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Abstract: Data centers are being distributed worldwide by cloud service
providers (CSPs) to save energy costs through efficient workload alloca-
tion strategies. Many CSPs are challenged by the significant rise in user
demands due to their extensive energy consumption during workload pro-
cessing. Numerous research studies have examined distinct operating cost
mitigation techniques for geo-distributed data centers (DCs). However, oper-
ating cost savings during workload processing, which also considers string-
matching techniques in geo-distributed DCs, remains unexplored. In this
research, we propose a novel string matching-based geographical load balanc-
ing (SMGLB) technique to mitigate the operating cost of the geo-distributed
DC. The primary goal of this study is to use a string-matching algorithm (i.e.,
Boyer Moore) to compare the contents of incoming workloads to those of
documents that have already been processed in a data center. A successful
match prevents the global load balancer from sending the user’s request
to a data center for processing and displaying the results of the previously
processed workload to the user to save energy. On the contrary, if no match can
be discovered, the global load balancer will allocate the incoming workload
to a specific DC for processing considering variable energy prices, the number
of active servers, on-site green energy, and traces of incoming workload. The
results of numerical evaluations show that the SMGLB can minimize the
operating expenses of the geo-distributed data centers more than the existing
workload distribution techniques.
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1 Introduction

In recent years, energy usage in Information and Communication Technology (ICT) systems
has been growing due to the massive adoption of cloud computing services such as the Internet of
Things (IoT), social media, data analytics, big data, etc., [1,2]. Data centers (DCs) are one of the
largest keepers of these computing services, which provides an open-access interface to enable big data
analysis [3]. Keeping up with the burgeoning interest in cloud computing, the number of geographically
distributed DCs has increased significantly. As a result, it is becoming a growing problem because cloud
resources require a lot of energy to power the DCs. Recent studies predict that by 2022, annual data
production will have quadrupled every year [3–6]. At the same time, considerable energy is consumed
to execute this data. Over the past decade, measurements show that power usage of cloud DCs has
climbed by nearly 10% [4]. As a result, the price of energy is rising rapidly to cover the expense of
keeping computer resources active and cooled at all times. Moreover, eco-friendly and energy-efficient
workload distribution strategies must be carefully planned.

To mitigate the operating cost of the geo-distributed DCs, many cloud service providers (CSPs),
e.g., IBM Cloud, Google Cloud, Amazon Web Services, and Microsoft Azure, have focused on
exploiting the geographical load balancing (GLB) by considering regional differences in energy prices
to minimize the operating cost of the DCs [7]. GLB has been suggested to use the flexibility of geo-
distributed DCs by routing incoming workloads to locations where renewable energy is available,
thereby facilitating the integration of green energy sources into DCs.

In recent years have seen an increase in the study being done on using green energy in DCs. To
power DCs using green energy is another way to lessen the load on the grid from traditional power
plants and mitigate the overall cost of the DC [7,8]. Green power supply (such as solar or wind power)
have the potential to minimize our reliance on fossil fuels significantly, but they are inherently unstable
compared to traditional grid electricity [9]. The time of day, the season, the weather, and other variables
may all affect their outputs. Predicting the production of green power supply before using them and
then balancing the power sources with the incoming workload in the DC is an efficient way to use
green energy.

In order to minimize the use of energy while guaranteeing high-quality service to customers during
workload processing, several techniques (e.g., Virtualization, Consolidation, energy derivatives, and
Data Deduplication) have been presented by experts in academia and the cloud industry [7–10]. By
researching how cloud service providers with several DCs in various regions may distribute their
workloads and conserve energy, we substantially contribute to the literature. Unlike prior works [1,8–
11], we describe the operating cost minimization problem for the DC as an optimization problem
considering the string-matching technique, renewable energy sources, and dynamic energy costs. String
matching algorithms have had a significant impact on cloud computing and are crucial to solving many
problems in the real world. It supports the completion of time-effective jobs across several disciplines.
These approaches are helpful when looking for a specific pattern within a string. Detecting plagiarism,
bioinformatics and DNA sequencing, digital forensics, spelling checks, spam filters, search engines,
and intrusion detection systems are just a few examples of the practical applications of string matching.

In this paper, we examine green geographically dispersed DCs. At first, the incoming user requests
are received by the Global Load Balancer (Global-LB). The function of the Global-LB is to make
online decision for routing the incoming user requests to appropriate DC based on minimum energy
consumption. The primary objective of this study is to use a string-matching algorithm (i.e., Boyer
Moore) to compare the contents of incoming workloads to those of documents that have already
been processed in a DC. A successful match prevents Global-LB from sending the user’s incoming
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workload to a DC for execution and displaying the results of the previously processed workload
to the user to save energy. On the contrary, if no match can be discovered, Global-LB will allocate
the incoming workload to a specific DC, taking into account different factors such as the current
renewable energy level, the dynamic price of electricity, the server load, and the expected delay. We
formulate the operating cost reduction problem as a linear optimization program. We then develop an
online algorithm based on a greedy algorithmic approach to solve the linear optimization problem.
We perform extensive experiments based on real-world data and present the efficiency of our proposed
algorithm. The contributions of our study are summed up as follows:

� By considering batch workloads and string-matching mechanisms, we formulate linear opti-
mization problems to mitigate the total operating costs of the DC while utilizing renewable
energy sources.

� To tackle the optimization problem, we suggest an online algorithm SMGLB, which is based on
a greedy algorithmic approach and does not rely on the availability of future data like dynamic
energy prices or incoming user requests.

� The effectiveness of our proposed algorithm is then evaluated by contrast with the benchmark
algorithms.

� Finally, we demonstrate the usefulness and efficiency of SMGLB by rigorous numerical
assessment utilizing real-world data of incoming workload, server utilization level, average
delay, and renewable energy generation.

The remaining parts of the research work is organized as follows. The review of literature is
presented in Section 2. GLB using string matching technique is formulated as an optimization problem
in Sections 3 and 4, describing the problem setting. We propose an online algorithm based on a greedy
algorithmic approach called SMGLB to solve the problem in Section 5. In Section 6, we describe the
analytical performance outcomes of SMGLB based on real-world traces. Finally, Section 7 represents
the conclusion of the paper.

2 Literature Review and Background
2.1 String Matching and Energy Efficiency

According to a recent survey conducted by cloud service providers (CSPs), almost 80% of
businesses are investigating data deduplication and string-matching techniques for use in their storage
systems, intending to reduce duplicate data and increase storage efficiency [10,12–16]. In order to
conserve space in storage, data deduplication can eliminate identical copies of the same information.
In many computing domains, such as data analytics, audio and video distribution, pattern recognition,
image processing, and natural language processing, string matching is a universal approach for
problem-solving [13,17]. CSPs’ primary focus is finding and identifying patterns in incoming user
requests. After an optical character recognition system recognizes the pattern, a string-matching
technique is used to look for a redundant pattern in the database [15].

The key focus of this study is to overcome and extend the previous research studies related to string
matching algorithms for energy cost minimization during workload processing in geo-distributed
DCs. Reference [10] reviewed. Reviewed different string-matching algorithms regarding pattern length
and time complexity. Reference [12] experimentally. examined online approximate for redundant data
using string matching algorithms for energy cost minimization during data processing. Reference [13]
designed a load balancing algorithm based on string matching techniques in geographically distributed
DCs. The current research has mainly focused on removing redundant data to increase data storage
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efficiency in DCs. Hence, we explore a contemporary problem of operating cost reduction in geo-
distributed DCs using a string-matching algorithm during workload processing.

2.2 Geo-Distributed Data Centers with Green Energy

Cloud computing should have reduced cloud DC energy usage. It is possible only if those cloud
DCs are as efficient as they can be [4]. In this context, green DCs offer a variety of economical and
environmentally friendly benefits. The long-term benefits of investing in a new-generation architecture
for a green DC would outweigh any initial costs. The majority of the DCs use green energy sources,
which has significantly reduced the cost of the electricity and fuel required to operate them. The green
DC also put strategies in place to recycle DC e-waste, creating a new revenue stream [9].

Both in business and academics, interest in renewable-powered DCs is growing [6,8,9]. Previous
research investigates the viability and advantages of employing GLB for interactive workloads
processing that is delay-sensitive in order to assist the incorporation of green energy in DC [5,18–23].
Prototypes are created to demonstrate the efficacy of these task schedulers, and system implementation
challenges with interactive workload schedulers that consider renewable energy sources are examined.
Though all of the research, as mentioned earlier, considers only interactive workload, without energy
storage devices, and with accurate future information of the DC. Our approach is online (without
future information); in contrast, it handles batch workload in conjunction with green energy with
energy storage devices in geo-distributed DCs.

2.3 GLB and Energy Efficiency

Reducing energy expenses for widely dispersed DCs is an essential topic of contemporary research
[22,24–32]. The primary focus of this body of work is the development of methods for balancing
workloads between geographically dispersed DCs to meet energy efficiency. Reference [24] provides.
Provides a thorough overview of GLB for managing power consumption in DCs. [25]. Reference [26]
conducts“Following the renewables” is the method of GLB that has received much interest recently. For
this method to work, the dynamic load balancing mechanism must consider the green energy sources
available to DCs [25]. Reference [26] conducts an early investigation into GLB. They demonstrate
the impact of fluctuating power prices on brown energy use and suggest algorithms to enhance the
use of green power supply using GLB. In order to test the efficacy of their algorithms, they employ
numerical simulations based on real-world traces. Reference [27] has built upon this research by
suggesting online algorithms to enhance the benefits of distributed green power resources across a
wide geographic area. Their study demonstrates how to enhance the usage of green power supply
like solar and wind. Reference [28] has proposed a load scheduling mechanism for DCs to improve
their sustainability, where carbon emission expenses are represented as the social cost. Reference
[22] suggested an algorithm for workload distribution using workload deadlines, the variability of
renewable energy sources, the ambient temperature, and the cooling dynamics in DCs. In recent
in-depth research work, [29] developed a complete model for workload allocation utilizing online
algorithm approaches. A CSP with several DCs powered by brown and green power sources uses the
on-site green energy production and geographical difference in energy price to save costs.

All previous research works consider geo-distributed DCs that generate energy from green sources.
Similarly, we assume that GLB might help save energy expenses and optimize the use of green sources.
While theoretical concerns are necessary, we strongly emphasize real-world applicability by testing
our proposed system with electricity pricing, actual workload, and green energy. Compared with the
existing research studies, we propose string matching geographical load balancing (SMGLB) based
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on online greedy algorithm design technique. SMGLB is the provable energy efficient solution that
reduces the operating cost of the geo-distributed DC more than the existing workload distribution
techniques. under time-varying system dynamics (e.g., considering variable energy prices, the number
of active servers, on-site green energy, and traces of incoming workload).

3 Methodology

In this part, we define the problem and provide the system model for incoming workload allocation
in geo-distributed DCs.

3.1 Overview and Problem Formulation

We consider a CSP to have N geo-distributed DCs; each DC i ∈ N is powered by brown and green
energy sources. Moreover, we assume that every DC i has homogeneous servers. In each time slot t ∈ T ,
the incoming workload Win (t) arrives at Global-LB. The primary objective of Global-LB is twofold,
first, use a string-matching algorithm (i.e., Boyer Moore) to compare the contents of Win (t) to those
documents that have already been processed (t) in a DC. A successful match prevents Global-LB from
sending the Win (t) to a DC i for processing and displaying the results of the Wp (t) to the user to save
energy utilization. Secondly, suppose no match can be discovered; in that case, Global-LB will allocate
the Win (t) to a DC i taking into account different optimization factors such as the current renewable
energy level, the dynamic price of electricity, the server load, and the average delay to mitigate the
operating cost of the geo-distributed DC. The user requests forwarding model is depicted in Fig. 1.

Figure 1: The incoming workload distribution model
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3.2 The Workload Model

In cloud DCs, there are distinct workloads that fall into two categories: interactive or transactional
workloads, which are delay sensitive, and non-interactive or batch workloads, which are delay tolerant.
Internet web and multimedia streaming services are examples of interactive workloads that must
be completed within a response time determined by service users. These workloads are frequently
networked I/O heavy tasks that have no bearing on the power consumption of servers as long as all of
the tasks are must be processed before the deadline. Moreover, batch workloads, such as extensive data
analysis and scientific applications, may, in contrast, be scheduled to run whenever they are needed.
They frequently include complex computations that demand high CPU use, which increases server
power consumption. Since batch workloads that need much computation significantly impact server
power consumption more than interactive workloads, we are particularly interested in them in this
study. Let Win (t) is the incoming batch workload which will be allocated to datacenter i at time t in
case of no match can be discovered during string matching, then we have;

N∑
i=1

wi
in (t) = Win (t) ∀t ∈ [1, T ] (1)

A DC i may include hundreds or even thousands of servers to handle the massive amount of
Win (t). The maximum number of servers Smax

i cannot be exceeded by the number of active servers
Sac

i (t) in DC i. Consequently, we have;

0 ≤ Sac
i (t) ≤ Smax

i ∀i ∈ [1, N] (2)

3.3 Green Energy Generation Model

Our model allows DCs to be directly powered by the electrical grid or green energy sources like
solar panels. Due to variations in weather, the number of solar panels at each DC should be adjusted
accordingly. We assume that there is on-site green power production Ri (t) using solar panels at time
t in DC i. Consequently, we find;

0 ≤ Ri (t) ≤ Rmax
i (t) (3)

Eq. (3) assures that the amount of green energy can never be negative and never exceeds the
available capacity.

3.4 Bandwidth Cost Model

Bandwidth cost occurred between the Global-LB and the DC for the incoming workload Win (t)
processing. The linear bandwidth cost model Bi (t) = biWin (t) nc is used in this study to depict the
bandwidth cost between Global-LB and the DC.

Note that nc is the communication demand between Global-LB and the DC, given that bi is the
coefficient of bandwidth cost between Global-LB and the DC. Distinct pairs of Global-LB and the
DC have different bandwidth costs. We define the following upper limit of bandwidth cost Bmax

i (t)
between Global-LB and DC:

0 ≤ bi (t) ≤ Bmax
i (t) (4)

3.5 The Model of Energy Consumption

One of the significant cost-increasing factors in DCs is energy usage. Our model considers that
energy rates in different DCs change over time when determining where to process the workload to cut
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energy costs. In this model, we emphasize the cooling system and IT equipment (i.e., servers) as the
primary energy consumers in DCs. We use an empirical methodology based on production Computer
Room Air Conditioning (CRAC) energy efficiency statistics for the cooling systems. A production
CRAC automatically changes modes in response to the environment. Since the outside temperature is
the input and the overall energy efficiency of the CRAC is the output, we analyze CRACs as a black
box. We employ Power Usage Effectiveness in particular (PUE). PUE is characterized by PUE =
Total facility power

IT equipment energy
. A system with a lower PUE value is more effective and has less overhead [11].

PUE is often between 1 to 2 in cloud DCs [8]. Additionally, we gauge the DC’s overall energy usage at

the time t; Pi (t) = PUEi (t) · Sac
i (t)

[
Pin

i (t) + Pac
i (t)

wi
in (t)

Sac
i (t) μi

]
. Let C (t) be the overall cost of energy

for cloud DC operators and qi (t) be the electricity price at time t in DC i. Then, C (t) can then be
represented as; C (t) = ∑N

i=1qi (t) · Pi (t) .

3.6 The Energy Cost Minimization Problem

To reduce DC operating expenses, we may use the above energy cost model to determine the
optimal routing strategy considering energy consumption Ci (t) and the bandwidth cost Bi (t) in each
DC i at any given time t. Consider the following optimization problem, which expresses this idea:

min
T∑

t=1

N∑
i=1

Ci (t) + Bi (t) (3.6)

Subject to;
N∑

i=1

wi
in (t) = Win (t) ∀t ∈ [1, T ] (3.6a)

0 ≤ Sac
i (t) ≤ Smax

i ∀i ∈ [1, N] (3.6b)

0 ≤ Ri (t) ≤ Rmax
i (t) ∀i ∈ [1, N] (3.6c)

0 ≤ bi (t) ≤ Bmax
i (t) ∀i ∈ [1, N] (3.6d)

0 ≤ Pi (t) ≤ Pmax
i ∀i ∈ [1, N] (3.6e)

where (3.6a) is the incoming workload Win (t) at the global-LB equal to the total distributed workloads
wi

in (t) among DCs. (3.6b) ensure that, active servers Sac
i (t) is positive and upper bound by the upper

limit of servers Smax
i at the respective locations. Constraint (3.6c) assures that the amount of green

energy Ri (t) can never be negative and not exceeds the available capacity Rmax
i (t). Constraint (3.6d)

ensures the bandwidth cost between Global-LB and DC i cannot exceed the maximum limit. Finally,
(3.6e) ensure that, at time t the energy usage of the DC i Pi (t) cannot exceed the maximum power
consumption limit Pmax

i .

3.7 Algorithm Design and Proposed Solution

In order to tackle the optimization problem mentioned above, we construct an online algorithm
based on the string-matching method “SMGLB” in this part. We describe SMGLB based on an online
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greedy algorithmic approach in Algorithm 1 to mitigate the operating cost of the DC in each discrete
time slot t.

Algorithm 1: SMGLB–Minimization of Energy Cost
1. for t ∈ [1, T ] do
2. read Win (t) ∀ i ∈ [1 − N]
Part A: Searching for String Matching
3. n = length ·Wp (t)
4. m = length ·Win (t)
5. α = Compute last occurrence function

(
Win(t), m,

∑)
6. β = Compute good suffix function (Win(t), m)

7. s = 0
8. while s ≤ n − m do
9. j = m
10. While j > 0 and Win (t) [j] = Wp (t) [s + j] do
11. j = j − 1
12. if j = 0 then
13. Win (t) == Wp (t)
14. s = s + β [0]
15. else
16. s = s + max

(
β [j] , j − α

[
Wp (t) [s + j]

])
Part B: Selection of DC i∗ in case of mismatch occur
17. Calculate Pi (t) , Ri (t) , Sac

i (t) , Sin
i (t), bij (t)∀i ∈ [1, N] to select the i∗

i∗ = min
arg i∈[1,N]

N∑
i=1

[
Ci (t) + bij (t)

]
Subject to constraints (3.6a), (3.6b), (3.6c), (3.6d), and (3.6e)

18. Assign Win (t) to DC i∗

19. Update Sac
i (t) , Sin

i (t) and wi
in (t) ∀i ∈ [1, N]

20. end for

SMGLB has two parts. In part A (lines 3–16), a string-matching algorithm (i.e., Boyer Moore) is
used to compare the contents of Win (t) to those documents that have already been processed Wp (t)
in a DC. A successful match prevents Global-LB from sending the Win (t) to a DC i for processing and
displaying the results of the Wp (t) to the user to save energy utilization. In line 2, we read the incoming
workload Win (t) in each discrete time slot t for all DCs. We calculate the string length of the incoming
workload Win (t) and already processed workload Wp (t) and assign the value to n and m, respectively
(lines 3 and 4).

The Boyer Moore algorithm using a ‘backward’ method aligns the beginning of the Win (t) at the
beginning of the Wp (t) and then compares the characters of Win (t) from right to left, starting with
the character on the right. If a character of Win (t) is compared that does not belong to the Wp (t),
no match can be discovered by examining any other characteristics at this place. Therefore, beyond
the mismatched character, the Wp (t) can be changed entirely. The Boyer Moore algorithm uses two
preprocessing methods simultaneously to identify probable shifts [33]. When there is a discrepancy,
the algorithm computes a variation using both techniques and selects the most significant change by
applying the most beneficial technique in each circumstance [34]. The following two heuristics of Boyer
Moore are used to minimize the search in the incoming workload:
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i. Bad Character Heuristics (Algorithm 1, Line 5): Assume that a Win (t) has a letter that never
appears predictably. On the other hand, it could be a bad character present in the Win (t); in this
case, aligning the nature of the pattern with a bad character in the Wp (t). When a mismatch
occurs at this character (called a bad character), the entire pattern can be changed, starting
matching from substring next to this “bad character.” Therefore, we require further data to
facilitate a change in response when meeting a bad character. This data includes the final
location of each component in the incoming workload and the alphabet of letters employed.
If Win (t) not present in the DC, then it may result in a shift by m (length of Win (t)). Therefore,

the bad character heuristic takes O
( n

m

)
time in the best case and O (nm) in the worst case.

Algorithm 2 describes the pseudo-code of bad character heuristics.

Algorithm 2: Compute Last Occurrence Function
(
Win (t) , m,

∑)
1. ∀a ∈ ∑
2. do α [a] = 0
3. for j = 1 to m do
4. α [Win (t) [j]] = j
5. return α

ii. Good Suffix Heuristics (Algorithm 1, Line 6): To begin looking for the pattern Win (t) the
algorithm uses the final character of the pattern. When a substring from the primary text
matches a substring from the Win (t), it looks for further instances of the matched substring.
It may also look for the prefix of a Win (t), which is the suffix of the primary Wp (t). If not, it
moves along the whole length of the Win (t) by m. Algorithm 3 describes the pseudo-code of
good suffix heuristics. It can be described in the following steps:

Suppose Win (t) and Wp (t) are aligned so that a substring ws
in (t) of Win (t) matches a suffix

of Win (t), but the following left-to-right comparison yields a mismatch.

a. Then, if there is such a thing, locate the rightmost copy ws′
in (t) of ws

in (t) in Win (t), where ws′
in (t)

is not a suffix of Win (t) and the character to the left of ws′
in (t) in Win (t) is different from

the character to the left of ws
in (t) in Win (t). It is necessary to right-shift Win (t) such that the

substring ws′
in (t) in Win (t) corresponds to the substring ws

in (t) in Wp (t).
b. If ws′

in (t) does not exist, move Win (t) left end beyond ws
in (t) in Wp (t) just enough so that the

shifted pattern’s prefix matches the suffix of ws
in (t) in Wp (t).

c. Shift Win (t) to the right by m (length of Win (t)) places if such a shift is not possible.
d. Whenever Win (t) is found in Wp (t), we shift it by the smallest possible amount such that a

correct prefix of the shifted Win (t) matches a suffix of the occurrence of Win (t) in Wp (t).
e. Shift Win (t) by m places, or shift Win (t) past ws

in (t), if such a shift is not possible.

Algorithm 3: Compute Good Suffix Function (Win (t) , m)

1. γ = Compute prefix function (Win (t))
2. W ′

in (t) = Reverse Win (t)
3. γ ′ = Compute prefix function

(
W ′

in (t)
)

(Continued)
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Algorithm 3: Continued
4. for j = 0to m do
5. β [j] = m − γ [m]
6. for l = 1to m do
7. j = m − γ ′ [L]
8. if β [j] > 1 − γ ′ [L] then
9. β [j] = 1 − γ ′ [L]
10. return β

In Part B of Algorithm 1 (Lines 17–20), if no match can be discovered between Win (t) and Wp (t)
then Global-LB will allocate the Win (t) to a DC i∗ considering different optimization factors such as
the current renewable energy level, the dynamic price of electricity, the server load, and the bandwidth
cost. In line 17, we compute energy consumption, green energy level, number of active and inactive
servers, and bandwidth cost for all DCs in each discrete time slot t to select the DC i∗ based on the
lowest electricity and bandwidth costs with respecting the given set of constraints ((3.6a) to (3.6e)).
After then, we assign the coming workload Win (t) to DC i∗ for processing (line 18). Finally, in line 19,
we update the incoming workload, active, and inactive servers for all DCs in a discrete-time slot t for
next incoming workload.

Running Time of Algorithm: The running time of the Boyer Moore algorithm in the worst case
is O (n + m) only if the Win (t) does not exist in the Wp (t). When the Win (t) does occur in the Wp (t),
running time is O (nm) in the worst case.

4 Experimental Setup

The rest of the research work is dedicated to a thorough analysis of the SMGLB’s efficiency
under simulated and real-world traces of incoming user requests, dynamic electricity prices, and on-
site renewable energy generation, geo-distributed DCs. The numerical evaluation is described in the
following sections:

• Workload arrival
• Datacenter features
• Prices of Electricity
• Green energy production
• Benchmark algorithms

4.1 Workload Arrival

We employ synthetic batch workloads modeled after actual queries made to Wikipedia for our
experiments. The data we utilize includes, among other things, 10% of all queries made by users to
Wikipedia over the one month between January 1 to January 30, 2020, UTC [7]. T = 720-time slots
are produced from averaging the data across an hour. Since electricity prices change every hour, we
utilize an interval of 1 h. Assuming that each user request uses 10% of a server’s CPU, the workloads
are normalized over many servers. The traces depict (see Fig. 2) the daily trend of normalized batch
workloads in the actual world.
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Figure 2: Hourly incoming workload

4.2 Data Center Features

We consider a single Global-LB serving N = 3 geographically dispersed DCs. According to
assumptions, the DCs are in Utica, New York, Ontario, Canada, and Illinois, respectively. The Global-
LB and DC bandwidth cost Bi (t) is calibrated to increase city distance and to align with the cost of
electricity [18,35]. Each DC i is assumed to have Smax

i = 350 accessible operational servers. Each server’s
power consumption rates in active and inactive states are predetermined to be Sin

i (t) = 100 W , ∀i and
Sac

i (t) = 120 W , ∀i, respectively [8,36]. Each server’s processing speed is assumed to be μi = 1 [11].
Please note that to analyze the effects of other optimization factors (such as green energy availability,
bandwidth cost, and electricity prices), we assume the homogeneous settings of the DCs. Additionally,
the power usage effectiveness (PUE) is set to 1.2 in each DC i [36–38].

4.3 Prices of Electricity

We employ the day-ahead hourly prices of electricity qi (t) in $ per MWh at the three DC sites as
mentioned above. They come from publicly accessible government sources [36]. Fig. 3 depicts hourly
electricity pricing at various locations. Electricity prices are considered from September 18 to October
17, 2017. We noticed that Ontario, Canada’s electricity costs occasionally go down when there is a
high and rigid energy supply, low electricity demand, and a high supply of renewable energy.

4.4 Green Energy Production

Green energy sources are flexible and incredibly sporadic. They might change throughout a single
session (e.g., 1 h). Each DC i typically has energy storage devices (ESDs), that supply DCs with stable
green energy [31]. As a result, we anticipated that throughout the one-time period (t = 1 h), on-site
green energy generation would account for 18% of the total energy consumption of the DCs. Fig. 4
depicts the cumulative distribution functions (CDFs) of the green energy production of three geo-
distributed DCs.



6316 CMC, 2023, vol.75, no.3

Figure 3: Hourly electricity price

Figure 4: CDFs of the green energy production in DCs

4.5 Benchmark Algorithms

We evaluate SMGLB’s performance to the three baselines listed below, which are either close
to current practice or have recently been proposed, to establish benchmarks for the performance of
SMGLB.

� Benchmark 1 (B1) [39]: The first benchmark, B1, uses a temperature-independent technique
that considers Win (t) routing and capacity allocation. By setting a goal of lowering the total
operating cost, it initially assigns capacity to batch jobs. The purpose is to resolve the request
routing optimization using the remaining capacity. The sole variable employed is the variation
in power prices, and a constant PUE of 1.2 is used to compute cooling energy. Despite being
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naive, such a method is frequently employed in current Internet services. Additionally, it
permits an implicit evaluation of earlier efforts.

� Benchmark 2 (B2) [8]: The Round Robin (RR) method ensures that all geo-distributed DCs
receive an equal share of Win (t) by setting equal weights for the global load balancer. A suitable
benchmark policy to assess the efficacy of SMGLB is an RR strategy that fairly distributes
Win (t) around DCs since Wikipedia workload and the green energy generated at each location
follow a similar diurnal pattern.

� Benchmark 3 (B3): We use suggested cost-aware dynamic provision (CDP) workload distri-
bution strategy [40] as a third baseline to demonstrate the efficacy of the proposed algorithm.
Remember that CDP can take advantage of the variation in power rates across different regions
by routing Win (t). Green energy sources and batteries are ignored in this research work. The
goal of CDP is to reduce the overall energy cost in each slot based on the observed system
states, and the use of green energy makes for more fair comparisons.

5 Experimental Results

The experimental results under the conditions outlined in Section 4 are shown and discussed in
this section.

5.1 Energy Cost Minimization Using String Matching Techniques

It is important to note that previous research studies mostly ignored string matching approaches
for workload routing instead of focusing on lowering energy costs. With the use of delay-tolerant
workloads, green power, and geographical load balancing, our algorithm SMGLB reduced energy
consumption and associated costs. We first assume that the incoming workload Win (t) arrives at
Global-LB with the objective to use a string-matching algorithm (i.e., Boyer Moore) to compare the
contents of Win (t) to those documents that have already been processed Wp (t) in a DC. A successful
match prevents Global-LB from sending the Win (t) to a DC i for processing and displaying the results
of the Wp (t) to the user to save energy utilization. We choose Win (t) as an optimization factor in our
benchmark algorithms so that the dQ

i (t) is identical in all benchmark algorithms if no match can be
found by Global-LB because the performance of SMGLB depends on pattern matching for a fair
comparison. Furthermore, the SMGLB dramatically reduces the DC’s overall energy costs when the
following parameter settings are used: string matching policy, availability of green energy, dynamic
electricity rates, and GLB. The average operating cost in k of SMGLB and benchmark algorithms are
shows in Table 1 and graphical representation are displayed in Fig. 5. The figure shows that SMGLB
performs better than all benchmark algorithms. In particular, by contrasting SMGLB with B3, we can
see that string matching can contribute to a decrease in the overall cost of power. Additionally, even
though B2 considers the fluctuating power price over time, it is green energy oblivious and only tries
to processWin (t) when the price of electricity is low. As a result, it performs poorly and wastes much
green energy. This demonstrates the significance of workload distribution in DCs that have on-site
green energy production. Finally, by contrasting B1 with B3, we observe that how Win (t)may increase
the usage of renewable power sources while decreasing cost of electricity in DCs.
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Table 1: SMGLB improvement over benchmark algorithms

Comparison factor SMGLB improvement over

B1 B2 B3

Operating cost 74.61% 83.67% 31.37%

Figure 5: Average daily operating cost comparison between SMGLB and benchmark algorithms

Fig. 6 depicts the CDFs of the daily average operating cost of the SMGLB and benchmark
algorithms. It shows the significant cost reduction of SMGLB over B1, B2, and B3. We can observe
that SMGLB process approximately 100% of incoming workload between (−10 to 23) k$, while B3
(0 to 25) k$, B1 (2 to 30) k$, and B2 (4 to 31) k$, respectively. We noticed a negative operating cost in
a few time slots. The Ontario, Canada, electricity rates cause negative energy costs. Remember that
electricity prices go down when there is high energy production, low electricity demand, and a high
supply of green energy.

Figure 6: CDFs of the average operating cost of 30 days of algorithms
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Table 1 summarizes and compares the increased efficiency of SMGLB to that of B1, B2, and B3.
According to the data presented, SMGLB can boost performance by 74.61% compared to B1\percnt,
83.67% to B2%, and 31.37% to B3. Therefore, SMGLB significantly reduces the geo-distributed
DCs\rsquo overall operating cost.

5.2 Impact of Energy Storage Devices Cost

In order to ascertain how the cost of energy storage devices affects operating cost reductions, we
establish the parameters V and Smax

i for all DCs and evaluate SMGLB under various values of the
loss of energy storage devices ωi. The result is shown in Fig. 7. As the cost of energy storage devices
increases, we can see that the operating cost savings diminish. When ωi is high, SMGLB does not utilize
energy storage mechanisms. However, even in this case, the GLB and string-matching-based workload
load distribution still results in cost reductions when compared to B1 and B2.

Figure 7: Impact of ESDs on the operating cost of the geo-distributed DC

5.3 Bandwidth Cost Savings

Now, we evaluate the bandwidth requirements of the abovementioned benchmark algorithms in
contrast to our SMGLB algorithm. Assuming that B1 consistently distributes Win (t) to the closest
DCs and bandwidth cost is negligible. On average, the other three algorithms cost more to run, as seen
in Figs. 5 and 6. Our approach provides the most significant possible reduction in overall operating
expenses by accounting for the disparity in bandwidth prices between Global-LB and DCs, as shown
in the Fig. 5 above. It is essential to remember that B1 and B3 have comparable operational costs,
despite B1’s lower bandwidth cost and more significant energy cost than B3. Although B2 uses the
least bandwidth, its energy costs are the greatest.

6 Conclusion

Large-scale commercial DCs have proliferated rapidly with the spread of cloud computing. Many
CSPs frequently employ geographically dispersed DCs to guarantee customer service reliability and
quality. Because of the massive volume of data being processed, energy efficiency is becoming a
contemporary problem for geo-distributed DCs. Many research works have employed GLB and
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dynamic energy prices to process delay-tolerant workloads to lower the operating costs of geo-
distributed DCs, but many issues remain unsolved. This motivation lies behind the fact that most prior
efforts in processing incoming workloads have concentrated on minimizing these costs. To address the
new problem of lowering the operational cost for geographically dispersed DCs in a multi-electricity
market setting, we devise a cost-effective method based on the string-matching approach (SMGLB).
The aim of SMGLB is twofold; first, we used a string-matching algorithm (i.e., Boyer Moore) to
compare the contents of incoming user requests to those documents that have already been processed
in a DC. A successful match prevents Global-LB from sending the workload to a DC for processing
and displaying the result to the user to save energy utilization. Secondly, suppose no match can be
discovered; in that case, Global-LB will allocate the workload to a DC, taking into account different
optimization factors such as the current renewable energy level, the dynamic price of electricity, and
the server load to mitigate the operating cost of the DC. Extensive evaluations using real-life data show
that the SMGLB brings significant energy cost savings over existing workload distribution strategies.
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