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Abstract: PM2.5 has a non-negligible impact on visibility and air quality
as an important component of haze and can affect cloud formation and
rainfall and thus change the climate, and it is an evaluation indicator of air
pollution level. Achieving PM2.5 concentration prediction based on relevant
historical data mining can effectively improve air pollution forecasting ability
and guide air pollution prevention and control. The past methods neglected
the impact caused by PM2.5 flow between cities when analyzing the impact
of inter-city PM2.5 concentrations, making it difficult to further improve the
prediction accuracy. However, factors including geographical information
such as altitude and distance and meteorological information such as wind
speed and wind direction affect the flow of PM2.5 between cities, leading to
the change of PM2.5 concentration in cities. So a PM2.5 directed flow graph is
constructed in this paper. Geographic and meteorological data is introduced
into the graph structure to simulate the spatial PM2.5 flow transmission
relationship between cities. The introduction of meteorological factors like
wind direction depicts the unequal flow relationship of PM2.5 between cities.
Based on this, a PM2.5 concentration prediction method integrating spatial-
temporal factors is proposed in this paper. A spatial feature extraction method
based on weight aggregation graph attention network (WGAT) is proposed
to extract the spatial correlation features of PM2.5 in the flow graph, and
a multi-step PM2.5 prediction method based on attention gate control loop
unit (AGRU) is proposed. The PM2.5 concentration prediction model WGAT-
AGRU with fused spatiotemporal features is constructed by combining the
two methods to achieve multi-step PM2.5 concentration prediction. Finally,
accuracy and validity experiments are conducted on the KnowAir dataset, and
the results show that the WGAT-AGRU model proposed in the paper has good
performance in terms of prediction accuracy and validates the effectiveness of
the model.
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1 Introduction

PM2.5 is the airborne particulate matter with an equivalent diameter less than or equal to
2.5 μm, also known as fine particulate matter, which is an important component of haze and has a
non-negligible impact on visibility and air quality, and is an evaluation indicator of air pollution level.
PM2.5 can affect cloud formation and rainfall and thus change the climate. Using historical PM2.5

concentration data released by monitoring stations to accurately predict future PM2.5 concentrations
can help meteorological experts predict the situation of haze and help relevant departments grasp air
quality information in time, which is beneficial for the state to make decisions on air pollution in
advance and provide help for urban air pollution management and related policy formulation.

Air pollutants such as PM2.5 stay and accumulate in the atmosphere and flow between cities
influenced by altitude, distance, and geographic and meteorological factors. So the concentrations
show obvious spatial and temporal correlations. Currently, Recurrent neural networks (RNNs) and
their variants become the mainstream of time series prediction, and Graph Convolution Networks
(GCN) models are mostly used to extract spatial features. In recent studies, some scholars have con-
sidered using PM2.5 concentration-related data to construct spatially correlated graphs and combining
the graph structure with neural networks to mine spatiotemporal features for PM2.5 concentration
prediction. Lin et al. [1] proposed a GC-DCRNN model to calculate similarities by geographic
features of neighborhoods and construct undirected graphs based on these similarities. And then
captures the spatial correlation of PM2.5 by expanding convolutional RNNs [2] and captures the
temporal dependence using sequences. Qi et al. [3] proposed a GC-LSTM prediction method that
takes monitoring stations as graph vertices and extracted spatial correlation features using GCN and
then combined them with Long Short-Term Memory (LSTM) to extract PM2.5 temporal correlation.
The above method uses geographic features such as altitude distance between buildings or cities in
a small area and meteorological features such as wind and temperature as influencing factors of
PM2.5 concentration to construct an undirected graph about geographical and meteorological features.
However, factors such as altitude, mountain range separation, and wind direction between cities can
also affect the PM2.5 flow, resulting in unequal PM2.5 influence between cities, and the undirected
structure map cannot fit this unequal PM2.5 flow relationship between cities well.

Therefore, a PM2.5 directed flow graph is constructed in this paper to simulate the inter-city PM2.5

directed flow process. The spatial features in the flow graph are extracted by the graph neural network.
The recurrent neural network can effectively extract the temporal features in the historical data, and
combine the spatial features to realize the multi-step prediction of PM2.5 concentration by fusing the
temporal and spatial features.

Contributions can be summarized as follows:

• To reveal the inter-city PM2.5 spatiotemporal flow relationship, the inter-city PM2.5 directed flow
graph is constructed by combining relevant geographical features such as distance, altitude,
mountain range, and meteorological features such as wind and wind direction.

• A PM2.5 concentration prediction method incorporating spatiotemporal features is proposed.
First, this paper proposes WGAT, which updates the feature representation of the central
vertex by aggregating the graph vertices through a message-passing paradigm and uses the
graph attention layer to weigh the similarity of city spatial correlation features to extract deep
spatial features. Then the time-dependent features of PM2.5 are captured by Gated Recurrent
Unit (GRU) and focused on the historical time-step information highly correlated with the
current prediction time-step by a time-series attention mechanism. The two modules are
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combined to construct WGAT-AGRU, a PM2.5 concentration prediction model incorporating
spatiotemporal features.

• We conduct Experiments on the KnowAir dataset to verify the validity and reasonableness of
the model component setup.

2 Related Works
2.1 Traditional Concentration Forecasting Methods

Air pollutant concentrations were first predicted by numerical simulations and statistical models
[4]. The statistical model is mainly based on the Autoregressive Integrated Moving Average (ARIMA),
which uses the historical series of PM2.5 concentrations as model inputs to predict the PM2.5 concentra-
tion values at the next moment. Zhang et al. [5] compared PM2.5 concentrations with other pollutants
and with meteorological parameters and applied the ARIMA model to forecast PM2.5 concentrations.
Venkataraman et al. [6] analyzed the factors influencing PM2.5 in Mumbai by wavelet and regression
analysis. Tai et al. [7] predicted PM2.5 concentrations in the United States by incorporating information
on the characteristics of air pollutants related to PM2.5, such as CO, NO2, and SO2 into the model
through multiple regression. Traditional air pollutant concentration prediction models assume that
PM2.5 concentration has a linear relationship, cannot use a large amount of PM2.5 concentration data
for prediction, and cannot effectively mine historical data feature information.

2.2 Machine Learning Concentration Prediction Methods

To capture the nonlinear characteristics of PM2.5 concentration, machine learning prediction
algorithms emerge, mainly Random Forest (RF), Support Vector Machine (SVM), and Artificial
Neural Network (ANN) algorithms. Shamsoddini et al. [8] used RF for feature selection to improve
the prediction performance of the PM2.5 concentration. Dong et al. [9] combined the latent Dirichlet
allocation, points of interest, and wavelet decomposition based on SVM to improve the PM2.5

concentration prediction accuracy. Wang et al. [10] combined ARIMA with SVM to capture linear
relationships by ARIMA and used SVM to model nonlinearities. Asadollahfardi et al. [11] used
historical data such as air quality and humidity in Tehran to train ANNs to predict PM2.5 concen-
trations. Mao et al. [12] used backpropagation multilayer perceptron to predict PM2.5 concentrations
and the model had good generalization ability. McKendry [13] confirmed that the accuracy of PM2.5

concentration prediction of Multilayer Perceptron-based (MLP-based) ANN is not significantly
improved compared with traditional statistical models. Machine learning algorithms are difficult to dig
deep into the deep feature information contained in a large amount of data, which limits the accuracy
of PM2.5 concentration prediction.

2.3 Deep Learning Concentration Prediction Methods

Deep neural networks mine the deep spatial and temporal features contained in the large number
of PM2.5 concentration data to improve the prediction accuracy of PM2.5 concentration. RNNs and
their variants, LSTM, capture temporal dependencies in data sequences. Ong et al. [14] used deep
RNN to predict PM2.5 concentrations in Japan, which is much more accurate than traditional models.
Authors in [15,16] used LSTMs to predict PM2.5 concentrations. GRU is a streamlined variant of
LSTM with fewer parameters and a simpler structure for faster convergence. Chi et al. [17] regarded
dissolved oxygen concentration as a time-series data and achieved a better fit with GRU by wavelet
transformation. The spatial correlation characteristics of PM2.5 can be extracted by combining image
or graph structure with the neural network. Authors in [18,19] used Convolutional Neural Networks
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(CNN) to capture the spatial correlation of PM2.5 in the image grid for prediction, and the prediction
accuracy was further improved compared with RNN-based prediction methods. Cheng et al. [20]
proposed the EAT-GCN gas concentration prediction method, using GRU to capture time dependence
and graph convolutional neural network to capture spatial features, and obtained high prediction
accuracy. These methods ignore the unequal influence of geographic meteorological factors on the
inter-city flow of PM2.5.

3 Methodology

The WGAT-AGRT architecture is shown in Fig. 1. In general, it consists of three parts: (1)
PM2.5 directed flow graph construction, (2) WGAT-based spatial features, and (3) AGRU-based
spatiotemporal fusion multi-step prediction. The detailed design of these three phases is described
as follows.

Figure 1: The architecture of the WGAT-AGRU

3.1 PM2.5 Directed Flow Graph Construction

The PM2.5 directed flow graph is constructed to fit the inter-city flow of PM2.5 based on geographic
and meteorological data, with the city as the vertex, PM2.5 concentration data, meteorological,
latitude, and longitude and altitude factors as the vertex attributes. The edge information of G is
constructed and refined in two steps in turn by constructing the adjacency matrix based on the altitude
distance information and calculating the edge weights based on the geographic and meteorological
data. After analysis, eight meteorological features are selected in this paper as the influencing factors
of city vertices in G, as shown in Table 1.
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Table 1: Weather characteristics of city vertices

Weather characteristics Unit Description Relationship between weather
characteristics and PM2.5

concentration

relative_humidity+950 % Relative humidity High humidity promotes PM2.5

formation
2m_temperature K 2m temperature Correlation
boundary_layer_height m Boundary layer height Negative correlation
k_index K K index Negative correlation
surface_pressure Pa Surface pressure Negative correlation
total_precipitation m Total precipitation Negative correlation
h_component_of_wind+950 m/s Horizontal component

of wind speed
Negative correlation

v_component_of_wind+950 m/s Vertical component of
wind speed

Negative correlation

Construct adjacency matrix: The adjacency matrix is a matrix used to describe the connection
relationship of graph vertices in the graph structure. And in the PM2.5 flow graph, the vertices represent
cities. The adjacency matrix is constructed in this paper based on the altitude and distance information.
The two city vertices whose distance and altitude between cities are less than the distance threshold dθ

and the altitude threshold hθ can construct the connection, respectively.

The earth is approximated as a sphere, so the Haversine formula is introduced to calculate the
geodesic distance between two points on the sphere [21], and the shortest straight-line distance between
city i and city j on the earth’s sphere is calculated as shown in Eq. (1).

dij = 2r arcsin

(√
sin2

(
latj − lati

2

)
+ cos

(
latj

)
cos (lati) sin2

(
lonj − loni

2

))
(1)

where r is the radius of the earth, lon and lat correspond to the longitude and latitude of cities,
respectively, and dij is the shortest straight-line distance between the two cities on the earth’s sphere.

The altitude difference and mountain range blockage between the cities’ fixed point links is
calculated by Bresenham linear interpolation algorithm. And the highest altitude difference hij between
cities is shown in Eq. (2).

hij = sup
{
h

(
Bresenham

(
ρi, ρj

)) − max
{
h (ρi) , h

(
ρj

)}}
(2)

where ρi and ρj correspond to the pixels in the altitude map obtained by the latitude and longitude
mapping of cities i and j, respectively. h (ρ) represents the mean altitude of the ρ pixel area. And the
Bresenham linear algorithm outputs the altitude of the pixel area interpolated by a straight line.

The values of the elements in the adjacency matrix corresponding to cities i and j, are given as
Eq. (3).

aij = H
(
dθ − dij

) ∗ H
(
hθ − hij

)
(3)

where aij is the element value of column j in row i of the adjacency matrix, representing the connection
relationship between the city vertices i and j in the PM2.5 spatial correlation graph. H (·) is the Heaviside



5560 CMC, 2023, vol.75, no.3

function, which has a function value of 0 when the input value is less than 0 and a function value of 1
when it is greater than or equal to 0.

Calculate edge weights: The edge weights are calculated based on geographic and meteorological
data. The wind force and the altitude difference between cities affect the inter-city PM2.5 flow. This
paper simplifies the pollutant dispersion equation to simulate the magnitude of the impact of spatial
transport of planar pollutants under the effect of wind and introduces the city altitude information.
Then the impact w of PM2.5 concentration in the source city a on the polluted city b can be calculated
by Eq. (4).

w = ReLU

(
ω

∣∣�v∣∣
d

cos α

)
(4)

where ω is the city altitude factor when the flow direction is from a high-altitude city to a low-altitude
city, ω is equal to 1, otherwise, ω is equal to the ratio of the altitude of the two places. d represents the
distance between cities a and b, and

∣∣�v∣∣ represents the wind speed of city a. α is the angle between the
wind direction of city a and the direction from city a to city b. ReLU is the linear rectification function,
and the function value is 0 in the negative semi-axis, so when the angle α is greater than 90 degrees,
PM2.5 cannot flow to city b through wind action, and the corresponding PM2.5 concentration impact
value w is 0. The update of the edge weights is completed by updating the attribute information of
the city vertices in the flow graph. And then the simulation of the estimation of PM2.5 concentration
impact between cities is realized.

3.2 WGAT-AGRU
3.2.1 Spatial Feature Extraction

The model extracts spatial features from the PM2.5 directed flow graph. Given the PM2.5 flow graph
G, the feature representation of the central city vertex i is updated by aggregating the adjacency graph
vertices through the message-passing paradigm as shown in the following equations.

ξ t
i = [Xi, Pt

i ], ∀i ∈ V (5)

et
j→i = �

([
ξ t

j , ξ
t
i , Qt

j→i

])
, ∀(j, i) ∈ E (6)

ζ t
i = 	

(∑
j∈Ni

(
et

j→i, et
i→j

))
, ∀i ∈ V (7)

where V , E, Xi, P, Q are the city vertex set and the edge set of G, the PM2.5 concentration data,
meteorological features of city vertex i, and edge attribute features, respectively. � and 	 are linear
transformations. ξ t

i is the feature representation of city vertex i at time t. et
j→i and et

i→j are the PM2.5

inflow impact and outflow impact of city vertex i at time t, respectively.

The deeper vertex spatial feature representation is extracted by graph attention weighting, and the
graph attention layer operation is shown in the following equations.

γ t
i = [ξ t

i , ζ
t
i ], ∀i ∈ V (8)
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(
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(9)
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j
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(11)
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where γ t
i is the feature representation of city vertex i at time t; W is the linear transformation matrix;

|| is a splicing operation. The feedforward neural network aT maps the features to real numbers and
obtains the similarity degree eij of the feature representation of city vertex i and its neighbor vertex j
through LeakyReLU activation. Then the Softmax function calculates the attention weight αij of city
vertex i and its neighbor vertex j. Finally, the attention-weighted feature representation εt

i of city vertex
i at time t is obtained by weighting all neighboring vertex feature representations at time t, so the spatial
correlation feature extraction of city vertices in the PM2.5 flow graph is realized in this paper.

3.2.2 Spatiotemporal Fusion Prediction

GRU is similar to LSTM and is also able to capture the long-term dependence of urban PM2.5

concentration data. Combined with the time-series attention mechanism focusing on the highly
correlated historical time step information of the current prediction time step, a long-term prediction
of PM2.5 concentration can be achieved. For spatiotemporal features fusion, the city spatial features
extracted by WGAT are used as external features and input to a single prediction unit GRU together
with the corresponding historical PM2.5 concentration data of cities and meteorological features.

First, the loop structure of the GRU outputs a multi-step prediction of the hidden state, as shown
in the following equations.

xt
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i , ε
t
i ] (12)
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i

])
(13)
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(15)
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i

) ∗ ht−1
i + zt

i ∗ h̃t
i (16)

where xt
i is the input of the spatiotemporal fusion prediction unit of the city vertex i at the prediction

time step t. Wz, Wr, and W are parameters that can be trained and learned in GRU. σ is the Sigmoid
activation function. rt

i and zt
i are reset gate and update gate structures in GRU, respectively. ht−1

i is
the hidden state output of the prediction unit of the previous prediction time step, h̃t

i is the candidate
hidden state of the prediction unit of the prediction time step t, and ht

i is the hidden state output of the
prediction unit of the prediction time step t.

Then the hidden state of the prediction unit output is weighted by time series attention, so that
the current forecast time step focuses on the key historical time step information, as shown in the
following equations.

et
i = tanh

(
Wht

i + b
)

(17)

αt
i = exp

(
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j=1 exp
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ej
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st
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∑t

j=1
αj

i h
j
i (19)

where et
i is the attention score of the hidden state ht

i of the city vertex i at time step t output through
the fully connected network. αt

i is the attention weight of the city vertex i at the current time step t. st
i

is the spatiotemporal fusion feature hidden state.
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Finally, st
i output from AGRU is linearly transformed through the fully connected layer to obtain

the predicted PM2.5 concentration value X̂ t
i for city vertex i at prediction time step t.

The current PM2.5 concentration prediction combined with the meteorological feature at the next
moment predicts the output at the next moment. And at the next moment, the predicted value can
be used as the PM2.5 concentration at that time and combined with the corresponding meteorological
feature to predict the PM2.5 concentration. The multi-step prediction of PM2.5 concentration is achieved
through an iterative process.

3.2.3 PM2.5 Concentration Prediction Based on Temporal and Spatial Features

The prediction of PM2.5 concentration is generally regarded as the prediction of spatiotemporal
series. Assume that the PM2.5 concentration of city vertices at time t is X t ∈ R

N, where N represents
the number of vertices in the PM2.5 directed flow graph G, that is, the total number of cities studied
in the paper. Pt ∈ R

N×p and Qt ∈ R
M×q. represent the vertex feature matrix and edge attribute matrix

of all city vertices in PM2.5 directed flow graph G at time t, separately, and M is the number of edges
in G. The vertex feature P represents the meteorological features such as temperature and humidity of
the city, and the edge attribute matrix Q is the meteorological characteristics such as wind direction
and wind speed, and geographical features such as distance and altitude required to calculate the edge
weight, that is, the features related to the impact of PM2.5 concentration between cities.

The multi-step of PM2.5 concentration prediction in the paper is realized by iteration. In order to
predict PM2.5 concentration for a period of time in the future, the vertex feature matrix [Pt+1, . . . , Pt+T ],
edge attribute matrix [Qt+1, . . . , Qt+T ] and PM2.5 directed flow graph structure G of the future T time
step are used as the input of the prediction model. And the multi-step prediction of PM2.5 concentration
can be defined by Eq. (20).[

X t; Pt+1, . . . , Pt+T ; Qt+1, . . . , Qt+T ; G
] f (·)→

[
X̂ t+1, . . . , X̂ t+T

]
(20)

The iteration multi-step prediction process of the model is shown in Fig. 2. The PM2.5 prediction
model uses the predicted PM2.5 concentration X̂ t+1 in the previous prediction time step as the input of
the model to predict the next time step. And the PM2.5 concentration of the city in the future T time
step is predicted through continuous iterative calculation. The iterative process is shown in Eq. (21).

f (·) = g (. . . g (g (·))) (21)

The prediction operation f (·) of PM2.5 concentration in the future T time step is achieved by
iterating the T times prediction model g (·). The predicted value X̂ t+τ of PM2.5 concentration at time
step τ in the future can be expressed by Eq. (22).

X̂ t+τ =
{

g
(

X̂ t+τ−1, Pt+τ , Qt+τ , G, �
)

, ∀τ ∈ [1, . . . , T ]

X t, τ = 0
(22)

where X̂ t+τ−1 is the predicted value of the PM2.5 concentration of the city output by the prediction model
at the last time. Pt+τ is the vertex feature corresponding to the city vertex of the current prediction
time step. Qt+τ is the edge attribute matrix used to calculate the edge weight between city vertices in
the current prediction time step. And G is the constructed PM2.5 directed flow graph structure. �

represents the corresponding parameters of the neural network in the prediction model. X̂ t+τ is the
predicted value of PM2.5 concentration in the current prediction time step output by the prediction
model.
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Figure 2: The iteration multi-step prediction process of the proposed model

4 Experiments
4.1 Datasets

We select 184 cities in China (103°E–120°E, 28°N–42°N) sampled at 3-h intervals for a total of
4 years (January 1, 2015, to December 31, 2018) from the KnowAir dataset. The heating measures
are taken in northern cities of China from early November to late February every year, so the PM2.5

concentration in northern cities will change dramatically during this period. And these cities are mainly
dominated by northwest and north winds. So, the data set is divided into two subsets, which are the
full data set and the heating season data set, and divided into the training set (67%) and the test set
(33%). During the heating season, more coal is burned in northern cities in China and the prevailing
north wind leads the inter-city PM2.5 concentration more affected by wind transmission. We considered
the influence of wind speed and direction when constructing the PM2.5 directed flow graph. Through
the comparative experiments on the heating data set, the fitting effect of PM2.5 directed flow graph
on PM2.5 flow between cities and the ability of the WGAT-AGRU model proposed in this paper to
capture PM2.5 flow in the graph under the influence of wind can be analyzed.

4.2 Experimental Setup

Evaluation Metrics. In this paper, Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and R Squared (R2) are used to evaluate the prediction accuracy, and Critical Success
Index (CSI), Probability Of Detection (POD), and False Alarm Rate (FAR) are used to evaluate the
pollution forecasting capability of the model. The smaller the RMSE and MAE represent the higher
the prediction accuracy of the model. The coefficient of determination R2 is used to evaluate the degree
of fit of the prediction model, and the better fit is the larger value of R2 ([0, 1]). Generally speaking,
the value of R2 is larger than 0.5, which indicates that the fit of the prediction model is excellent. The
larger value of CSI ([0, 1]) and POD ([0, 1]) and the smaller value of FAR ([0, 1]) means stronger air
pollution forecasting ability of the prediction model.

Parameter Settings. The model proposed in this paper is implemented by a computer with an 8-
core, 16-thread Intel i9-9900KF CPU and a GDDR6 8 GB NVIDIA GeForce RTX 2080ti graphics
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card, trained by PyTorch and PyTorch Geometric. In this paper, the loss function is MSELoss and the
optimization is AdamW. The batch size is set to 64, the epochs are set to 100, and fix the learning rate
is set to 0.0005.

4.3 Experimental Results and Analysis
4.3.1 Accuracy Analysis

To analyze the accuracy of the proposed WGAT-AGRU, a comparison experiment is conducted
with several PM2.5 concentration prediction models on the overall data set and the heating season
data set.

Table 2 (prediction time step = 24 h) demonstrates the prediction results of each model on the
full data set, and the prediction step of each model was uniformly set to 24 h. In the STA-ResCNN
[22] model, correlation analysis technology is used to screen the spatial information of pollution and
meteorology and combine it with the time series to complete the prediction of PM2.5 concentration in
the city. WGAT-AGRU achieves a minimum RMSE of 16.61 (9.3% lower than MLP) and a minimum
MAE of 13.47 (8.8% lower than MLP). And WGAT-AGRU shows the best fitting ability with a
maximum R2 of 66.71%.

Table 2: Comparison of the proposed model and various models on the full data set

Methods RMSE MAE R2 CSI POD FAR

MLP 18.32 14.77 59.03% 53.05% 66.18% 27.23%
GRU 17.31 13.86 63.29% 54.19% 65.69% 24.73%

Prediction time step = GC-LSTM 16.94 13.54 64.78% 54.63% 66.13% 24.13%
24 h STA-ResCNN 16.85 13.51 64.82% 54.62% 66.21% 24.15%

EAT-GCN 16.75 13.48 65.12% 55.51% 67.05% 23.67%
WGAT-AGRU 16.61 13.47 66.71% 56.01% 67.26% 23.34%

MLP 20.10 16.22 53.11% 48.52% 60.68% 29.24%
Prediction time step = GRU 19.04 15.26 57.80% 49.78% 61.12% 27.15%
36 h GC-LSTM 18.70 14.95 59.28% 50.23% 61.47% 26.70%

WGAT-AGRU 18.32 14.63 61.11% 53.12% 64.02% 26.28%

MLP 21.53 17.38 48.42% 45.68% 58.79% 32.79%
Prediction time step = GRU 20.30 16.25 53.92% 47.17% 59.06% 29.90%
48 h GC-LSTM 19.91 15.89 55.63% 47.70% 59.45% 29.29%

WGAT-AGRU 19.48 15.52 58.42% 49.37% 61.52% 28.71%

Fig. 3 shows the multi-step PM2.5 concentration prediction results of the comparison models on
the full data set, taking Beijing as an example. In each sub-figure, the continuous purple dash is the real
value of PM2.5 concentration in Beijing over a period of time, and the other color dashes are the multi-
step prediction sequences output by the comparison model. And the multi-step prediction results are
displayed every four prediction time steps. The overall fitting ability of the multi-step prediction model
can be measured by observing how well the multi-step prediction sequence fits the true values. We can
see that the PM2.5 concentration in Beijing is extremely high in the mid-term. It can be seen that the
prediction results of GC-LSTM and WGAT-AGRU are good and better than GRU and MLP.
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Figure 3: Comparison of performance evaluation metrics between different model models on the full
data set (time step of 24 h, taking Beijing as an example)

Table 3 demonstrates the prediction results of each model on the heating season data set, and the
experimental setup is the same as on the full data set. WGAT-AGRU achieves optimal results on the
heating season dataset with a minimum RMSE of 26.71, a minimum MAE of 21.70, and a maximum
R2 of 59.23%, which shows the best prediction accuracy. And WGAT-AGRU also shows the best fitting
ability with the maximum CSI of 61.02%, the maximum POD of 75.11%, and the minimum FAR of
23.71%.

Fig. 4 shows more visually the multi-step PM2.5 concentration prediction capability of the com-
parison models on the heating season data set, taking Xi’an as an example. The prediction result of the
GC-LSTM is similar to the prediction result of the WGAT-AGRU. They both achieve better prediction
results than the other two models, GRU and MLP. However, comparing the prediction results of
WGAT-AGRU and GC-LSTM, it can be found that the concentration curve predicted by WGAT-
AGRU fits the true value of the change better. For example, WGAT-AGRU performs better for the
slightly decreasing trend of PM2.5 concentration at the 10-time step, 30-time step, and 40-time step.
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Table 3: Comparison of the proposed model and various models on the heating season data set

Methods RMSE MAE R2 CSI POD FAR

MLP 30.15 24.87 47.32% 58.86% 72.82% 24.57%
GRU 27.90 22.81 55.03% 60.06% 74.48% 24.38%
GC-LSTM 27.36 22.31 57.19% 60.20% 74.40% 24.08%
WGAT-AGRU 26.71 21.70 59.23% 61.02% 75.11% 23.71%

Figure 4: Comparison of performance evaluation metrics between different model models on the
heating season data set (time step of 24 h, taking Xi’an as an example)

To evaluate the long-term prediction performance of the prediction models, experiments were
conducted at different prediction time steps, including 24, 36, and 48 h in this paper. The long-term
PM2.5 concentration prediction performance of the models was compared by analyzing the degree of
decay of the PM2.5 concentration prediction accuracy of each model with the increase of the prediction
step. The experimental results are shown in Table 2. And we can see that the experimental metrics of
the proposed model are optimal at each prediction step.
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The prediction results of PM2.5 concentration for the next 72 h and the RMSE variation with the
prediction step from each model with prediction steps are shown in Figs. 5 and 6. As we can see that
the WGAT-AGRU model still maintains an excellent fitting ability for PM2.5 concentration prediction
in a long prediction time, and can accurately capture the trend of PM2.5 concentration compared with
other prediction models.

Figure 5: Long-term (72 h) predictions of PM2.5 concentrations from contrasting model models (taking
Beijing as an example)

Figure 6: Comparison model RMSE variation with prediction time step (taking Beijing as an example)
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4.3.2 Validity Analysis

In order to verify the effectiveness of each module of our prediction model, ablation experiments
are conducted on the full dataset. The validity of the PM2.5 directed flow graph structure, spatial
correlation feature extraction module, and spatiotemporal fusion prediction module on the model
are analyzed in this paper, respectively.

The traditional PM2.5 spatial correlation graph DG-INPUT constructs an adjacency matrix by
determining whether the distance between city vertices exceeds the threshold and whether the edge
weight is the reciprocal of the distance between cities. DG-INPUT and the flow graph FG-INPUT
proposed in this paper are used as inputs for experiments on the full data set, respectively, with the
same prediction time step set to 24 h. The results are shown in Table 4 (different graph structure input
modules). We can see from the result that FG-INPUT improves the model prediction accuracy with the
minimum RMSE and MAE because it simulates the impact of inter-city PM2.5 flow transmission well.

Table 4: Comparison of prediction performance of different graph structure input modules and spatial
correlation feature extraction module

Methods RMSE MAE R2 CSI POD FAR

Different graph
structure input

WGAT-AGRU
(DG-INPUT)

16.73 13.50 64.91% 54.63% 66.13% 24.13%

module WGAT-AGRU
(FG-INPUT)

16.61 13.47 66.71% 56.01% 67.26% 23.34%

Different spatial FC-AGRU 17.47 14.12 57.55% 57.39% 66.70% 26.25%
extraction GAT-AGRU 16.62 13.49 66.21% 55.37% 67.01% 23.41%
correlation feature GNN- AGRU 16.63 13.26 66.15% 55.31% 66.65% 23.53%
module WGAT-AGRU 16.61 13.47 66.71% 56.01% 67.26% 23.34%

To verify the effectiveness of the spatial correlation feature extraction module in the model, WGAT
is replaced with the fully connected network (FC), and ablation weight aggregation component (GAT),
ablation graph attention component (GNN), respectively. And they are combined with AGRU. The
experiments on the full data set are conducted and the prediction step size is uniformly set to 24 h.
The results are shown in Table 4 (different spatial correlation feature extraction modules). We can see
that the combination of WGAT can effectively improve the prediction result of the model.

To analyze the effectiveness of the spatiotemporal fusion prediction module, WGAT is combined
with the fully connected network (FC), ablation temporal attention component (GRU), and the
spatiotemporal fusion prediction module (AGRU) of this paper, respectively. Three prediction steps
of 24, 36, and 48 h are set, to analyze the effects of each component above on the multi-step prediction
of PM2.5 concentration. The experimental results are shown in Table 5. The proposed model WGAT-
AGRU achieves the best results in most cases.
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Table 5: Comparison of spatiotemporal fusion prediction performance

Methods RMSE MAE R2 CSI POD FAR

Prediction time step =
24 h

WGAT-FC 17.03 13.69 65.48% 55.65% 69.58% 22.14%
WGAT-GRU 16.60 13.47 66.56% 55.87% 66.91% 23.56%
WGAT-AGRU 16.61 13.47 66.71% 56.01% 67.26% 23.34%

Prediction time step =
36 h

WGAT-FC 19.19 15.23 59.93% 52.08% 63.81% 27.82%
WGAT-GRU 18.13 15.06 60.43% 52.77% 63.87% 27.26%
WGAT-AGRU 18.13 14.63 61.11% 53.12% 64.02% 26.28%

Prediction time step =
48 h

WGAT-FC 20.85 16.93 57.03% 47.18% 58.21% 33.01%
WGAT-GRU 19.92 15.73 57.53% 48.21% 59.85% 30.88%
WGAT-AGRU 19.48 15.52 58.42% 49.37% 61.52% 28.71%

4.3.3 Discussion

In this paper, the proposed model WGAT-LSTM with fused spatiotemporal features achieves the
best result in most cases. It can be seen from Fig. 3, WGAT-AGRU performs better on the full data set
compared with MLP. The MLP model cannot capture the time-dependent relationship, and it cannot
predict such drastic changes, and is a poor fit for the peak PM2.5 concentration. While the model
proposed in this paper can cope with this situation well and predict the concentration change trend
more accurately. And WGAT-AGRU can capture the directional PM2.5 flow through the PM2.5 directed
flow graph. GC-LSTM is a graph convolutional neural network that extracts the spatial features
between city vertices in the graph structure and achieves spatiotemporal prediction by combining it
with LSTM. Thus the prediction result of GC-LSTM is similar to the prediction result of the WGAT-
AGRU model. However, during the heating season, when more coal is burned in northern cities in
China and the prevailing north wind makes the inter-city PM2.5 concentration more affected by wind
propagation, WGAT-AGRU achieves better results as shown in Figs. 4c and 4d. It can be inferred that
extracts the PM2.5 spatial flow feature between city vertices in the PM2.5 flow map through WGAT.
By analyzing the multi-step prediction ability of the model, it can be found that WGAT-AGRU has
better prediction ability when the model is forecasting for a long time. FC cannot capture long-term
time dependencies leading to poorer prediction results. When the predicted step size is 24 h, which is
the single step length, our multi-step prediction model does not fully reflect the advantages as shown
in Table 5 (prediction time step = 24 h).

5 Conclusion
5.1 Conclusion

The existing PM2.5 concentration prediction methods ignore the directionality of PM2.5 flow
between cities when constructing spatial correlation maps, and the accuracy of multi-step prediction
is low. In this paper, a PM2.5 concentration prediction model WGAT-AGRU integrating spatial and
temporal features is constructed and geographic and meteorological data is introduced into the graph
structure to construct a PM2.5 directional flow graph to realize the simulation of inter-city PM2.5 flow
transmission. Prediction can focus on the key time step information, thus improving the accuracy of
the PM2.5 prediction model in multi-step prediction. The comparison experiments with other models
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on the KnowAir dataset are conducted. The experimental findings indicated that the WGAT-AGRU
model is superior to other models in predicting PM2.5 concentration.

5.2 Limitations and Future Work

There are still some limitations in this research. In this paper, the PM2.5 spatial correlation graph is
mainly constructed based on the longitude, latitude, altitude, and wind direction data of the cities, and
the edge weight is calculated by a simple diffusion transfer model. However, the spatial flow of PM2.5

is more complex. In addition, the PM2.5 concentration prediction model in the paper realizes multi-
step prediction of future PM2.5 concentration through continuous iteration. This recursive multi-step
prediction strategy makes the prediction error accumulate with the increase of the prediction time step,
so it is impossible to predict the long-term PM2.5 concentration.

In the future, we will consider introducing more external features to further optimize the
construction of the adjacency matrix of the PM2.5 spatial correlation graph and the calculation of edge
weight, to more accurately simulate the flow and transmission of PM2.5 at the spatial level. In addition,
optimize the prediction model structure for the multi-step prediction task of PM2.5 concentration, and
explore the use of a structure such as the Seq2Seq model to solve the multi-step prediction problem.
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