several
anomaly detection methods are designed for log data [15], network traffic data [16,17], or video data
[18,19], they can not apply to MTS data because of the different data structures. MTSAD is usually
classified into three tasks, as shown in Fig. 2: TSAD, indicator anomaly detection (IAD), and FGAD.
Indicator anomaly detection identifies abnormal indicators but does not point out the exact timestamp
of the abnormal indicators. The abnormal indicator is located within the full timestamp or duration.
In the following section, this paper reviews the work related to the three tasks.

Figure 2: The types of anomaly detection tasks on multivariate time series data

2.1 Timestamp Anomaly Detection of MTS

According to the technologies, TSAD algorithms can be divided into three categories: Long short-
term memory (LSTM)-based methods, generation-based methods, and graph-based methods.

1) LSTM-based methods: LSTM is first exploited in TSAD because of the ability to hand time
series. LSTMs and Nonparametric Dynamic Thresholding (LSTM-NDT) [3] use LSTM to achieve
high prediction performance and provide a nonparametric, dynamic, and unsupervised anomaly
threshold approach to detect anomalies.

2) Generation-based methods: Generative models are widely applied to TSAD for reconstructing
the time series. LSTM-based Variational AutoEncoder (LSTM-VAE) [4] projects multimodal observa-
tion and temporal dependencies into a latent space and reconstructs the expected distribution. Deep
Autoencoding Gaussian Mixture Model (DAGMM) [5] trains a deep autoencoding and Gaussian
mixture model simultaneously to produce a low-dimensional representation and reconstruction error.
OmniAnomaly [6] exploits a stochastic recurrent neural network to capture the robust representations
of normal patterns and reconstruct the observations. Multivariate Anomaly Detection with Generative
Adversarial Networks (MAD-GAN) [7] exploits LSTM as the base model in the generative adversarial
network framework to capture the temporal correlation and detect anomalies using discrimination and
reconstruction. Unsupervised Anomaly Detection (USAD) [10] uses an encoder-decoder framework
within adversarial training to facilitate fast and energy-efficient training. Adversarial Autoencoder
Anomaly Detection Interpretation (DAEMON) [20] exploits two discriminators to antagonistically
train an autoencoder that learns the normal patterns of the multivariate time series. InterFusion [21]
uses a hierarchical Variational AutoEncoder (VAE) to model the inter-metric and time dependence,
then exploits a Markov Monte Carlo-based method to obtain reasonable embedding and refactoring
of abnormal parts. Static and Dynamic Factorized VAE (SDFVAE) [22] exploits BiLSTM and
recurrent VAE to distinctly decompose the latent variables into dynamic and static parts to learn the
representation of time series.

3) Graph-based methods: Graph attention networks are applied to model the correlations between
indicators and the temporal dependencies for predicting future behavior. Multivariate Time series
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Anomaly Detection using Temporal pattern and Feature pattern (MTAD-TF) [8] exploits multi-
scale convolution and graph attention networks to capture temporal patterns. Multivariate Time-
series Anomaly Detection via Graph Attention Network (MTAD-GAT) [9] attempts to model the
correlations between different univariate time series and the temporal dependencies of each time
series via GAT. Graph Deviation Network (GDN) [11] learns the dependence relationships between
time series and predicts future behavior by GAT. The prediction error is used to detect deviations.
Graph learning with Transformer for Anomaly detection (GTA) [23] combines temporal convolutional
networks and graph convolutional networks to extract temporal and spatial features and then further
exploits Transformer to predict the following value and detect anomalies. Graph Relational Learning
Network (GReLeN) [24] employs graph relationship learning to capture the dependencies between
sensors and graph neural networks to reconstruct values for anomaly detection.

However, the above methods only identify the timestamps when the system has failed or been
attacked and can not solve the FGAD problem directly.

2.2 Indicator Anomaly Detection of MTS

MSCRED [13] addresses the anomaly detection and diagnosis problem simultaneously. This
approach can detect an anomaly, identify the root cause, and interpret anomaly severity by an
attention-based convolutional LSTM network as an encoder and decoder for reconstruction.
He et al. [25] identify the abnormal indicator streams from among all irregular streams.

However, they identify abnormal indicators without the exact timestamp.

2.3 Fine-Grained Anomaly Detection of MTS

Xie et al. [26,27] apply matrix decomposition and tensor decomposition to detect anomalies in the
network data. The data is decomposed into a low-ranked tensor and a sparse tensor, the latter of which
can be treated as an anomaly. Xie et al. [28] use graphs to improve accuracy, while Xie et al. [29] employ
sliding window reuse to speed up online anomaly detection. Garg et al. [12] conduct an evaluation of
anomaly detection and diagnosis in MTS. Anomaly diagnosis is performed by ranking the indicator-
wise anomaly scores generated by TSAD and returning the top-ranked indicator.

However, the extension of existing works [12] achieves low performance when applied to the
FGAD task. This phenomenon is verified experimentally in Section 3.2. Although many works
addressing multivariate time series anomaly detection have been proposed, no specially designed
method for fine-grained anomaly detection has been devised. Thus, fine-grained anomaly detection
on multivariate time series remains an open problem.

3 Problem Description and Motivation

The definition of multivariate time series fine-grained anomaly detection and the motivation are
presented in this section.

3.1 Multivariate Time Series Fine-grained Anomaly Detection Problem Definition

A multivariate time series with K indicators and N timestamps can be denoted by X =(
x1, x2, . . . , xK

)T ∈ RK×N. The i-th indicator can be represented by xi = (
xi

1, xi
2, . . . , xi

N

)
. The t-th

timestamp contains K values of indicators, denoted by xt = (
x1

t , x2
t , .., xi

t, .., xK
t

)T
.
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The goal of timestamp anomaly detection is to identify whether the following t timestamp xt is
anomalous. All existing related works [3–11] solve this problem. Differing from it, this paper focuses
on multivariate time series fine-grained anomaly detection, which indicates whether or not the i-th
indicator on the t-th timestamp xi

t is abnormal. Assuming that the label yi
t is 1, it means that xi

t is
abnormal.

3.2 Motivation

For the TSAD task, most existing methods train a model to predict or reconstruct normal data,
while the model outputs substantial errors when encountering abnormal data. These methods achieve
high performance on the TSAD task. Taking GDN [11] as an example, their basic processes of them
are as follows. GDN predicts all indicator values on timestamps through graph neural networks, such
that the error between the predicted value and the observed value on each indicator is normalized
into an indicator-wise anomaly score. All indicator-wise anomaly scores are then transformed and
aggregated into a single anomaly score per timestamp. When the single anomaly score is higher than
a given threshold, that timestamp is abnormal, as shown in Fig. 3.

Figure 3: ATop and PTop extension methods

The indicator-wise anomaly scores before aggregation can be exploited to detect fine-grained
anomalies by ranking them and returning the top-ranked indicators [12]. As shown in Fig. 3, the
specific extension methods are as follows:

• The first method ranks all indicator-wise anomaly scores on all timestamps and directly takes
the top M indicators on their timestamps as anomalies, which is referred to as ATop.

• The second method ranks all indicator-wise anomaly scores on the abnormal timestamps
identified by GDN. It takes the top M indicators on the abnormal timestamps as anomalies
referred to as PTop.

This research extends five baseline methods of TSAD by ATop and PTop to verify the performance
of TSAD methods in the FGAD task. The baseline methods and experimental parameters are
described in Section 5. The results are shown in Table 1. The F1 score of all methods in the TSAD
task is over 76%. However, when applied to the FGAD task, the performance of all methods with
two kinds of extension drops sharply. Taking GDN as an example, there are two reasons for this
phenomenon. First, GDN abstracts the dynamic relationship between indicators into a static graph
structure. Therefore, the feature relationship of all indicators extracted from GDN does not change
over time. Second, the loss function is based on the mean squared error between the predicted output
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and the observed data. The features of all indicators are fused on each timestamp. GDN over-integrates
the features of the indicators, meaning that it cannot effectively distinguish between them. Because of
the static feature relationship and the lack of distinct indicator features, the extended model can not
effectively detect fine-grained anomalies. Therefore, it is necessary to design a particular scheme for
fine-grained anomaly detection.

Table 1: The performance of the TSAD task and the FGAD task

Task type TSAD FGAD (ATop) FGAD (PTop)

Method Pre Re F1 Pre Re F1 Pre Re F1

UAE 0.86 0.84 0.84 0.04 0.17 0.06 0.08 0.38 0.14
Tcn AE 0.69 0.85 0.76 0.06 0.31 0.11 0.08 0.35 0.12
OmniAnomaly 0.86 0.79 0.82 0.11 0.51 0.18 0.14 0.65 0.23
MSCRED 0.84 0.80 0.82 0.08 0.37 0.13 0.08 0.36 0.13
GDN 0.97 0.75 0.84 0.09 0.53 0.16 0.15 0.85 0.26

4 Our Proposed Framework

An overview of the proposed framework and the details of each part are presented in this section.

4.1 Overview

This paper proposes an MFGAD framework to solve the FGAD problem. It contains a basic
TSAD sub-model to learn temporal features and detect timestamps. This paper introduces an IAD
sub-model that learns more spatial features to identify the indicator of duration to capture the dynamic
relationship between indicators and compensate for the extreme mixture of the indicator fixtures in the
above sub-model. Therefore, MFGAD constructs two sub-models instead of a single model. It first
independently identifies the abnormal timestamp and indicator and then combines the two kinds of
results to diagnose the anomaly. MFGAD comprises four parts: data preprocessing, TSAD sub-model,
IAD sub-model, and anomaly diagnosis (see illustration in Fig. 4). This paper designs an algorithm
by exploiting the GAT-based prediction model and the A-ConvLSTM-based reconstruction model to
implement the TSAD and IAD sub-models, respectively. In the following, this paper uses the exact
names of the algorithms rather than the names of the sub-models.

Data preprocessing: This component processes the original data to provide a convenient input data
form for each of the sub-models. The multivariate time series X ∈ RK×N is divided via a sliding window
wp to generate multiple feature matrices X ∈ RH×K×wp and an adjacency matrix A ∈ RK×K , which
construct a graph structure and are the input of the prediction model. The multivariate time series
X is divided based on a fixed window into multivariate sub-sequences. A product matrix Ah ∈ RK×K

is obtained via the inner product between indicators in a multivariate sub-sequence and is then used
as the input of the reconstruction model. The product matrix stores a similar relationship between
indicators.

GAT-based prediction model: To detect abnormal timestamps, this component predicts the value
at each timestamp. The feature matrix Xt ∈ RK×wp and adjacency matrix A are fed into the GAT model
to predict the value x̂t ∈ RK×1 per timestamp. The aggregated error between the ground truth and the
predicted value is taken as an anomaly score for identifying abnormal timestamps.
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A-ConvLSTM-based reconstruction model: To capture the dynamic relationship between indica-
tors, this component extracts the relationship between indicators (via CNN) and the temporal feature
of the relationship (via LSTM), which is referred to as the A-ConvLSTM model. The m product
matrices from Ah−m+1 to Ah forming a tensor Gh ∈ Rm×K×K are extracted by CNN and sent to the A-
ConvLSTM model for reconstructing the product matrix Âh. The reconstruction error matrix is the
difference between the product matrix Ah and the reconstruction product matrix Âh. The abnormal
indicator can be identified according to this difference.

Figure 4: The framework of MFGAD. MFGAD comprises four parts: data preprocessing, TSAD sub-
model, IAD sub-model, and anomaly diagnosis. The TSAD sub-model is implemented by the GAT-
based prediction model. The IAD sub-model is carried out by the A-ConvLSTM-based reconstruction
model

Anomaly diagnosis: This component identifies the fine-grained anomaly by combining the
anomaly timestamp and indicator.

The notations in this paper are shown in Table 2. In the following sub-section, each part is
described in more detail.

Table 2: Notations

Notation Meaning Notation Meaning

X Multivariate time series A Adjacency matrix
xi The i-th indicator Ah Product matrix
xt The t-th timestamp value x̂t The t-th timestamp predicted values
K The number of indicators Âh Reconstructed product matrix
N The number of timestamps TASt The t-th timestamp anomaly score
yi

t The label of the i-th indicator and
t-th timestamp

ISAi
h The i-th indicator anomaly score at

the h-th window
X Feature tensor ŷi

t The predicted label of the i-th
indicator and t-th timestamp
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4.2 Data Preprocessing

This paper aims to construct a graph structure representing the relationship between the indica-
tors. The graph contains K nodes, each of which represents an indicator and has its feature. The edges
represent the relationship between indicators, while the data for the prediction and reconstruction
models are independently processed.

4.2.1 Preprocessing for Prediction Model

The multivariate time series is divided into a set of multivariate sub-sequences by a sliding
window with window size wp and step size 1. The t-th multivariate sub-sequence, denoted as
Xt = (

xt−wp , xt−wp+1, . . . , xt−1

) ∈ RK×wp , is used to predict the value at timestamp t, where t ={
wp + 1, wp + 2, . . . , N

}
. There are a total of H multivariate sub-sequences, where H = N − wp + 1.

All multivariate sub-sequences constitute a feature tensor X ∈ RH×K×wp .

Based on the multivariate time series X, the cosine similarity is exploited to measure the similarity
between indicators. An adjacency matrix A ∈ RK×K is constructed based on the top S similarity. The
top S similarity is set to 1 to indicate that the two nodes are adjacent, while the remaining values are
set to 0 in the adjacency matrix, which can be formulated as follows:

eij = xiTxj

‖xi‖ × ‖xj‖ , i, j ∈ {1, 2, . . . , K} (1)

Aij = 1
{
eij ∈ Top S

}
(2)

where Aij represents the adjacency relationship between the i-th and j-th indicators.

4.2.2 Preprocessing for Reconstruction Model

The multivariate time series is divided into a set of multivariate sub-sequences by a fixed window
with window size wr. The h-th multivariate sub-sequence is denoted by Xh = (

xh×wr , . . . , x(h+1)×wr−1

) ∈
RK×wr , where h = {

0, 1, . . . , H − 1
}

and H = N/wr. There are a total of H multivariate sub-sequences.
The related H product matrices form the product tensor A ∈ RH×K×K .

For the multivariate sub-sequence, this paper uses the inner product between indicator pairs
to represent the adjacency relationship between indicator pairs in a given window, which can be
represented by a product matrix Ah ∈ RK×K . The element of the i row and j column in the h-th product
matrix is formulated as follows:

A
ij

h = (
xi

h×wr
, . . . , xi

(h+1)×wr−1

) × (
xj

h×wr , . . . , xj
(h+1)×wr−1

)T
(3)

where
(
xi

h×wr
, . . . , xi

(h+1)×wr−1

)T
represents the sub-sequence of the i-th indicator on the h-th multivariate

sub-sequence.

4.3 GAT-based Prediction Model

To predict the following values and detect abnormal timestamps, this paper adopts a feature
extractor based on GAT. GAT fuses the feature of an individual node with those of its neighbors
according to the graph structure learned from data preprocessing. In more detail, this paper obtains
the aggregated representation zi

t of node i at t timestamp as follows:

zi
t = ReLU

(
αiiWXi

t +
∑

j∈N(i)
αijWXj

t

)
(4)



5036 CMC, 2023, vol.75, no.3

Xi
t =

(
xi

t−wp
, xi

t−wp+1, . . . , xi
t−1

)
(5)

where xi
t−wp

is the value of node i at timestamp t − wp, N (i) = {j, Aij > 0} is the neighbor node set of
node i, W ∈ Rd×wp is the weight matrix needing to be trained, d is the dimension of hidden features,
and αij is the attention coefficient, which can be calculated as follows:

π (i, j) = LeakyRelu
(
aT

(
WXi

t ⊕ WXj
t

))
(6)

αij = exp (π (i, j))∑
k∈N(i)∪{i} exp (π (i, k))

(7)

Here, ⊕ represents concatenation, while α is the learnable coefficient vector of the attention mech-
anism. This paper uses LeakyReLU as a non-linear activation to calculate the attention coefficient and
softmax function to normalize the attention coefficient in Eq. (7).

This paper extracts the aggregated representations of all nodes at timestamp t by a stacked fully
connected layer with dimension K to predict the value at timestamp t, denoted by x̂t:

x̂t = fθ

([
z1

t , . . . , zK
t

])
(8)

where zi
t is the aggregate value of node i at timestamp t. The mean square error between the predicted

output x̂t and the ground truth xt are taken as the loss function:

LMSE = 1
N − wp

N∑
t=wp+1

||x̂t − xt||2 (9)

Based on these learned relationships, this paper can detect and explain anomalies that deviate
from these relationships. The predicted value and the ground truth value are compared to obtain an
error value Erri

t at node i and timestamp t:

Erri
t = |xi

t − x̂i
t| (10)

where xi
t, x̂i

t are the ground truth and prediction of node i at timestamp t and | · | is the absolute value
function. Subsequently, a max function is exploited to obtain an overall time anomaly score (TAS) at
timestamp t by aggregating the error of all nodes:

TASt = max
i

Erri
t (11)

Finally, when TASt exceeds a fixed threshold θ , timestamp t is identified as anomalous. Different
methods can be used to set the threshold, such as extreme value theory [30]. This paper uses the
maximum value as the threshold in the validation dataset.

4.4 A-ConvLSTM-based Reconstruction Model

This component extracts the relationship among indicators via convolutional neural networks
and the temporal feature of the relationship via attention-based convolutional LSTM networks
(A-ConvLSTM) to capture the dynamic relationship among indicators.

This model uses a convolutional encoder to encode the inter-correlation between indicators and
an A-ConvLSTM to capture the temporal patterns of the inter-correlations, as shown in Fig. 5.
Subsequently, a convolutional decoder is used to reconstruct the input based on the feature mapping
of the inter-correlation and temporal patterns. After the decoder, the reconstructed error is used to
detect and diagnose abnormal indicators.



CMC, 2023, vol.75, no.3 5037

Figure 5: The framework of the reconstruction model. It consists of three parts: convolutional encoder,
A-ConvLSTM network, and convolutional decoder

The product tensor A ∈ RH×K×K is the input. The next m product matrices in the product tensor

A are fed into this model, which can be denoted by G0
h =

[
Ah−m+1, . . . , Ah−1, Ah

]
∈ Rm×K×K . This

model aggregates the information in these m product matrices and reconstructs the product matrices
themselves.

4.4.1 Convolutional Encoder

To capture the inter-correlations among indicators, four-layer convolution neural networks are
performed on the input product tensor G. The convolution operation is specifically expressed as
follows:

G l
h = σ

(
Wl ∗ G l−1

h + bl
)

(12)

where ∗ is the convolution operation, σ is the activation function, G l
h is the spatial feature tensors of

the h-th product tensor after the l-th convolution, and Wl, bl denote the convolutional kernel and bias
in the l-th layer.

4.4.2 A-ConvLSTM

The spatial feature tensors in the convolutional encoder are temporally dependent on previous
time steps. A-ConvLSTM is used to capture the temporal information in the spatial feature tensors
sequence inspired by ConvLSTM. Reference [31] shows further details of ConvLSTM.

Given the spatial feature tensor G l
h from the l-th convolutional layer and the previous hidden state

Hl
h−1 ∈ Rml×Kl×Kl , the current hidden state Hl

h is updated by Hl
h = ConvLSTM

(
G l

h,Hl
h−1

)
.

Not all previous steps are equally correlated to the current state. This paper combines Hl
h with

the previous hidden states by the attention mechanism to form a refined hidden representation
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Hl

h ∈ Rml×Kl×Kl . Because of four convolutional layers, it generates four refined hidden representations

H1

h,H
2

h,H
3

h,H
4

h:

Hl

h =
∑

v∈(h−m+1,h)

αvHl
v (13)

αv = exp
{
σ

(
aT

(
Hl

h ⊕ Hl
v

))}
∑

v∈(h−m+1,h)

exp
{
σ

(
aT

(
Hl

h ⊕ Hl
v

))} (14)

where α is the attention coefficient, σ is the activation function, and a is the learnable coefficient vector
of the attention mechanism.

4.4.3 Convolutional Decoder

To decode the feature tensors and reconstruct the product matrices, the convolutional decoder
works in reverse order. This paper first convolves the refined hidden representation H4

h of the fourth
layer to obtain Ĥ3

h. Then, in the third, second, and first layers, the Ĥl
h is concatenated with the refined

hidden representation Hl

h of the previous layer to generate matrix representation Ĥl−1
h . The Ĥ0

h is the
reconstructed product matrix:

Ĥl−1
h =

⎧⎨
⎩

σ
(

Ŵ
l ⊗ Hl

h + b̂l
)

, l = 4

σ
(

Ŵ
l ⊗

[
Ĥl

h ⊕ Hl

h

]
+ b̂l

)
, l = 3, 2, 1

⎫⎬
⎭ (15)

Âh = Last
(
Ĥ0

h

)
(16)

where ⊗ is the deconvolution operation, ⊕ is the connection operation, Ŵ
l
, b̂l are the deconvolutional

kernel and bias in the l-th layer, σ is the activation function (same as the encoder), Last (·) refers to
taking the last matrix of the tensor, and Âh ∈ RK×K is the reconstructed product matrix of the h-th
product matrix Ah. The loss function is the root mean square error between the reconstructed product
matrix and the raw product matrix.

LRMSE

(
Âh, Ah

)
=

√√√√ 1
K2

K∑
i=1

K∑
j=1

(
Â

ij

h − A
ij

h

)2

(17)

4.4.4 Anomaly Score

The error matrix is made up of the differences between the reconstructed product matrix Âh and
the raw product matrix Ah, denoted by Eh ∈ RK×K , where:

Eh = |Âh − Ah| (18)

There are two metrics used to identify abnormal indicators: an anomaly threshold λ and an
anomaly probability threshold γ . If an element in the error matrix is greater than the anomaly
threshold, it is deemed abnormal. The indicator anomaly score (ISA) is defined as the ratio of the
number of abnormal elements in a row and a window.

IASi
h = Count

[
Ei

h > λ
]
/wr (19)



CMC, 2023, vol.75, no.3 5039

Here, IASi
h is the indicator anomaly score of the i-th indicator in the h-th product matrix, Count ()

represents the sum of the quantities that meet the requirements, and Ei
h is the i-th row of the h-th error

matrix. When it exceeds the anomaly probability threshold γ , the i-th indicator at the h-th time window
is deemed abnormal.

4.5 Anomaly Diagnosis

The GAT-based prediction model detects the abnormal timestamp xt and the A-ConvLSTM-
based model detects the abnormal sub-indicator X

i

h = (
xi

h×wr
, . . . , xi

(h+1)×wr−1

)
. Combining the abnormal

timestamp and the abnormal sub-indicator is fine-grained anomaly detection. This paper next needs
to determine whether the abnormal timestamp is within the time window located by the abnormal
sub-indicator. If the timestamp t belongs to window h (t ∈ {h × wr, . . . , (h + 1) × wr − 1}), there is
an intersection between the timestamp and sub-indicator. This intersection is a fine-grained anomaly,
which means that indicator i is abnormal at timestamp t (ŷi

t = 1). The anomaly diagnosis algorithm is
presented in Algorithm 1.

Algorithm 1 Anomaly Diagnosis
Input: IAS, TAS
Output: ŷ

1: The size of the fixed window is wr.
2: for t ∈ (0, N) do // t represents the timestamp id.
3: if TASt > θ then
4: for h ∈ (0, N/wr) do // h represents the window id.
5: if h × wr < t < (h + 1) × wr − 1 then
6: for i ∈ (0, K) then // i represents the indicator id.
7: if IASi

h > γ then
8: ŷi

t = 1
9: end if

10: end for
11: end if
12: end for
13: end if
14: end for
15: return ŷ

5 Performance Analysis
5.1 Datasets

The Safe Water Treatment (SWaT) dataset2 is derived from the water treatment testbed coordi-
nated by the Public Utilities Authority of Singapore. It is a realistic Industrial Internet of Things system
that requires protection from malicious attacks. SWaT contains examples of real-life attack scenarios.
In total, 23 attacks are launched in SWaT. Table 3 presents the statistics of SWaT. Due to the huge
amount of raw data, downsampling is performed by taking the median value of the raw data every
10 s. Once there is an anomaly in the 10 seconds, it is labeled as abnormal. There are 46 indicators in
SWaT. The test dataset contains 44990 timestamps and 2069540 (= 46 × 44990) fine-grained points.

2https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat

https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat
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There are 4541 abnormal timestamps, and the anomaly rate is 10.1%. Moreover, the number of fine-
grained anomalies is 9850, and the anomaly rate is only 0.476%.

Table 3: Description of SWAT datasets

Parameter Dimension # of training # of testing Anomalies

TSAD 46 41980 44990 10.1%
FGAD 46 1931080 2069540 0.476%

5.2 Baselines

This paper considers five timestamp anomaly detection methods as the baseline.

• Univariate fully connected autoencoder (UAE): It trains a separate Autoencoder (AE) for each
indicator.

• Temporal convolutional network AE (TCN AE): It exploits the TCN model [32] as the encoder
and decoder of AE.

• OmniAnomaly [6]: It uses a Gated Recurrent Unit (GRU) to capture complex temporal
correlations between multivariate time series.

• MSCRED [13]: It detects the anomaly, identifies the root cause, and interprets anomaly severity
by an attention-based convolutional LSTM.

• GDN [11]: It uses an attention-based graph neural network to learn the dependence relation-
ships between time series and predict future behavior.

Two extension methods are applied to all five baseline methods for the FGAD task.

• ATop: It directly takes the top M anomaly score of all indicators on all timestamps as anomalies.
• PTop: It takes the top M anomaly score of all indicators on the abnormal timestamps identified

by the timestamp anomaly detection method as anomalies.

5.3 Parameters Settings and Evaluation Metrics

In terms of the parameters in the GAT-based prediction model, the Adam optimizer is used for
training, the learning rate is 1 × 10−3, the window size wp is 30, and the number of neighbors S is
set to 15. In terms of the parameters in the A-ConvLSTM-based reconstruction model, the Adam
optimizer is used for training with a learning rate of 1 × 10−4. The window size wr is 5. The number of
input product matrices m is set to 5. For ATop and PTop extension methods, the top M is set to 9000
according to the percent of anomalies in the FGAD task. The parameters of the fully convolutional
layer in the encoder are as follows: 32 kernels of size 3 × 3 × 3, 64 kernels of size 3 × 3 × 32, 128
kernels of size 2 × 2 × 64, and 256 kernels of size 2 × 2 × 128, along with strides of 1 × 1, 2 × 2, 2 × 2,
and 2 × 2. The parameters of the deconvolution layer in the decoder are as follows: 128 kernels of size
2 × 2 × 256, 64 kernels of size 2 × 2 × 128, 32 kernels of size 3 × 3 × 64, and three kernels of size
3 × 3 × 64 filters, along with strides of 2 × 2, 2 × 2, 2 × 2, and 1 × 1. The parameter settings are listed
in Table 4. All experiments are run on a server with an Intel i7-9700 CPU, RTX 2080 SUPER GPU,
and 32 GB RAM, as well as with Python 3.7 and Pytorch 1.1.8.
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Table 4: Parameters setting

Parameters in the GAT model Values Parameters in the A-ConvLSTM model Values

Batch size 32 Batch size 1
Epochs 30 Epochs 40
Learning rate 1 × 10−3 Learning rate 1 × 10−4

wp 30 wr 5
S 15 m 5

This paper uses precision (Prec), recall (Rec), F1 score (F1), Receiver Operating Characteristic
(RoC), Area under Curve (AUC), HitRate@100 (HR@100), and HitRate@150 (HR@150) to evaluate
the performance of our method. The HitRate@100 and HitRate@150 metrics give the average fraction
of overlap between the true anomalous indicators and the top 1.0x and 1.5x indicators on the
anomalous timestamps. Precision, recall, and F1 score based on ATop or PTop rewards identify the
anomalous indicators from several timestamps, while hit rate metrics reward identifying the anomalous
indicators from each timestamp. This paper considers two cases according to the availability of the
ground truth of anomalous timestamps for hit rate metrics:

• Tp-det: The ground truth of anomalous timestamps is unknown. Only the detected anomalous
timestamps are considered. Different methods detect different anomalous timestamps.

• Tp-all: The ground truth of anomalous timestamps is known, and all abnormal timestamps are
considered. All detection methods have the same abnormal timestamps.

5.4 Experimental Results

The anomaly detection results in terms of precision, recall, and F1 score on SWaT are shown
in Table 5. All five methods with PTop outperform ATop. The reason is that PTop is based on the
abnormal timestamp and then in-depth look up the fine-grained anomalies of the abnormal indicator.
In this way, the scope of anomaly identification is reduced. In the following experiment, only the PTop
extension is considered for comparison with MFGAD. The proposed algorithm MFGAD significantly
outperforms all five methods because it considers the dynamic relationship between indicators. The
ROC and AUC of the six methods are shown in Fig. 6. MFGAD achieves the highest AUC (0.92) with
the benefit of two independent sub-models for timestamp and indicator detection.

Table 5: Performance of different methods on SWaT

Type ATop PTop

Method Pre Re F1 Pre Re F1

UAE 0.04 0.17 0.06 0.08 0.38 0.14
Tcn AE 0.06 0.31 0.11 0.08 0.35 0.12
OmniAnomaly 0.11 0.51 0.18 0.14 0.65 0.23
MSCRED 0.08 0.37 0.13 0.08 0.36 0.13
GDN(MFGAD#) 0.09 0.53 0.16 0.15 0.85 0.26
MFGAD∗ 0.73 0.61 0.66 0.73 0.61 0.66
MFGAD 0.95 0.54 0.69 0.95 0.54 0.69
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Figure 6: The ROC and AUC of different methods

The effect of the two sub-models is also considered. The TSAD sub-model is denoted by
MFGAD# , which is the same as GDN, and the IAD sub-model is denoted by MFGAD∗. The TSAD
sub-model only provides anomalous timestamps and needs to be extended. Therefore, the F1 score of
the TSAD sub-model is low. The IAD sub-model provides anomalous indicators with a window, which
can achieve a reasonable F1 score. MFGAD achieves a 4% more F1 score compared with the IAD
sub-model. The reason is that the TSAD sub-model filters the normal timestamps from the abnormal
window.

Table 6 shows the hit rate results for six methods. Four methods, except OmniAnomaly and
MFGAD, have lower hit rate metrics at the detected anomalous timestamps (Tp-det) than at all
anomalous timestamps (Tp-all). That means that an algorithm that is good at ranking the indicator-
wise score correctly at all anomalous timestamps, may not be good at ranking the indicator-wise scores
correctly at their detected timestamps. However, the detected anomalous timestamps also depend on
aggregating the indicator-wise scores. A good indicator-wise score ranking may not lead to a good
aggregation score ranking because of the different aims between TSAD and FGAD. MFGAD can
detect more anomalous indicators in both the detected and all anomalous timestamps.

Table 6: Hit rate on SWaT

Method Tp-det Tp-all

HR@100 HR@150 HR@100 HR@150

UAE 0.2317 0.265 0.4091 0.4163
TCN AE 0.2317 0.2317 0.3873 0.4453
OmniAnomaly 0.4078 0.4633 0.3674 0.4181
MSCRED 0.3798 0.3798 0.3946 0.3946
GDN 0.3179 0.3179 0.3449 0.3793
MFGAD 0.6361 0.6778 0.4268 0.4609
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5.5 The Impact of Window Sizes

The window size setting affects the anomaly detection performance. In the following experiment,
this paper considers the influence of window size on the GAT-based prediction model and the
A-ConvLSTM-based reconstruction model.

The window size wp is set to 10, 30, 50, 80, and 100, while other parameters are set to their default
values to investigate the effect of window size on the GAT-based prediction model. The anomaly
detection results are shown in Fig. 7. The window size of the prediction model is found to have little
effect on MFGAD. When the window size is 30, the F1 scores of the two methods reach their highest
values. When the window size is largest, the performance of MFGAD decreases slightly. However,
when the window size is 10 or larger than 30, the performance of PTop-GDN reduces significantly.

Figure 7: The experimental results with different window sizes for the GAT-based prediction model

The window size wr is set to 5, 10, 30, 50, and 80, while other parameters are set to their default
values to investigate the effect of window size on the A-ConvLSTM-based reconstruction model.
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The anomaly detection results are shown in Fig. 8. There is no reconstruction model in PTop-GDN,
and its performance remains stable. The window size of the reconstruction model is found to have
a significant impact on MFGAD. Precisely, the larger the window size, the more difficult it is for
the reconstruction model to detect abnormal indicators with a short duration, which reduces the
performance of MFGAD. When the window size is 5, the F1 score of MFGAD is optimal. The
proposed MGFAD is thus significantly better than the latest extended methods.

Figure 8: The experimental results with different window sizes for the A-ConvLSTM-based recon-
struction model

6 Conclusion and Future Work

This paper proposes the MFGAD framework to tackle the FGAD problem, which consists of two
sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a
single model. Based on the framework, this paper implements a GAT-based prediction model and an
A-ConvLSTM-based reconstruction model that extracts the feature in the timestamp and indicator
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dimension, then combines them to identify fine-grained anomalies. Simulation experiments on a
real-world dataset show that the proposed MFGAD can achieve a better F1 score and hit rate
compared with the latest extended methods. However, the two sub-model of MFGAD lead to a high
computational cost. In future work, the prediction model and reconstruction model in the framework
can be further reduced their computational cost.
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