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Abstract: Currently, the Internet of Things (IoT) is revolutionizing communi-
cation technology by facilitating the sharing of information between different
physical devices connected to a network. To improve control, customization,
flexibility, and reduce network maintenance costs, a new Software-Defined
Network (SDN) technology must be used in this infrastructure. Despite the
various advantages of combining SDN and IoT, this environment is more
vulnerable to various attacks due to the centralization of control. Most
methods to ensure IoT security are designed to detect Distributed Denial-
of-Service (DDoS) attacks, but they often lack mechanisms to mitigate their
severity. This paper proposes a Multi-Attack Intrusion Detection System
(MAIDS) for Software-Defined IoT Networks (SDN-IoT). The proposed
scheme uses two machine-learning algorithms to improve detection efficiency
and provide a mechanism to prevent false alarms. First, a comparative analysis
of the most commonly used machine-learning algorithms to secure the SDN
was performed on two datasets: the Network Security Laboratory Knowledge
Discovery in Databases (NSL-KDD) and the Canadian Institute for Cyberse-
curity Intrusion Detection Systems (CICIDS2017), to select the most suitable
algorithms for the proposed scheme and for securing SDN-IoT systems.
The algorithms evaluated include Extreme Gradient Boosting (XGBoost), K-
Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine
(SVM), and Logistic Regression (LR). Second, an algorithm for selecting
the best dataset for machine learning in Intrusion Detection Systems (IDS)
was developed to enable effective comparison between the datasets used in
the development of the security scheme. The results showed that XGBoost
and RF are the best algorithms to ensure the security of SDN-IoT and to be
applied in the proposed security system, with average accuracies of 99.88% and
99.89%, respectively. Furthermore, the proposed security scheme reduced the
false alarm rate by 33.23%, which is a significant improvement over prevalent
schemes. Finally, tests of the algorithm for dataset selection showed that the
rates of false positives and false negatives were reduced when the XGBoost
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and RF algorithms were trained on the CICIDS2017 dataset, making it the
best for IDS compared to the NSL-KDD dataset.

Keywords: Dataset selection; false alarm; intrusion detection systems; IoT
security; machine learning; SDN-IoT security; software-defined networks

1 Introduction

The Software-Defined Network (SDN) is a recently developed architecture that makes network
programming more flexible and practical configurable. It divides traditional networks into control and
data planes [1]. This technology allows developers to centrally program, control, and manage network
resources using an SDN controller [2]. The SDN introduces features that facilitate virtualization in
implementing Internet of Things (IoT) networks. It has been developed with solid centralization and
virtualization of control to allow devices in the physical network to be transformed into software
because such limitations of traditional architectures as a lack of agility and speed in service provision
have lately become prominent [3]. The implementation of the SDN promises to reduce the cost of
complex network customization. As shown in Fig. 1, the SDN architecture comprises three layers [4]:
application, control, and infrastructure. The application layer consists of programs that communicate
with the controller regarding the necessary tools through an Application Programming Interface
(API). The control layer is a logical object that responds to requests or actions from the application
layer, and transmits them to the components of the network on a specific device according to the type
of action required. The infrastructure or the data layer contains devices that control the capacities of
the network for processing and forwarding the data.
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Figure 1: Architecture of the SDN
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The Northbound API is a communication interface between the SDN and the application layer
that offers an abstract perspective on the network and expresses how it behaves and what it needs. The
Southbound API is an interface that connects data planes with network equipment, such as switches,
to enable the direct expression of the behaviour and requirements of the network [5].

OpenFlow (OF) is a vendor-independent standard that allows heterogeneous devices to commu-
nicate [6,7]. Fig. 2 shows the architecture of a conventional network in which the applications must
request access to resources of the terminal hardware because it uses a specific API, which makes it
challenging to program the network [8]. Change management and network configuration according
to the given organizational policies are complex tasks [9]. The SDN architecture solves this problem
by separating control and the data into two planes, rather than exposing them to a higher application
plane.

Data Plane

Control Layer
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INTEGRATED
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Control Layer
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INTEGRATED
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Figure 2: Architecture of a traditional network

The IoT technology creates data from which different forms of knowledge can be extracted to
provide value-added services across various application areas. The SDN architecture can increase the
bandwidth and flexibility of the IoT [8,10,11].

Due to the benefits of the SDN for the IoT, researchers have investigated methods to secure this
connective environment from external attacks. The most common attack of the SDN architecture [4]
is the Denial-of-Service/Distributed Denial-of-Service (DoS/DDoS), which overloads the processing
resources of the victim until they are inaccessible to authorized users. Further attacks use an API
to release unauthorized data and execute packet sniffing, which involves gathering data from the
network where this is not authorized. Threats to the network layer include interference with traffic
passing through OF switches to inhibit legitimate users from communicating with others. Attacks on
the application layer involve unauthorized access to network programs. Many attackers prefer to harm
the network controller in the control layer to cause errors in data transmission [12,13]. By contrast,
threats to the computer network can be divided into active, passive, and physical attacks (that cause
material damage) [14]. Cybernetic attacks include Man-in-the-Middle (MITM), spoofing, jamming,
and malicious entry attacks.

Software-Defined IoT Networks (SDN-IoT) are subject to several threats. Many researchers have
proposed methods of security against specific attacks, but have ignored a wider range of threats.
Furthermore, the defensive schemes proposed for Intrusion Detection Systems (IDS) do not guarantee
sufficient resources to control false alarms when categorizing the network flow in real-time, thus
compromising the reliability of the system. As explained in [15,16], the IDS can identify numerous
threats to the network. However, raising false alarms is a significant problem that reduces the
effectiveness of the model. The IDS for SDN-IoT architectures can be improved through machine-
learning algorithms applications. These algorithms can replace currently used techniques for image
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reconstruction [17], distributed power control in tunnels [18] and can be used in intelligent vehicles as
an efficient parking navigation system [19] to predict scenarios of transit and the availability of space.
Due to the sheer variety of these algorithms, it is necessary to compare them to select the most suitable
one for each problem. Furthermore, there are no effective methods for choosing an appropriate dataset
in developing machine learning-based security mechanisms.

To solve the above problems, this paper is divided into three phases. In the first phase, five most
commonly used machine-learning algorithms in IDS to secure SDN were analyzed on two datasets
to identify the best one to use in security mechanisms for IoT environments. This analysis includes
Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), Random Forest (RF), Support
Vector Machine (SVM), and Logistic Regression (LR) algorithms. As has been noted in [20,21], the
Naive Bayes (NB), SVM, KNN, RF, and Decision Tree (DT) are popular algorithms for securing
the SDN. In the second phase, the Multi-Attack Intrusion Detection System (MAIDS) based on dual
machine learning was proposed to improve the security of SDN-IoT. The scheme includes a mechanism
to control false alarms to prevent False Positives (FP) and False Negatives (FN) and to ensure that the
alerts of the system are accurate. The last phase proposes a reliable method for selecting the appropriate
dataset for training a machine-learning algorithm.

The remainder of this paper is structured as follows: Section 2 provides an overview of the methods
used to secure SDN-based networks and Section 3 details the proposed model. Section 4 describes
the simulations used to test the proposed method and an analysis of the results. Finally, the primary
findings of this study are summarized in Section 5.

2 Related Work

Several researchers have studied security techniques for the SDN architecture. Their solutions
have aimed to guarantee its operability, integrity, availability of information, and resistance to external
threats. Many researchers consider the application of machine learning in IDS as an alternative that
can improve SDN security. However, researchers differ in terms of the best algorithm that can be
applied to design security systems for this new network infrastructure. Two detailed taxonomic studies
[22] have been developed for the SDN security, comparing LR, RF and XGBoost algorithms to detect
DDoS attacks. The authors concluded that XGBoost plays an important role in improving DDoS
detection rate capability, including low training and testing time. This technique measures bandwidths
to identify attack traffic. However, other researchers argue that SVM achieves greater accuracy in
detecting DDoS attacks. Thus, an SVM-based IDS with a selective log for Internet Protocol (IP)
tracking was proposed in [23–25]. During the “packet-in” event in the controller, this approach
detects network intrusion and periodically obtains statistics on flow from OF switches. The authors
considered attributes such as the number of packets and the time in seconds to classify attack traffic
on the network.

As is known, SDN encompasses several advantages for IoT. One of the security solutions for this
integrated technology has been the application of deep learning in IDS. Therefore, an SDN-enabled
architecture was proposed in [26]. The system was designed for IoT devices with restricted resources.
The authors used the deep neural network-based long short-term memory (CuDNNLSTM) network
and the deep neural network-based gated recurrent unit (CuDNNGRU) algorithm to build the scheme.
Their solution is scalable, efficient, and accurate, with a detection accuracy rate of 99.74%. In addition
to a dual deep learning system, a time resource-based backpropagation neural network can also be used
to detect DDoS attacks on SDN. This approach can lower system modelling costs while still achieving
high accuracy. A scheme employing this technique was proposed in [27], which gathers statistics on
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OF switches, such as the number and duration of inputs to each stream, and uses them to determine
the hit rate. Additionally, it contains a method to dynamically retrieve the port of the victim device.
While some studies have proposed applying the SDN architecture to protect the IoT environment, it
may not be as effective as proposals that incorporate machine learning techniques. The authors of
[11] examined the advantages of SDN technology in securing IoT networks. They proposed a security
controller with a role-based architecture, called Rol-Sec, and SDN-based solutions to improve security.
They also provided a comprehensive review of recently proposed SDN-based solutions to enhance
the security of the IoT environment. They concluded that few studies in the literature had dealt with
integrated SDN-IoT systems.

Deep learning methods have gained greater relevance in IDS applications as they present better
results in attack detection. To model these algorithms, it is necessary to select a suitable dataset. As
seen in the empirical study on the effectiveness of deep learning and ensemble methods for IDS [28],
the authors considered the UNSW-NB15 [29] dataset as recent, containing empirical data on attacks.
However, the deep learning models fit balanced datasets better than unbalanced datasets. On the other
hand, the authors of [30] also investigated the Knowledge Discovery in Databases (KDD) dataset to
highlight design challenges in wireless intrusion detection. They identified the challenges of methods
used to track network traffic to train machine-learning algorithms for IDS.

Other IDS methods for SDN include the application of supervised and unsupervised learning.
The application of pre-trained models for different classifications of traffic and flow was described in
[31]. A flow-clustering approach was used to identify flows frequently observed in concurrence. The
method collects information on traffic flow based on machine learning and integrates it into an SDN
controller to predict anomalies in the network.

The applications of machine learning can be extended to networks with multiple controllers.
Although this structure is very complex to implement, a scheme for detecting and preventing intrusion
using machine learning was proposed in [32]. This model accepts nodes using a random forest model
(CBNA-RF) that configures suitable security rules and automates defensive actions in a large-scale
SDN framework. A machine learning-based detection method with the same objective was proposed
in [33]. It implements learning algorithms using features with a few OF packets to detect abnormal
traffic in SDN-related data and the control layers. This scheme can accurately identify low-rate DDoS
attack traffic without considerably affecting system performance.

As can be seen, many researchers have proposed machine learning-based methods to detect DDoS
attacks on SDN and have also applied deep learning methods to model IDS for SDN-IoT. However,
gaps in robust and effective models for detecting multiple attacks remain. The authors of [34] described
the difficulties of applying machine learning and SDN to handle the latest security risks in the IoT.
They claimed that challenges to the next-generation IoT require a new vision of a secure design in
which threats are proactively addressed and that machine learning and SDN are essential for providing
reconfigurability and intelligence for IoT devices. Their research offered a new perspective on IoT
network security based on design, polymorphism, and SDN. Other research suggests combining
machine learning and deep learning to ensure SDN security. Although RF exhibits greater accuracy
in detecting DDoS attacks targeting an SDN layer [35], XGBoost can be applied as a cloud-based
method to detect attacks on SDN because it has higher accuracy, lower False Positive Rate (FPR),
higher processing speed, and higher adaptability than RF, SVM, multilayer perceptron (MLP) and
DT [36]. In addition, advanced features obtained by extracting data from network stream headers can
be applied to detect SDN attacks [20]. Although it does not consider the False Negative Rate (FNR),
this technique applies machine learning to increase attack detection accuracy and decrease FPR.
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3 Proposed Intrusion Detection System and Dataset Selection Method

This section describes the proposed MAIDS scheme and the method to select an appropriate
dataset to train a machine-learning algorithm for IDS.

In the first phase, were analyzed five machine-learning algorithms, XGBoost, KNN, RF, SVM,
and LR, on the Network Security Laboratory Knowledge Discovery in Databases (NSL-KDD)
dataset [37] and the Canadian Institute for Cybersecurity Intrusion Detection Systems (CICIDS2017)
dataset [38]. A comparative analysis of these algorithms aims to select the best two algorithms that can
be applied to the MAIDS scheme, which contain mechanisms to control FP and FN alarms. Fig. 3
illustrates the modelling and analysis of the proposed machine learning-based algorithms. The datasets
were pre-processed to eliminate null values and choose columns containing the necessary features. The
results of training on each dataset were visualized and compared by using the following parameters:

Dataset Pre-Processing

CICIDS2017 
Dataset

NSL-KDD 
Dataset

Features Selection

Data Split

Training Process

Training Test

XGBoost KNN RF SVM LR
Cross 

Validation

Metrics Comparison

Best Algorithm?

Apply in 
MAIDS

YES

NOConclusions YES

Figure 3: Flowchart of modelling the algorithms

Accuracy (A): is the percentage of the given set that is correctly classified. It includes the True
Positives (TP), True Negatives (TN), FP and FN.

A = TP + TN
TP + FP + TN + FN

(1)

Precision (P): corresponds to the ratio of the dataset classified as positive concerning the complete
set classified as TP (including false positives).

P = TP
TP + FP

(2)
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Recall (R): corresponds to the ratio of TP in comparison with the overall number of positive
features in the dataset.

R = TP
TP + FN

(3)

F1-score (F1): corresponds to the harmonic mean of precision P and recall R.

F1 = 2PR
P + R

(4)

3.1 Datasets Description and Feature Selection

The NSL-KDD dataset was modified from the KDD dataset to train and evaluate machine
learning-based classifiers to identify DDoS attacks [39]. It contains five classes, subdivided into data
containing normal traffic and attack-related traffic. It has 41 features, including numeric, nominal, and
binary resource values. Randomly 108,400 logs were used in the simulations [40]. The dataset consists
of four subcategories, KDDTest+, KDDTest-21, KDDTrain+, and KDDTrain-21, encompassing the
DoS, Remote-to-Local (R2L), User-to-Root (U2R), and probe attacks. KDDTest+ and KDDTrain+
include complete components, while the remainder comprises 20% of the entire set [41].

The CICIDS2017 dataset is recent, and has been used for updated attacks on the IDS that
reflect the realistic application scenarios [42]. This dataset contains information on normal traffic,
categorized as “benign”, and different attack categories captured in five days, as shown in Table 1.
It contains 83 features, built from 25 users of networks based on the Hypertext Transfer Protocol
(HTTP), Hypertext Transfer Protocol Secure (HTTPS), File Transfer Protocol (FTP), and Secure Shell
(SSH) [38]. The CICIDS2017 is suitable for binary and multi-class classification.

Table 1: Description of the NSL-KDD and CICIDS2017 datasets

Dataset Types of attacks Description

DoS Interruption of services for legitimate users.
U2R The attacker acquires administrator permissions

on the network.
NSL-KDD R2L The attacker gains access to a device on the local

network by sending packets without permission.
Probe It involves collecting information to exploit local

network vulnerabilities.

Brute force (FTP-Patator and
SSH-Patator)

It involves gaining unauthorized access to
personal accounts.

DoS/DDoS It includes DoS Slowloris and Hulk.
CICIDS2017 Web attack It includes injection attacks, such as cross-site

scripting (XSS) and structured query language
(SQL) injection.

BotNet ARES, PortScans,
and DDoS LOIT

It is a set of devices on the same network for
attacks.
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For both datasets, were used the SHapley Additive exPlanations (SHAP) method [43] to select
essential features for the predictive output of the model. The classic SHAP method is based on
cooperative game theory. For every set of training data S (Hi), it is possible to explain the importance
of each feature Hi by calculating its contribution to the output of the model through Shapley values
Φi that are given by:

Φi =
∑

S⊆H\{i}

{ |S|! (|H| − |S|)!
|H|!

[
fSU{i}

(
xSU{i}

) − fS (xs)
]}

(5)

where fSU{i} is the first model trained by feature xs ∈ S and fS is the second model trained by selected
feature. Fig. 4 shows the features selected from the NSL-KDD and CICIDS2017 datasets.

3.2 Proposed Scheme

The proposed MAIDS scheme is illustrated in Fig. 5. It comprises two machine-learning modules
implemented for classifying data traffic and an SDN controller that installs the security-related rules in
the data layer in case of an alert. In the first phase, the SDN controller requests flow-related statistics
from the switches as input data for analysis by machine learning. The machine-learning algorithms 1
and 2 compare their results of prediction before sending the final result to the SDN controller. These
algorithms are trained on different datasets to allow continuous and real-time comparison between
their results. During regular operation, both algorithms predict the same results. If the results are
different, the errors of classifications are compared to determine the final classification. This scheme
uses the errors in threat detection in the data stream of the network to reduce the number of false
alarms.

(a) Feature importance for NSL-KDD (b) Feature importance for CICIDS2017 

Figure 4: Impact of features on the output of the model
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Figure 5: Multi-attack IDS scheme

As the IoT environment contains many connected devices, a potential attack on it can lead to
various losses, such as the loss of information and material damage. A solution to this problem is
provided in the form of various security-related proposals in the literature. However, many systems do
not have a specific mechanism that guarantees reliable control over false alarms. An IDS should usually
not penalize legitimate users on the network as a consequence of an FP because this compromises
industrial production in the IoT. Likewise, the IDS must not allow attack-related traffic to flow into
the network due to an FN. Thus, all security systems should include a mechanism to control these
false alarms to prevent damage, and to ensure the safety and efficiency of connectivity of the IoT.

Many security-related methods have been designed to detect specific attacks. Some do not offer
techniques to prevent the detected attacks, and depend on other resources of the network. The
proposed scheme can detect and prevent multiple attacks with high precision due to a combination
of the two machine-learning algorithms. In addition, it is simple and inexpensive because it does not
require the use of more than two algorithms. A general overview of the SDN-IoT network is shown in
Fig. 6. It consists of a controller that monitors the network and several connected devices that require
security.

Let Dk be the real-time input dataset to the IDS scheme that is composed of k instances of data
streams of the network. Algorithms A1 and A2 classify each k in Dk and form vectors of length yij

for each group with the same results of prediction. If the result of prediction Pij is the same for all k
instances, where i corresponds to the algorithm number and j is the position of the given class, this
means that yij is equal to the length of the input dataset Dk and that the algorithms have correctly
classified the entire input dataset. Therefore, the model output is considered to be reliable. On the
contrary, if the results of prediction Pij for Dk contain some errors that can generate FP and FN,
this means that two different results form the final output of the models. For a binary classifier, all
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instances k in Dk classified as 0 (normal) or 1 (abnormal) are then grouped according to their length
yij, as shown in the matrix of Eq. (6):

Pij = A1

A2

0 1[
y11 y12

y21 y22

]
(6)

where the first row of the matrix contains y11 and y12, which are the lengths of Dk with k instances
classified as categories containing the values 0 and 1, respectively, by algorithm A1. The second
row of the matrix contains y21 and y22, which are the lengths of Dk with k instances classified as
categories containing the values 0 and 1, respectively, by algorithm A2. The operation of this scheme
for controlling and preventing FP and FN is detailed in Algorithm 1.

SDN Controller

OF Switches

IoT Devices

Figure 6: Overview of the network topology of SDN-IoT
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Algorithm 1: Algorithm to control false alarms

0: Start MAIDS :

11 0P =
12 1P =

11y 12y

1A

21 0P = 22 1P =

21y 22y

2A
1: Network Status = [Normal, Abnormal]
2: Predicted = [P1, P2]
3: Ai = [A1, A2]
4: for Pij in Ai :
5: if P11 > P12 and P21 > P22 :
6: P1 = P2

7: Network Status = Normal
8: end if
9: if P11 < P12 and P21 < P22 :
10: P1 = P2

11: Network Status = Abnormal
12: end if
13: end for
14: while P1 = P2 :
15: Network Status = Predicted
16: end while
17: while P1 �= P2 :
18: if y11 + y21 > y12 + y21 :
19: Network Status = Normal
20: end if
21: if y11 + y21 < y12 + y21 :
22: Network Status = Abnormal
23: end if
24: end while
25: end MAIDS

3.3 Dataset Selection Method

The choice of a dataset is a fundamental step in modelling the IDS based on machine learning.
Many researchers have evaluated such aspects as the size of the dataset, the number of attacks included,
and when it was generated for selection. However, few rules have been established for this stage. For
example, the authors in [44] justified the choice of the CICIDS2017 dataset because it had been created
in an environment similar to real structures. On the contrary, others have preferred the NSL-KDD
dataset because it contains data on different types of attacks, and its results are not biased [23,39,45].
The authors of [26,36,46] have chosen different datasets for their models. Thus, a suitable method is
proposed to select the dataset for a given machine-learning algorithm in a universe containing several
pre-selected datasets.

Consider a universe of datasets Di = {D1, D2, D3, . . . , Dn}, where n is the number of datasets. It is
assumed that these datasets are similar as they all are designed to be applied to network security. Their
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features fi may differ, but the types of attacks and the architecture or destination network are similar.
The size of the datasets is reasonable. All datasets in the universe Di have been recently developed or are
adequate for forming an IDS. Thus, one can select the best dataset for a machine-learning algorithm
Ai using the Algorithm 2, with mi metrics selected to evaluate Ai. The set of important features for the
output of the model on a dataset, can be denoted by Dn [fin]. The dataset selection method offers the
results of the evaluation metrics Dn [mi] obtained for each dataset.

Algorithm 2: Dataset selection algorithm

Step 1: Definition of variables Step 3: while A1 = A1 :
0: Ai = {A1, A2, A3, . . . , An} Step 4: Select Di = D1 :
1: Di = {D1, D2, D3, . . . , Dn} 13: Select mi = {m1, m2, m3, . . . , mn}
2: mi = {m1, m2, m3, . . . , mn} 14: Train A1 with D1

3: fi = {f1, f2, f3, . . . , fn} 15: return
16: D1 [m1n] = {m11, m12, m13, . . . , m1n}

Step 2: Start evaluation 17: end process
4: for fi in Di : 18: Repeat Step 4: for Di = D2, D3, . . . , Dn

5: Select best features 19: end process
6: return 20: end while
7: D1 [f1n] = {f11, f12, f13, . . . , f1n}
8: D2 [f2n] = {f21, f22, f23, . . . , f2n} Step 5: Dataset selection
9: D3 [f3n] = {f31, f32, f33, . . . , f3n} 21: with mi = {D1 [mi] , D2 [mi] , D3 [mi] , ...., Dn [mi]}
10: . . . 22: if D1 [mi] > {D2 [mi] , D3 [mi] , ...., Dn [mi]}
11: Dn [fin] = {f11, f12, f13, . . . , f1n} 23: Select the best dataset D1

12: end for 24: else :
25: Select the best dataset

Dn : Dn [mi] > {Dn [mi]} , n = 1, 2, 3, . . . , n − 1
26: end with

4 Results and Discussion

This section presents the results of each model as part of the first phase of the proposed scheme.
In the second phase, were implemented the best models in the MAIDS scheme proposed in Fig. 5 to
detect and mitigate attacks, obeying the mechanism to control false alarms developed in Algorithm 1.
The FPR and the FNR were selected as evaluation metrics for dataset selection because the proposed
security scheme needs to avoid false alarms. The dataset was selected based on the two best machine-
learning algorithms using the proposed selection method.

4.1 Evaluation of Machine-Learning Algorithms

This subsection compared the accuracies of XGBoost, KNN, RF, SVM, and LR. The results
on the NSL-KDD dataset are shown in Fig. 7 and on the CICIDS2017 dataset in Fig. 8. In both
cases, XGBoost and RF reached a better accuracy. The RF had the highest accuracy of 99.81% on the
NSL-KDD dataset, followed by XGBoost with 99.79% accuracy. However, XGBoost and RF had an
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accuracy of 99.96% on the CICIDS2017 dataset. The KNN algorithm also showed promising results
on the NSL-KDD and CICIDS2017 datasets, with accuracies of 99.40% and 98.58%, respectively.

Figure 7: Comparison of accuracies on the NSL-KDD dataset

Figure 8: Comparison of accuracies on the CICIDS2017 dataset

The algorithms were also evaluated on other parameters. As shown in Fig. 9, XGBoost achieved
the highest precision of 99.98%, followed by RF with 99.96% precision, on the NSL-KDD dataset. The
Receiver Operating Characteristic (ROC) in Fig. 10 shows the performance of each model, relating
the True Positive Rate (TPR) and the FPR. The RF and XGBoost algorithms had an Area Under
the ROC Curve (AUC) of 99.99% on the NSL-KDD dataset. Furthermore, Fig. 11 shows that
XGBoost achieved the highest precision of 99.99%, followed by RF with 99.98% on the CICIDS2017
dataset. The KNN had a precision of 98.67% on this dataset. Fig. 12 shows that XGBoost and RF
reached an AUC of 100%, followed by the KNN with an AUC of 99.53% on the CICIDS2017 dataset.
These results show that the RF and XGBoost algorithms are the best options for designing an IDS
for SDN-IoT.

Another important parameter to consider when evaluating these algorithms is the processing time,
which includes training and testing. Typically, the best machine-learning algorithm should take as little
time as possible to detect a given network attack. Observing Table 2, it can be noted that the XGBoost
model managed to obtain an ideal test time for the classification of attack traffic on both NSL-KDD
and CICIDS2017 datasets. Training time is acceptable concerning the other models, as it outperforms
them in terms of the other metrics discussed previously. LR presents acceptable test time for both
datasets but failed to obtain better results in other metrics. Likewise, KNN managed to obtain the
shortest training time but failed to provide a long test time compared to other algorithms. The RF is
up to the same standard as XGBoost, although testing and training times are relatively long. On the
other hand, SVM proved to be slow to be applied in IDS schemes, as its training and testing times
are longer than other algorithms. Therefore, the model that can be applied in the proposed security
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scheme is XGBoost with a training time of 4.7 s and a test time of 0.03 s on the NSL-KDD dataset.
Additionally, RF can also be applied with a training time of 3.5 s and a test time of 0.09 s on the same
dataset. While XGBoost achieved a training time of 1.54 s and a test time of 0.04 s on the CICIDS2017
dataset, RF achieved a training time of 1.09 s and a test time of 0.32 s on the same dataset.

Figure 9: Comparison of performance on the NSL-KDD dataset

Figure 10: ROC curves on the NSL-KDD dataset
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Figure 11: Comparison of performance on the CICIDS2017 dataset

Figure 12: ROC curves on the CICIDS2017 dataset
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Table 2: Processing time analysis

Results NSL-KDD dataset CICIDS2017 dataset

XGBoost KNN RF SVM LR XGBoost KNN RF SVM LR

Training time (s) 4.70 0.01 3.50 1 342.94 0.74 1.54 0.005 1.09 55.85 0.20
Testing time (s) 0.03 2.69 0.09 26.41 0.003 0.04 3.10 0.32 22.63 0.21

The above results show that the most common algorithms used in the IDS, XGBoost, RF, and
KNN, are the most suitable for ensuring the security of the IoT network. XGBoost and RF were
selected to implement the MAIDS scheme, which means that all the following results were based on
their application to the proposed IDS. The KNN can also be implemented in this scheme because it
showed superior results than the SVM and LR.

Table 3 summarizes the results obtained for the XGBoost, KNN, RF, SVM, and LR algorithms.
Another comparison of several results obtained in recent research is shown in Table 4. It can be noted
that XGBoost and RF obtained higher accuracy than the other methods on different datasets.

Table 3: Summary of the results

Results NSL-KDD dataset CICIDS2017 dataset

XGBoost KNN RF SVM LR XGBoost KNN RF SVM LR

Accuracy (%) 99.79 99.40 99.81 54.04 86.95 99.96 98.58 99.96 75.36 94.41
Precision (%) 99.98 99.51 99.96 54.04 84.80 99.99 98.43 99.98 72.23 89.44
Recall (%) 100 99.51 100 100 92.31 100 98.59 99.99 99.95 98.69
F1-score (%) 99.99 99.51 99.99 70.0 89.73 100 98.43 100 82.34 94.85

Table 4: Comparison of XGBoost and RF with other methods developed in recent research

References Accuracy (%) Precision (%) Recall (%) F1-score (%) Description

[22] 99.70, 99.2 100 100 100 A DDoS attack
detection system based
on XGBoost algorithm
for 5G networks, tested
on the CICDDoS2019
[47] and NSL-KDD [37]
datasets.

(Continued)
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Table 4: Continued
References Accuracy (%) Precision (%) Recall (%) F1-score (%) Description

[48] 100 100 100 100 A low-rate DDoS
(LRDDoS) attack
detection system that
uses the RF algorithm
on an independent
dataset.

[49] 98.4 98 99 99 An intelligent intrusion
detection system that
applies machine
learning, and was tested
by using XGBoost on
the UNSW-NB15 [29]
dataset.

[50] 90.23, 99.43 98.74, 99.22 86.76, 99.30 92.36, 99.25 A model based on the
logarithmic
autoencoder (LogAE)
and XGBoost, tested on
the UNSW-NB15 [29]
and CICIDS2017 [51]
datasets.

4.2 Implementation of XGBoost and RF in MAIDS

The procedure to evaluate the proposed scheme consisted of calculating the FPR and FNR needed
to apply Algorithm 1. To calculate these parameters was needed to plot the confusion matrix, where
the generic form of which is shown in Fig. 13.

TP
(True Positives)

FP
(False Positives)

FN
(False Negatives)

TN
(True Negatives)

AbnormalNormal

Abnormal

Normal

Network Status

Figure 13: Generic format of the confusion matrix

Starting from the generic confusion matrix in Fig. 13, can be written:

FPR = FP
FP + TN

(7)

FNR = FN
FN + TP

(8)

Figs. 14 and 15 show the confusion matrices of XGBoost and RF for the NSL-KDD and
CICIDS2017 datasets, respectively, to calculate the FPR and FNR for these two algorithms. After
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that, the mechanism to control false alarms was applied to evaluate the variation of these metrics. The
results of the combination of XGBoost and RF on the NSL-KDD and the CICIDS2017 datasets are
shown in Figs. 16 and 17. It can be concluded that the MAIDS scheme obtained lower FPR and FNR
values on both datasets, compared to the values of the separate models, showing that the application
of Algorithm 1 reduced the rate of false alarms. In addition, a comparison with other recent models,
in Table 5, shows that the proposed scheme significantly reduced the false alarm rates, showing the
effectiveness of the application of Algorithm 1.

(a) Confusion matrix of XGBoost (b) Confusion matrix of RF

Figure 14: Confusion matrices for the NSL-KDD dataset

(a) Confusion matrix of XGBoost (b) Confusion matrix of RF

Figure 15: Confusion matrices for the CICIDS2017 dataset

Figure 16: FPR and FNR for the NSL-KDD dataset
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Figure 17: FPR and FNR for the CICIDS2017 dataset

Table 5: Comparison of the proposed model with others from recent literature

Model FPR (%) FNR (%) Description

Proposed model 0.037, 0.002 0.011, 0.021 Multi-Attack IDS with NSL-KDD and
CICIDS2017 datasets, respectively.

[26] 0.528 0.198 A hybrid deep learning technique for IDS with
CICDDoS2019 dataset.

[40] 0.557 0.44 Combine two techniques to improve detection
accuracy using NSL-KDD dataset.

[16] 6.82, 0.76 25.68, 8.34 Deep learning-based IDS for FNR reduction
using NSL-KDD and UNSW-NB15 datasets,
respectively.

[20] 0.21 0.12 Machine learning-based IDS for DDoS
detection using a particular dataset.

The third phase of the proposed scheme consisted of selecting the best dataset that can be
used with XGBoost and RF based on Algorithm 2. Both datasets were prepared to satisfy the
assumptions of the application of this method, and the variables mi = {FPR, FNP} was defined as
the evaluation metrics. The results show that MAIDS achieved an FPR of 0.037% and an FNR of
0.011% on the NSL-KDD dataset. Moreover, the scheme obtained an FPR of 0.002% and an FNR
of 0.021% on the CICIDS2017 dataset. By using step 5 of Algorithm 2, it can be extracted mi =
{D1 [0.037%, 0.011%] , D2 [0.002%, 0.021%]}. As the objective, was to minimize errors in detection,
then, D2 [0.002%, 0.021%] < D1 [0.037%, 0.011%]. The CICIDS2017 dataset was, thus, chosen as the
best for application in the proposed scheme. An analysis of the FPR and FNR of the XGBoost and
RF algorithms showed that they achieved lower rates of false alarms on the CICIDS2017 dataset than
on the NSL-KDD dataset.
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5 Conclusion and Future Work

This paper proposed a dual machine learning-based IDS for SDN-IoT using XGBoost and RF.
The scheme contains a mechanism to control and prevent false alarms to improve the security of IoT
networks. The XGBoost and RF were selected through a comparative analysis of the main machine-
learning algorithms used for the IDS in the SDN. The RF, XGBoost, and KNN achieved better
results with respective accuracies of 99.89%, 99.88%, and 98.99% on both the NSL-KDD and the
CICIDS2017 datasets. A comparison between XGBoost and RF with others models proposed in
the recent literature showed that these algorithms can achieve better results on different datasets.
Compared to separately implemented XGBoost and RF algorithms, the proposed scheme reduced the
average FPR by 11.47% and the average FNR by 33.23% on the NSL-KDD dataset, and reduced the
average FPR by 18.34% and the average FNR by 26.96% on the CICIDS2017 dataset. A method was
also proposed to select the best dataset used in machine-learning algorithms to ensure network security.
The method can help researchers to choose the best dataset among several for a given machine-learning
algorithm. Tests of this method showed that the CICIDS2017 dataset was better for use with the
proposed scheme than the NSL-KDD dataset, as it significantly reduced the FP and FN. In future
work, researchers should examine other machine learning methods, such as deep learning algorithms,
with the proposed security scheme and the mechanism to control false alarms. The proposed IDS can
also be tested on datasets containing more recent attacks.
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[17] W. Wei, B. Zhou, D. Połap and M. Woźniak, “A regional adaptive variational PDE model for computed
tomography image reconstruction,” Pattern Recognition, vol. 92, no. 19, pp. 64–81, 2019.
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