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Abstract: Object detection in images has been identified as a critical area of
research in computer vision image processing. Research has developed several
novel methods for determining an object’s location and category from an
image. However, there is still room for improvement in terms of detection effi-
ciency. This study aims to develop a technique for detecting objects in images.
To enhance overall detection performance, we considered object detection
a two-fold problem, including localization and classification. The proposed
method generates class-independent, high-quality, and precise proposals using
an agglomerative clustering technique. We then combine these proposals with
the relevant input image to train our network on convolutional features. Next,
a network refinement module decreases the quantity of generated proposals
to produce fewer high-quality candidate proposals. Finally, revised candidate
proposals are sent into the network’s detection process to determine the object
type. The algorithm’s performance is evaluated using publicly available the
PASCAL Visual Object Classes Challenge 2007 (VOC2007), VOC2012, and
Microsoft Common Objects in Context (MS-COCO) datasets. Using only
100 proposals per image at intersection over union (IoU) = 0.5 and 0.7), the
proposed method attains Detection Recall (DR) rates of (93.17% and 79.35%)
and (69.4% and 58.35%), and Mean Average Best Overlap (MABO) values of
(79.25% and 62.65%), for the VOC2007 and MS-COCO datasets, respectively.
Besides, it achieves a Mean Average Precision (mAP) of (84.7% and 81.5%) on
both VOC datasets. The experiment findings reveal that our method exceeds
previous approaches in terms of overall detection performance, proving its
effectiveness.
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1 Introduction

Object Detection (OD) is a critical issue in machine and computer vision. Numerous applications
require OD to be binding and a significant component. Environmental reasoning applications and
systems frequently use it in various reasoning tasks that rely on visual input [1,2]. As a result, a diligent
study in this domain is perpetually active and significant. OD seeks to automatically locate and classify
various objects in an image [3]. The detecting process can be harmed by multiple variables, including
poor image quality, noise, and interference in the image’s background [4]. Developing a system that
offers hi-tech detection performance is a demanding task. OD has been extensively explored over the
years, and several ways for efficiently detecting an object in images have been developed to address
these issues [5,6].

Generic OD can be done via a region-based proposal approach or regression analysis [7].
Region-based OD systems consist of two stages, i.e., generating proposed object positions within
an image and applying a classifier to these sampling locations to determine the object’s category.
Most of these systems begin by developing proposed object locations and then classifying them using
object classifiers. Enhancing both localization and classification is necessary to attain the desired
detection performance. Improving one of these stages will not achieve high detection accuracy [8].
The generation of object proposals is a technique that seeks to construct a bounding box around the
parts of the image that include the objects of interest. The methods for generating object proposals are
commonly classified into three categories: grouping-based, deep learning-based, and window scoring-
based [9]. The major goal of the object proposals generation process is to reduce the number of
computations required to determine the pixel-by-pixel similarity between the required object and the
whole image while still focusing on the candidate object proposals believed to contain the desired
object. The performance of the object proposal generators can be determined by the number of
proposals generated and the recall of intended objects. An ideal object proposal generator obtains
high-recall and produces lesser proposals [10].

Over the years, numerous approaches have been presented to obtain high-quality proposals
with increased performance [11–26]. Nonetheless, some implausible limitations would be apparent
when using these techniques for OD, including low localization accuracy, the absence of a scoring
mechanism, a high computational cost, low precision, class-dependent, object-specific, redundant,
and an excessive number of proposals. These constraints may significantly impair performance in the
second stage, reducing overall detection efficiency. In the second step, regions are classed to identify the
object’s category; in recent years, detection systems’ classification accuracy has been boosted via the
development of deep learning networks. Researchers have spent considerable effort developing deep
learning architectures capable of performing robust object classification. The Convolutional Neural
Network (CNN) and its variants are robust deep learning architectures widely employed in OD’s
classification stage [27–32]. Numerous regularization strategies have been developed to enhance these
networks’ classification performance [33,34]. However, these networks have constraints, including
model size, computational cost, and memory usage. They are redundant and problematic concerning
specific proposal generation systems.

Current proposal-based object detectors leverage the promising properties of CNNs to determine
the localization and objectiveness of each proposal [35–41]. While we analyze the ramifications
and features of typical two-stage OD approaches, one cannot disregard single-stage methods. The
practitioners have devoted considerable work to developing single-stage and proposal-free algorithms
that are favorable and applicable to a wide variety of real-time applications [42,43]. Compared to
the two-stage detectors, these approaches are reasonably quick but produce lower detection accuracy.



CMC, 2023, vol.75, no.3 6353

According to the authors’ knowledge, based on these research findings, the issue of OD in natural
images is still in its infancy in the experimental results and requires appropriate consideration. As a
result, the authors present a two-stage method for generic OD. The proposed methodology represents
a significant improvement over previous techniques.

The main contribution of this research is summed up as follows:

❖ Proposing a method for effectively generating a small number of high-quality object
locations in imagery while avoiding repetitive locations.
❖ Proposing a refining network to reduce the volume of proposals significantly.
❖ Proposing a system that enhances the overall performance of detection and classification
tasks.
❖ Comparing the proposed method to previously implemented generic OD methods. The pro-
posed method demonstrated superior detection performance compared to existing methods.

The rest of the manuscript is structured as follows: Section 2 examines previous research that is
relevant to the proposed study, Section 3 describes the proposed technique in detail, Section 4 presents
the experimental results and their analysis, Section 5 contains the discussion, and Section 6 presents
with the conclusion and future work.

2 Related Work

Detecting objects in images is a crucial challenging task in machine vision. It is developing,
achieving enormous economic success, and establishing a foothold in virtually all industries. Con-
temporary research on this topic continues to yield fresh perspectives and prospects for future study,
with several strategies being presented to reach state-of-the-art detection performance [44–46]. To
learn more about how the brain processes visual information, it’s helpful to know how objects are
recognized. The human brain can efficiently detect, process, and interpret visual information. A sizable
portion of the individual’s brain is devoted to visual information processing. Compared to human
intelligence, systems could not sense or process data adequately when confronted with the following
demanding factors: varying viewpoints and perspectives, illumination, small object scale, deformation,
occlusion, rotation, and a high intra-class variation. These complex elements affect the object, reducing
overall effectiveness and complicating the detecting work [47]. To increase the generalizability of OD
algorithms, researchers must commit significant effort to modify and improve detection systems in
response to specific conditions. This section delves deeply into the conventional approaches for OD
based on deep learning. These detectors attracted substantial attention due to their demonstrated
ability to perform well in various detection tasks.

Region-based Convolutional Neural Network (R-CNN) is the first to demonstrate that a CNN-
based model can outperform a classic Histogram of Oriented Gradients (HOG) based model. The
network generates region proposals from the top to the bottom of the image using Selective Search
(SS) and then classifies them to forecast their category. Using the VOC dataset [48], the network
improved detection performance and achieved an mAP of 53.7%. It eliminates many simple negatives
before training, which accelerates learning and minimizes the frequency of false positives. Regardless
of how far this network has advanced, it remains limited due to redundant feature computations from
highly overlapped regions. The training and testing take excessive time, resulting in an abnormally slow
detection speed. Another primary risk of employing R-CNN is their fixed-size input. Spatial Pyramid
Pooling Network (SPP-net) were then introduced to extend the capabilities of R-CNN, which already
allows variable input sizes and share processing. The critical role of the SPP-net is the insertion of
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an SPP layer, which enables a CNN to generate a predetermined length feature vector representation
regardless of the size of the image’s an important region without rescaling. SPP-net is more efficient
and faster than R-CNN and attained an mAP of 59.2% on VOC2007 imagery. Regardless of how
effectively it increased detecting speed and accuracy, there are still specific weaknesses connected with
them. The learning scenario is multiphase, consumes a significant amount of disk space, and relies
mainly on its Fully Connected (FC) layers for OD by completely disregarding all prior layers.

Girshick et al. later enhanced detection efficiency by introducing the Fast-R-CNN, a multitask
learning detector capable of generating preset length feature vectors from a feature map like the SPP-
net. Compared to R-CNN, which processes each image region separately, this technique processes the
entire image simultaneously. Fast R-CNN extracts region-specific information using the ROI pooling.
It is a subset of SPP in that it partitions the underlying proposal using a single scale and propagates
the error signals to the convolution kernels via backpropagation. The technique outperforms R-CNN
and SPP-net in computational complexity and memory usage. The method required far less forward
computation than R-CNN and significantly accelerated the training process. Even though Fast R-
CNN successfully integrates R-CNN and SPP-net’s advantages, the system’s detection speed is still
restricted. It employs a SS method for extracting proposals from images, which is computationally
expensive. While substantial progress has been achieved in learning detectors, proposal generation
has relied chiefly on conventional techniques such as SS and EdgeBox (EB), which depend on trivial
visual signals and are difficult to train using a data-driven approach. To address these concerns,
Ren et al. developed Faster R-CNN shortly after Fast R-CNN in 2015. Faster R-CNN consists of deep
CNN and Fast R-CNN detector, responsible for proposal generation and classification, respectively.

The model solves the limitations of previous techniques, such as limited speed and high computing
costs. The model substitutes SS with a powerful Region Proposal Network (RPN) to extract the
regions in the image. The method offers fewer proposals; it takes a long to attain convergence. Since
it achieved an mAP of 73.2% on the VOC2007 images and 70.4% on the VOC2012 dataset, Faster
R-CNN can be deemed the first end-to-end and near-real-time deep learning detection model. The
network outperforms Fast R-CNN in terms of detection speed. Nevertheless, subsequent detection
phases experience some computational idleness. Deep layer features are significant semantically but
insignificant regionally, whereas shallow layer characteristics are important semantically but not so
much regionally.

Lin et al. investigated this phenomenon and proposed a Feature Pyramid Network (FPN),
a classifier incorporating deep and shallow layer features for detection and recognition at many
scales. The key idea is to reinforce spatially particular features with meaningful semantic features
at deeper levels. Including this FPN into a standard Faster R-CNN model, significantly improved
detection performance on the MS-COCO dataset, with an mAP of 59.1%, is achieved. The FPN
has become a critical component of current detectors. He et al. developed the Mask R-CNN, a
straightforward, intuitive, easy-to-use model based on pixel-level image segmentation. The approach
achieved a high rate of speed and precision (high classification accuracy, high detection accuracy,
high instance segmentation accuracy, etc.). The network is an extension of the Faster-R-CNN,
which enhanced detection accuracy dramatically. Although the model is relatively stable, it requires
considerable memory and is slow in detecting objects, making it unsuitable for real-time applications.
The limitation of Faster R-CNN is that it computes a feature map for an input image and then
constructs region-based feature vectors from it, dispersing feature extraction computation across the
image’s regions. These additional computations may be costly, as each input image may have hundreds
of proposals. Dai et al. developed a Region-based Fully Convolutional Network (R-FCN) to eliminate
this additional calculation expense. The model significantly enhances detection performance, and the
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model’s shared convolution directly impacts the entire image. The model is highly accurate compared
to previous approaches and beats them when speed is irrelevant. To improve detection performance,
R-CNN is further extended into a Cascade R-CNN [49]. In reality, cascading can be helpful for any
two-stage object detector. Several variants were also developed to ensure the detection process is as
accurate as feasible, each with a somewhat different architecture [50–56].

To address the issue of slow detection speed, the one-stage algorithms You Only Look at
Once (YOLO) and Single-Shot Detector (SSD) have been announced to predict the position and
classification of objects. Numerous modifications have been proposed to improve the overall accuracy,
including [57–62]. The YOLO method creates several grids on the images to perform localization and
classification, which results in increased detection accuracy. But it cannot detect small objects due to a
lack of low-level high-resolution information. For small objects, the approach yields unsatisfactory
detection results. SSD is developed to address issues with YOLO systems. It identifies objects by
combining low-level and high-level feature maps with high-resolution information. This approach
is highly accurate and effective when dealing with small objects. Yet, the model is still subject
to refinement. It was noted that current detectors heavily rely on anchors regardless of whether
the detection is one-stage or two-stage. Typically, classic techniques generate anchors using RPN.
These anchors are then immediately categorized and regressed. The quantity and shape of anchors
significantly affect the effectiveness of OD algorithms. Nonetheless, two-stage algorithms are slower
than one-stage algorithms but more accurate in their detection.

3 Proposed Method

This research aims to provide a helpful model for OD in images. This section discusses each
significant stage in depth. Fig. 1 depicts the proposed model’s architecture. Our proposed methodology
is comprised of the crucial phases described below:

Figure 1: The proposed method’s architecture
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3.1 Object Proposals

The initial critical stage is to produce high-quality, class-independent, and sparse object proposals.
Based on these earlier study findings, the small but high-quality collection of proposals can signifi-
cantly improve OD performance. Previous strategies are insufficient to generate an adequate quantity
of high-quality proposals. We started by segmenting the image to establish a set of initial regions.
Segmentation enhances OD performance. Compared to pixels regions containing more information,
obtaining object proposals using region-based characteristics is a solid approach. This work uses a
technique developed in Ref. [63] to quickly and accurately generate a collection of initial regions. Each
acquired region is referred to as a cluster. Then, surrounding regions are grouped according to their
similarities using a hierarchical clustering-based bottom-up grouping approach. After determining
the similarities between nearby regions, the most similar neighbors are joined to produce a single
region. Then, similarity values between the two previously combined adjacent regions are assessed,
and comparable regions are combined into a single region. Iteratively comparable regions are grouped
until all similar regions are consolidated into a single region to make an image. Thus, the regions are
clustered based on four complementary characteristics: color, size, gap, and texture similarities.

Our goal is to obtain as many proposals as feasible. The search for regions is varied, and
more regions are acquired by using a clustering approach based on multiple color spaces, modifying
the starting regions, and generating region similarities. The acquired regions have been sorted, and
duplicates have been deleted. At this stage, the regions formed through grouping serve as proposals.
After obtaining the proposals, the following step is to score and rank them. This is accomplished
by employing the structural edge detector to extract the edges from the source image. Compared to
other edge detectors, this one is reasonably quick and exact. Then, these edges are linked together
depending on their similarity with adjacent edges. Eight adjacent edges with greater than pi/2 variance
in orientation are connected to form edge groups. We then estimated the affinities between adjacent
groups using their mean positions xi and xj and orientations θi and θj. To speed up the process, only
affinities with a value larger than the 0.05 criterion are retained; all other affinities are removed.

a
(
Si, Sj

) = ∣∣cos
(
θi − θij

)
cos

(
θi − θij

)∣∣γ

(1)

It is possible to tweak the affinity’s sensitivity to orientation changes by changing the value γ ;
nevertheless, γ = 2 it is commonly used in practice.

We calculated the score for our proposals using these edge groups and their affinities. Each group’s
continuous value wb (Si) is computed to determine whether the particular edges Si are contained inside
the candidate bounding box b. Suppose it is not entirely included inside the box wb (Si) = 0. In that
case, the mathematical formula for determining if a collection of edges Si is entirely encompassed
within the candidate bounding box b is as follows:

wb (Si) = 1 − maxt

|T |−1∏
j

a
(
tj − tj+1

)
(2)

where “a

‘‘

is the affinity between two edge groups, and “t

‘‘

represents the ordered path of edge groups,
has a length of |T |, begins at t1 ε Sb, and finishes at t|T | = Si, If no such path exists, then wb (Si) = 1.
The scoring function may be represented as, based on the values derived using Eq. (2).∑

i wb (Si) mi

2 (bw + bh)
k (3)
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Where “bw

‘‘

signifies the box’s width, “bh

‘‘

denotes the box’s height, “k

‘‘

represents the bias value
for larger boxes, which is 1.5, and where mi is the total magnitude of all of the edges that belong to
group Si. Next, these resultant proposals are sorted by their Eq. (3) scoring system and fed into the
backbone network, which optimizes them even more, enabling them to execute refinement tasks more
effectively. The scored proposal has multiple duplicates (i.e., significantly overlapping proposals). We
applied Non-Maximum Supersession (NMS) to improve proposals and select those with the highest
objectivity score.

3.2 Proposals Refinement

As illustrated in Fig. 2, proposals should be refined to achieve high-quality detection performance.
Numerous methods require that proposals to be of the highest quality and fewest in quantity. The
refinement system fine-tuned the proposals generated in the previous stage. Following that, high-
quality proposals are submitted for classification. Our technique is structured so that our detector’s
refinement and classification components can exchange convolutional features to achieve resilient
performance.

Figure 2: The initial proposals and their refinement

We extract the image’s deep features using a pre-trained Visual Geometry Group CNN (VGGNet)
[32]. VGG considerably enhanced both precision and speed. This was mostly due to the improved depth
of the model and the use of pre-trained models. Non-linearity is always an advantage in deep learning,
and it increases as the number of layers with smaller kernels increases. VGG introduced a variety of
structures based on the same concept. This expands our application’s architectural possibilities. It is
one of the most prevalent approaches for image classification and is straightforward to implement with
transfer learning. The network is updated after the 13th layer. Two new branches are added to refine
and classify proposals. The model is supplied input from the first stage’s proposals and corresponding
natural imagery. The input image and its corresponding proposals are traversed via the first to the
thirteenth layers to extract features. We wish to minimize computing costs and time and thus use the
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proposal refinement concept presented in [37,64]. Following the thirteenth layer in our network, we
apply ROI pooling to resize the feature map 512 × 3 × 3, which serves as the starting point for our
proposal refinement. To generate the feature vector for the object proposal, the convolutional feature
map is passed through one 512-d and two 256-d FC layers. Finally, a ranking branch is included as
an FC layer for recalculating the proposal’s score. This layer has two output neurons representing the
likelihood of an object being present. Besides, another subfield of box regression incorporates an FC
layer for determining the starting positions of proposals and forecasting the box regression values.

We may rank the revised proposals by their score and choose a few with the highest objectivity
score to achieve final proposals. Initial proposals are allocated a binary class label during the network’s
training phase to signify whether they are objects. The loss function is defined as follows:

Lobj (p, u) = − [
1{u=1} log p1 + 1{u�=1} log p0

]
(4)

where “p

‘‘

is the value computed using SoftMax from the two outputs of a FC layer, p1 and p0 are

predicted probabilities per ROI, and “u

‘‘

denote the current box’s label. The box regression layer is
used to learn the coordinate offsets. The coordinates are parameterized as follows:

tx = (x − xin)/win, ty = (y − yin) /hin,
tw = log (w/win) , th = log (h/hin) ,
vx = (x∗ − xin)/win, vy = (y∗ − yin)/hin,
vw = log (w∗/win) , vh = log (h∗/hin)

(5)

where “h

‘‘

, “w

‘‘

, “x

‘‘

, and “y

‘‘

represent the height, width, and candidate box’s center coordinates. The

quantities x∗, xin, and “x
‘‘

represent the ground truth box, input box, and predicted box. The same

definitions apply to variables “y

‘‘

, “h

‘‘

, and “w

‘‘

. Variable “v

‘‘

refers to the regression target and “t

‘‘

denote the predicted tuple. The box regression loss is numerically described as follows:

Lreg = ∑
i∈{x,y,w,h}

smoothL1
(ti − vi) ,

smoothL1
(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

} (6)

where smooth L1 (x) is the eponymous loss function for regression. As a result, the joint loss function
has the following definition:

L (p, u, t, v) = Lobj (p, u) + λ · 1{u=1}Lreg (t, v) (7)

where "λ" is a balancing parameter; in this case, it is set to one.

3.3 Classification

The network’s FC layers required fixed-size input to accomplish subsequent operations, one of
the critical obstacles to OD. Since the proposals produced would vary in size and shape. All generated
proposals must be translated into a specific size or form. ROI pooling is applied after receiving the
updated proposals to obtain a fixed-length feature vector 7 × 7. ROI pooling’s output size does not
depend on the number of proposals or the input feature map but rather on the number of sections
into which proposals are partitioned. Implementing ROI pooling accelerates computation and allows
all generated proposals to utilize the same input feature. This also significantly enhances the overall
object detection performance. Convolutional features from the input image are incorporated into all
produced proposals. This improves overall detection accuracy significantly [37]. These proposals are
transmitted with the proposed network’s final component to accomplish the needed objectives. Mean
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pooing is used to minimize the size of the proposal feature map to 1, and an FC layer of size 1 × 1 × 4
is added to display the object’s bounding box and score. The feature map of the proposals from the
previous stage is of low resolution. Three de-convolutional layers and one convolutional layer are
added to increase the resolution. The sigmoid function is applied to the output of deconvolutional
layers to derive object class probability. The classification branch receives the deconvolutional feature
maps. The feature map of the size 1 × 1 × 1152 is obtained. This 1152 feature channel sum is obtained
from the backbone’s 1024 feature channels and the deconvolution output’s 128 feature channels.
Combining feature channels from two sources increased the classification performance significantly.
The probability "p" of each output class "u" is determined using the SoftMax activation function,
which is specified as,

Lclassificaiton (p, u) = − log (pu) (8)

4 Evaluation and Results

Based on prior research on generic OD, the effectiveness of the proposed technique is examined
using the difficult VOC2007, VOC2012, and MS-COCO datasets [65–67]. These are the most fre-
quently used and well-known OD datasets. The computer system used for the experiment is equipped
with two RTX2080Ti Graphics Processing Units (GPUs) and has a RAM of 32 gigabytes. To enable
the creation and reproduction of network models utilized in our research, PyTorch, a deep learning
framework, is integrated with Python and Linux. The proposed network is trained using the Stochastic
Gradient Descent (SGD) method. Each SGD mini-batch was developed from an image, yielding 512
boxes as a training sample. Each batch contains 512 training examples uniformly distributed between
positive and negative data. Positive samples were defined as training boxes with an overlapping value of
at least 0.7 with the ground truth boxes. A negative sample is defined as those boxes whose overlapping
values with the ground truth are within the interval [0.1, 0.5]. The experiments are evaluated for a
total of 32 epochs. The model layers are fine-tuned by setting a constant learning rate of 0.0001 for
all epochs. We considered 512 object proposals of an image generated for each mini-batch to train our
framework’s detection module. In Fast R-CNN, 25% of proposals are positive if their overlap value
with the ground truth boxes is 0.5. The maximum overlap value for negative samples is between [0.1,
0.5]. The detection model was trained using the top 2000 improved proposals, with the model learning
rate set at a constant value of 0.0001 for all epochs. The proposed model has been verified against 100
high-quality proposals per image, whereas previous methodologies needed large numbers of proposals
to demonstrate the model’s usefulness.

To evaluate the overall detection performance in terms of localization and classification efficiency,
the following generally known and widely used performance measures are adopted: mAP, DR, and
MABO. Numerous state-of-the-art approaches have been chosen to compare the superiority and
resilience of the proposed method [11–26,35–39,42–43,68–80]. The proposals generated through these
methods were entered into the detection module to ensure the proposals’ quality during the entire
detection task. To evaluate the proposed model’s mAP to earlier models, the main basic techniques
used can be seen in Table 2.

Tables 1 and 3 compare the proposed model’s DR performance to existing approaches utilizing
VOC2007 and MS-COCO datasets. The DR trends are displayed in Figs. 3, 4, 7, and 8. The DR is
determined based on 100, 300, 500, and 1000 proposals received under two separate IoU conditions,
particularly 0.5 and 0.7. The proposed technique has achieved the highest DR. Variation in IoU values
on both datasets and the number of proposals boosts performance significantly. Despite producing
high-quality proposals, many cutting-edge algorithms failed to achieve high recall due to a small
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number of candidate proposals. At the same time, fewer methods are relatively competitive but unable
to produce high recall due to poorly matched proposals. The proposed method yielded significant recall
performance of 93.17%, 94.75%, 95.2%, and 97.3% on VOC2007 across various proposal settings at
IoU = 0.5. With the MS-COCO dataset at IoU = 0.5, the proposed approach attained recall results of
69.4%, 73.75%, 77.57%, and 82.66% approximately. At IoU = 0.7, the proposed approach completed
approximate recall values of 79.35%, 81.15%, 84.4%, and 88.1% on VOC2007 imagery, respectively.
With an IoU of 0.7 and MS-COCO Imagery, the proposed methodology provided recall values of
roughly 58.35%, 62.97%, 68.66%, and 73.81% for 100, 300, 500, and 1000 proposals, respectively.
None of the strategies investigated thus far has shown exceptionally high performance for either
IoU threshold value. Our technique makes use of the intrinsic convolutional features throughout the
network. The proposed technique obtained a 93.17% recall value with around 100 proposals per image
at IoU = 0.5. In contrast, the DeepBox (DB), RPN and Deep Mask Zoom (DMZ), methods require
300, 500, and 1000 proposals per image to reach approximately the same performance. Similarly, the
model has reached 79.35% at IoU = 0.7. Compared to the proposed model, the other models had the
highest number of proposals yet achieved the same performance.

Table 1: DR performance for various proposals settings at IoU 0.5 and 0.7 VOC2007

Ref. Methods name Proposals (IoU = 0.5) Proposals (IoU = 0.7)

100 300 500 1000 100 300 500 1000

[11] Rantalankia 16.05 18.85 22.95 27.4 9.37 12.1 15.55 19.8
[12] Geodesic object proposals (GOP) 61.32 64.75 69.9 74.6 37.22 39.7 43.15 47.3
[13] Rahtu 63.55 66.1 70.1 74.7 47.22 49.9 53.3 57.3
[14] Objectness 66.65 69.05 72.9 77.3 31.15 34 37.55 41.7
[15] Binarized normed gradients (BING) 71.42 73.4 76.1 81.8 26.35 29.25 32.6 36.5
[16] Random prim (RP) 72.4 74.55 77.95 82.4 46.07 48.65 52.45 56.8
[17] SS 73.5 75.55 78.9 83.7 51.25 54.2 57.55 60.5
[18] Cascade support vector machines

(CSVMs)
76.25 78.6 82.15 86.1 27.45 29.95 33.25 37.4

[19] Learning to propose objects (LPO) 76.95 79.3 82.9 87.4 50.37 52.55 55.7 59.9
[20] EB 77.3 79.95 84.05 89.2 62.57 65.35 68.85 74.1
[21] Multiscale combinatorial grouping

(MCG)
83.5 85.5 87 89.7 62.02 64.75 68.15 73.2

[22] Endres 85.05 87.05 88 90.2 61.35 64.05 67.3 71.4
[23] DB 86.32 88.25 90.35 95.1 72.15 74.75 78.4 83.6
[24] RPN 90.25 92.4 93.4 96.2 66.32 69.25 72.85 77.1
[25] DMZ 91.5 93.05 93.85 96.7 72.95 75.75 79.85 84.7
[26] Sharp mask zoom (SMZ) 92.15 94.65 94.3 96.9 76.02 78.95 82.5 86.9

Ours 93.17 94.75 95.2 97.3 79.35 81.15 84.4 88.1
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Table 2: MABO Performance of the proposed approach on different proposals and mAP performance
on 100 proposals per image on VOC2007 images

Methods Proposals (MABO) mAP using 100 proposals per image

100 300 500 1000

Rantalankia 23.2 28.85 32.7 36.6 11.3
Objectness 56 60.9 64.15 68.3 45.05
BING 57.05 61.95 65.6 71.7 44.45
GOP 57.85 63.1 66.75 72.9 28.2
Rahtu 58.85 63.9 67.35 73.3 42.8
CSVMs 59.6 65 68.75 74.8 46.15
RP 63.75 68.6 72.95 79.5 42.1
SS 65.45 70.85 74.95 81.2 44.15
LPO 66.7 71.85 76.1 82.4 44.6
EB 67.35 72.45 77.3 84.8 51.6
RPN 71.2 76.55 81.4 87.7 65.4
Endres 71.5 77.25 81.85 88.2 55.7
MCG 72.4 78 82.85 88.6 54.2
DB 72.85 78.4 82.7 89.4 60.55
DMZ 77.2 82.55 86.85 90.5 63.55
SMZ 78.25 83.45 88.1 91.8 64.5
Ours 79.25 85.15 90.1 92.7 71.9

Table 3: DR performance for various proposals settings at IoU = 0.5 and 0.7 using the MS-COCO
dataset

Methods Proposals (IoU = 0.5) Proposals (IoU = 0.7)
100 300 500 1000 100 300 500 1000

BING 30.2 34.5 38.35 44.42 5.15 9.67 15.41 20.54
Rahtu 31.5 35.8 39.65 45.72 21.95 26.27 32.11 37.19
Objectness 32.9 37.25 41.07 47.16 12.25 17.02 22.63 27.82
SS 33.1 37.35 41.22 47.28 17.75 21.87 27.81 32.84
RP 38.7 42.95 46.82 52.88 22.25 26.82 32.53 37.67
EB 39.5 43.6 47.55 45.57 28.65 33.07 38.86 43.96
GOP 42.3 46.7 50.5 56.60 26.6 30.85 36.72 41.78
LPO 43.5 47.8 51.65 57.72 25.55 30.12 35.83 40.97
DB 48.9 53.2 57.05 63.1 35.45 40.07 45.76 50.91
MCG 51.8 56.2 60.0 66.1 35.25 39.92 45.58 50.75
RPN 66.5 70.75 74.62 78.685 47.5 52.05 57.77 62.91
DMZ 67.6 72.0 75.8 80.9 53.9 58.05 63.97 69.01
SMZ 68.1 72.35 76.22 81.28 54.95 59.07 65.23 70.15

(Continued)
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Table 3: Continued
Methods Proposals (IoU = 0.5) Proposals (IoU = 0.7)

100 300 500 1000 100 300 500 1000

Ours 69.4 73.75 77.57 82.66 58.35 62.97 68.66 73.81

Figure 3: DR patterns for a variety of proposals at IoU 0.5 on VOC2007

Figure 4: DR patterns for a variety of proposals at IoU 0.7 on VOC2007

Due to the greater diversity of our proposals, we can achieve a high recall with a smaller number
of proposals. This enables the proposed model to be used for tasks requiring high recall with
fewer proposals. Thus, the proposed strategy displayed significant robust performance on a smaller
number of proposals while attaining comparatively acceptable results on a more substantial number
of proposals, demonstrating the proposed method’s efficacy. The results indicate that the proposed
strategy is substantially more accurate than earlier methods, owing to the high quality and refinement
of the presented object proposals. On the other hand, prior approaches are ineffective at achieving
high recall with lower and higher proposals than the proposed strategy.
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Tables 2 and 4 compare the proposed model’s MABO performance to prior techniques on both
imaginaries. The MABO relationship between the various methods is visualized in Figs. 5 and 9.
The proposed model outperforms existing approaches regarding proposal accuracy. The proposed
scheme achieves the highest MABO values of 79.25%, 85.15%, 90.1%, and 92.7%, respectively, for
all proposal settings using VOC2007 images. Similarly, utilizing MS-COCO images acquired MABO
performance of 62.65%, 66.27%, 71.46%, and 76.86%, indicating the proposed method’s usefulness.
The findings show that current techniques have a high recall but insufficiently yield high MABO.
This is because of the larger volume of low-quality proposals. Due to the excellent quality of the
proposals, the proposed method achieves acceptable performance using a small number of proposals.
The fewer methods resulted in a MABO value that was greater than that predicted by our model.
The heterogeneity in object classes and the lowered processing cost significantly enhance the proposed
method’s overall detection performance. The detection efficiency of the proposed method compared
to competing methods is presented in Table 2. The mAP is estimated using only the top 100 proposals.

Table 4: MABO Performance of the proposed approach on different proposals using the MS-COCO
dataset

Methods Proposals (MABO)

100 300 500 1000

BING 32.25 36.62 41.43 47.02
Rahtu 33.35 37.62 42.48 48.05
Objectness 33.9 38.05 42.97 48.51
SS 35.9 39.75 44.82 50.28
EB 38.8 43.2 48 53.6
RP 40.75 45.07 49.91 55.49
GOP 43.1 47.7 52.4 58.05
LPO 44.2 48.65 53.42 59.03
DB 46.8 51.1 55.95 61.52
MCG 50.2 54.85 59.52 65.18
RPN 56.35 60.67 65.51 71.09
DMZ 60.75 65.17 69.96 75.56
SMZ 61.45 65.85 70.65 76.25
Ours 62.65 66.27 71.46 76.86

In contrast, previous approaches required many proposals to determine the model’s efficacy.
According to the evaluation, the proposed technique resulted in an mAP of around 71.9% for 100
high-quality and enhanced proposals. Fig. 6 illustrates the detection performance of several models
contrary to the IoU overlap threshold, and our method achieved a maximum DR of 93.17% using only
100 proposals per image. The proposed technique outperformed EB, SS, BING, and RP in terms of
mAP by the high margin of 20.3%, 27.75%, 27.45%, and 29.8%, respectively. They also achieve higher
mAP values compared to other approaches.
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Figure 5: MABO performance of the proposed model on VOC2007

.

Figure 6: mAP performance of the proposed model for 100 proposals using VOC 2007

Figure 7: DR patterns for a variety of proposals at IoU 0.5 using the MS-COCO dataset
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Figure 8: DR patterns for a variety of proposals at IoU 0.7 using the MS-COCO dataset

Figure 9: MABO performance of the proposed model using the MS-COCO dataset

To further validate the proposed model’s efficiency, the overall efficiency in terms of overall mAP is
tested using VOC2007 and VOC2012 datasets. As demonstrated in Table 5, compared to other current
detectors on both datasets, the proposed network achieved mAP of 84.7% and 81.5%, respectively,
which is greater than previous techniques. The proposed design generated high-quality, low-volume,
and accurate proposals with high recall. Besides, it preserves feature information and achieves a
high level of detection accuracy. Even though it is acknowledged as a critical restriction for many
methods to enhance detection performance. To do this, convolutional features are shared across the
whole network of the proposed model, which does not affect the proposal generation performance.
The sharing of features enhances the overall detection performance greatly. The results indicate that
past approaches to lower mAP aggravated the problem of low precision and may significantly hinder
real-time performance. Due to the low detection performance, obtaining and meeting the real-time
detection performance criterion was problematic. As a result, the results indicate that the proposed
strategy is more efficient, performs better, and is more advantageous. The qualitative results of the
proposed model are visualized in Fig. 10.
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Table 5: Comparison of the proposed method’s mAP performance with existing techniques to OD

Methods Backbone architecture Proposed year Input size (Test) mAP (%)

VOC2007 VOC2012

[35] AlexNet 2014 600 × 1000 50.2 –
[35] VGG-16 2014 Arbitrary 66.0 62.4
[36] AlexNet 2014 224 × 224 63.1 –
[37] VGG-16 2014 600 × 1000 70.0 68.4
[38] VGG-16 2015 600 × 1000 73.2 70.4
[68] VGG-16 2015 Multi-Scale 78.2 73.9
[39] ResNet-101 2016 600 × 1000 80.5 77.6
[54] VGG-16 2016 600 × 1000 79.2 76.4
[55] VGG-16 2016 600 × 1000 76.3
[56] VGG-16 2016 600 × 1000 74.6 71.9
[69] VGG-16 2016 600 × 1000 75.7 71.3
[70] VGG-16 2016 600 × 1000 78.4 74.8
[71] ResNet-101 2017 600 × 1000 82.6 –
[72] ResNet-101 2017 600 × 1000 82.7 80.4
[73] ResNet-101 2017 512 × 512 77.1 73.9
[74] ResNet-101 2018 600 × 1000 82.4 81.1
[75] ResNet-101 2018 600 × 1000 83.3 81.3
[76] ResNet-101+ 2018 Arbitrary 84.0 81.2
[42] VGG-16 2016 448 × 448 63.4 57.9
[77] DarkNet 2017 544 × 544 78.6 73.5
[43] VGG-16 2016 300 × 300 77.2 –
[43] VGG-16 2016 512 × 512 79.8 78.5
[59] ResNet-101 2017 321 × 321 78.6 –
[59] ResNet-101 2017 513 × 513 81.5 80.0
[78] DenseNet 2017 300 × 300 77.7 76.3
[79] VGG-16 2017 384 × 384 75.4 73.0
[80] ResNet101 2019 512 × 512 78.7 –

Ours VGG-16 2022 600 × 1000 84.7 81.5
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Figure 10: The qualitative results of the proposed model
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5 Discussion

This study aims to present a better method for recognizing objects in images based on recent
advances in OD. The proposed technique can significantly increase overall detection performance
compared to existing approaches. While the authors assess and provide their experimental findings
in Part 4 of this study, this section discusses the proposed method’s significance and compares the
results to previous studies (Tables 1–5). Compared to Rantanlankia and GOP models, the proposed
technique produced a significant margin difference in all quality indicators over 100 proposals with
varying IoU levels utilizing both datasets. The proposed method surpassed their competitors in terms
of recall and detection efficiency despite employing a smaller and more diverse set of proposals,
which is considered a drawback of such models. Direct control over proposal generation, scoring, and
generating a higher proportion of high-quality and diversified proposals ensures that the proposed
model performs optimally to achieve quality detection efficiency.

In contrast to Rahtu’s study, their algorithm prioritizes initial top-rank proposals over top best
proposals, lowering total detection performance. The proposed scheme performs significantly better
in detection rate, MABO, and mAP. It generates a small number of high-quality proposals for
performing high-quality detection. The author’s technique outperforms the Objectness model at a
high IoU threshold, resulting in robust detection performance. As the IoU threshold is increased, the
efficiency of BING drops. This method underperforms for certain types of objects than the proposed
technique. Compared to RP, their approach lacks a scoring system and a mechanism for controlled
proposal generation. Due to the reduced proposal count and more concentrated proposal selection,
the proposed technique beats these strategies significantly.

The study SS used no learning in the proposal generation process, yet the system outperforms
other existing methods. Compared to their research, the proposed technique outperforms it by
producing higher-quality and fewer proposals, significantly improving average detection performance.
Our method scores, ranks, and refine proposals to increase detection efficiency and surpasses their
model by a large margin in recall (20.4%), MABO (14.5%), and mAP (24.1%), which demonstrates
their resilience when compared to their method. The proposed methodology outperforms CSVMs
and significantly improves recall (17.7%), MABO (19.8%), and mAP (21.7%). The LPO generates
insufficient high-quality proposals to improve overall detection performance. However, this strategy
outperforms others in the recall, MABO, and mAP. The proposed scheme significantly outperforms
theirs while maintaining a high level of performance across all quality indicators. The authors’ analysis
demonstrates that it is possible to achieve high-quality performance despite numerous proposals. The
EB features a scoring approach to regulate proposal generation, and it does not achieve consistent
detection performance due to the absence of additional proposal refining. The proposed method
outperforms their strategy in the recall, MABO, and mAP.

Compared to MCG, the proposed model consistently beat its approach and superiority. The
increased threshold value resulted in a significant improvement in their overall detection ability. The
Endres model is slow and requires substantial processing power. This model is unable to detect every
object across each image. Compared to the authors’ method, their model fared poorly in recall,
MABO, and mAP. Compared to DB, the authors’ technique improved various performance metrics
considerably. The proposed strategy generates a more significant number of superior proposals than
they do. There is no way to reduce the number of proposals, making them more vulnerable to obtaining
quality detection performance. Compared to RPN, DMZ, and SMZ, the proposed technique produces
fewer proposals and generates fewer false positives, boosting final performance. These methods have
similar results to the proposed solution; yet, the significant marginal difference in performance
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efficiency remains obvious. After acquiring high-quality proposals, these are incorporated into the
OD process. A range of advanced object detectors is included to further evaluate the proposed model’s
detection efficiency. The comparison results are presented in Table 5. Notably, the proposed method
achieved a greater detection precision than others due to generating fewer but higher-quality proposals.
Due to improved recall and proposal accuracy, the proposed technique produced robust results for
objects of various classes. Thus, the provided object detector’s greatest mAP of 84.7% and 81.1% using
VOC2007 and VOC2012 indicate its superiority over earlier detectors in the OD challenges.

Given that the fundamental objective of this research is to generate fewer, high-quality, and class-
independent proposals, improve detection performance, and raise the usefulness of quality assessment
criteria. The methodologies described above have many advantages and disadvantages. The proposed
technique is helpful, notably in a recall, MABO, and mAP.

6 Conclusion

This article discussed an efficient framework for OD in images. The proposed methodology is a
helpful addition to the family of object detectors. Our method initially generated less high-quality,
class-independent, and accurate object proposals. Then, using these resulting proposals, efficiently
determine the object’s class. This strategy successfully decreases the number of affirmative proposals
from 1000 to 100; it also prevents the need for trivial computations. By sharing convolutional features
inside the network, the proposed scheme maintained a good recall and a high detection accuracy
on fewer proposals. Previously, this was viewed as a disadvantage due to the overwhelming number
of proposals, which dramatically reduced detection performance. We substantially increased our
model’s detection capabilities and improved OD performance by achieving a high recall of actual
objects through rapid proposal generation and refinement. The experimental results advocate that the
proposed model outperforms existing approaches in all quality measuring indicators. The improved
performance demonstrates the proposed model’s effectiveness and robustness, indicating that it can
be used in various OD applications.

Given that the effectiveness of the proposed model is proportional to the number of initial
proposals, it may be less productive for complicated images with a large number of initial propos-
als. Because our model is constructed from small feature maps created by down-sampling in the
backbone network, images with a significant number of little objects would impair its performance.
CNN deepening and scale interpolation always result in the loss of feature information in images.
Therefore, enhancing feature extraction and interaction is essential for future detection performance
improvements. Numerous high-level applications, such as multi-label image classification, disease
diagnosis, pedestrian detection, etc., are anticipated to function more efficiently with fewer but more
exact concepts. We intend to apply our method to a range of other high-level applications in the future.
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