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Abstract: Gait recognition is an active research area that uses a walking
theme to identify the subject correctly. Human Gait Recognition (HGR) is
performed without any cooperation from the individual. However, in practice,
it remains a challenging task under diverse walking sequences due to the
covariant factors such as normal walking and walking with wearing a coat.
Researchers, over the years, have worked on successfully identifying subjects
using different techniques, but there is still room for improvement in accuracy
due to these covariant factors. This paper proposes an automated model-free
framework for human gait recognition in this article. There are a few critical
steps in the proposed method. Firstly, optical flow-based motion region esti-
mation and dynamic coordinates-based cropping are performed. The second
step involves training a fine-tuned pre-trained MobileNetV2 model on both
original and optical flow cropped frames; the training has been conducted
using static hyperparameters. The third step proposed a fusion technique
known as normal distribution serially fusion. In the fourth step, a better
optimization algorithm is applied to select the best features, which are then
classified using a Bi-Layered neural network. Three publicly available datasets,
CASIA A, CASIA B, and CASIA C, were used in the experimental process
and obtained average accuracies of 99.6%, 91.6%, and 95.02%, respectively.
The proposed framework has achieved improved accuracy compared to the
other methods.

Keywords: Human gait recognition; optical flow; deep learning features;
fusion; feature selection

1 Introduction

Human gait recognition is a biometric application that goals to identify pedestrians by their
walking pattern [1,2]. In video surveillance, gait is a distinctive biological trait with numerous
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applications, such as forensic identification, criminal investigation, and crime prevention [3]. The
significant advantage of human gait recognition is that it facilitates the identification of a person
from a distance [4]. Another advantage of the technique is that it can be utilized for low-resolution
video sequences. In human motion, gait describes the temporal dynamic and spatial statics. Gait
recognition has proven to be more efficient than other biometrics, such as iris, face, and fingerprint,
which require more pixels to identify humans from a distance [5]. The viability of such a technique in
the circumstances such as the COVID-19 pandemic cannot be over-emphasized. Surveillance systems
augmented with such features can contribute to an excellent deal for ensuring our public security [6].

Nowadays, scientists and researchers use machine learning (ML) and Deep learning (DL) models
in several applications [7], including agriculture [8], cyber security [9], environment [10], medicine [11],
and text sentiment analyses [12]. Gait recognition is a biometric approach and has wildly succeeded
in deep learning. The primary catalyst of this success is the massive amount of open-source data
that is publicly available and is suitable for deep learning (DL) models. DL features are directly
obtained from the sequential input instead of silhouette images [13–16]. Traditional techniques for
these images are more suitable for handcrafted features, such as template-based techniques [17]. With
the critical contribution of DL methods, recognition performance has been substantially improved.
Once, gauged against commonly used benchmarks of performance, the feasibility of Gait recognition
as impressive tools for safety of public is evident. The recent maximum recognition accuracy on
CASIA-B dataset [18] is 93% on all selected angles using deep learning; therefore, still a gap is available
in the improvement of accuracy [19].

However, based on recent studies, researchers faced several challenges that affected the accuracy
of the introduced methods and the computational time [20]. These included humans wearing different
clothes, changing camera perspectives, and carrying objects like bags. To tackle these problems,
appearance-based [21,22] and model-based [23] methods have been introduced. The model-based
techniques extract features from motion patterns and body structure. These are insensitive to external
factors like carrying, wearing, and clothing variations. But making a precise body model is complex
and computationally inefficient. The practical techniques of model-based are template-based long
short-term memory (LSTM), video-based [21,22], gait energy image (GEI), and motion history images.
An LSTM-based network that maintains the spatiotemporal gait information was proposed [21];
researchers incorporated a person’s gait sequences in various scenarios to directly extract the global
features from videos because they predicted the sequential limitations of gait were not necessary
for recognition. Handcrafted engineering is always time-consuming and improved by deep learning
[24,25]. Fig. 1 shows different processes of gait recognition, such as handcrafted features, deep learning
through GEI images, and deep end-to-end understanding. The end-to-end deep learning process is
better with the inherent demerit of many chances to extract irrelevant features. Based on this figure, still
several challenges exists including ignoring the overlapped body components and wrongly foreground
segmentation [26].

This article proposes a sequential end-to-end framework for human gait recognition. Our signif-
icant contributions include the following:

• Optical flow-based motion region extraction that later cropped using dynamic coordinates.
• Trained two models using fixed hyperparameters on original frames and optical flow cropped

frames.
• A serially normal distribution-based fusion approach.
• An improved monarch butterfly optimization algorithm for the best feature selection.
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Figure 1: The four typical workflows on deep gait recognition [26]

The rest of this article is organized as follows: Related work of this manuscript is discussed under
Section 2. Section 3 describes the proposed methodology. In Section 4, the results have been discussed
in detail. And finally, Section 5 of the manuscript represents its conclusion.

2 Related Work

In computer vision, several techniques have been introduced for video surveillance applications,
such as dehazing [27], action recognition [28,29], and gait recognition. The literature has introduced a
variety of HGR employing deep learning techniques. Mehmood et al. [30] presented a hybrid technique
to solve the change in variation problem for accurate gait recognition. DenseNet 201 was utilized to
compute the gait attributes for the image frames. Two layers such as FC1000 and Avg._pool were used
for the feature extraction that later merged through a parallel approach. Firefly and Kurtosis-based
feature selection technique was introduced that not only improved the accuracy but also minimized
the computational time during the testing phase (classification phase).

A multilayer feature fusion and accurate region of interest (ROI) segmentation technique was
presented for HGR by Sharif et al. [31]. In this approach, ROI was segmented at the initial phase
and later utilized for feature extraction. This process was executed slowly, which was the limitation
of this work. Liao et al. [23] presented a pose gait model for HGR. In this method, they tried to
solve the differences in human gait. The data was captured from various perspectives using the 3D
models and extracted 3D body joints for feature extraction. Rani et al. [32] presented an artificial
neural network (ANN) based HGR method for identifying a person through a walking pattern. The
background subtraction did through the image processing technique that was later converted into
binary for silhouette extraction. The system is evaluated through the self-similarity-based method
and on the CASIA-B dataset, which showed improvement in accuracy. Deng et al. [33] suggested a
reliable gait recognition technique based on global and local image entropy features. Binary walking
silhouettes were extracted and later used for the global and local entropy features. Both local and
global entropy features were combined and fused with deep learning features for a better informative
matrix. The CASIA B dataset was employed in this method for the experimental process and obtained
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improved accuracy. Anusha et al. [34] suggested a method for HGR based on the multi-level features.
They extracted the low-level features through the texture, spatial and gradient information, which were
later combined in one matrix. The experiments were conducted on five different datasets, CASIA A,
CASIA B, CMV MoBo, rotal dataset (KTH) and OU-ISIR D video dataset, and obtained improved
accuracy of 99.8%, 99.7%, 92.2% and 93.3%, respectively.

Sharif et al. [35] suggested a novel framework for HGR. They performed three key steps such
as (a) capturing videos in real-time, (b) extracting features using transfer learning on a deep model
named ResNet 101, and (c) features selected through the Kurtosis-Controlled entropy (KcE) approach
that followed the correlation-based feature fusion. The presented method was tested in real-time and
selected angles of the CASIA-B dataset and obtained an accuracy of 96.6% and 95.26%, respectively.
Mehmood et al. [36] presented a hybrid technique using deep learning and selecting the best features
to overcome the problems of HGR. The methods consisted of four significant steps: preprocessing
of video frames, Pre-trained convolutional neural network (CNN) model named VGG16 used for the
features extraction, removing the unnecessary features, and last, classification. Principal Score and
Kurtoseis-based technique were utilized for reducing the irrelevant features that was the main strength
of this work. Fusion was performed at the end and performed classification through one against all
support vector machine (SVM) classifiers.

Khan et al. [37] presented a deep learning (DL) and Improved Ant Colony Optimization (IACO)
framework for HGR. The proposed method consisted of four main steps such as (a) normalization
of the database in video frames, (b) two pre-trained models were selected named InceptionV3 and
ResNet101, and (c) features were extracted that were later optimized using an IACO approach. The
experiments were performed on three angles such as 0, 18, and 180, of the CASIA-B dataset and
obtained improved accuracy. For multi-view HGR, Zhao et al. [38] presented a graph-based method.
The data were captured in a single view using the Spider web graph connected with other views
of gait data concurrently. This process was complex, but the performance was improved on the
captured datasets. Finally, a novel gait-recognition technique called Conv-LSTM was developed by
Wang et al. [39]. They first introduced GEI-based frame extraction for each gait cycle. Then, they
analyzed the cross-covariance of a single subject. Ultimately, they designed a Conv-LSTM model
for the final gait recognition process. The CASIA-B and OU-ISIR datasets were utilized during
the experiments and acquired an accuracy of 93% and 95%, respectively. Finally, Arshad et al. [40]
described a fuzzy entropy-controlled skewness (FEcS) and deep neural networks-based framework
for HGR. They focused on improving accuracy and reducing the computational time during the
classification process. The boundaries of this work were the selection of deep models for feature
extraction from raw images. Moreover, several other techniques have been introduced for HGR, such
as the ensemble-based technique [41], the multi-source information fusion approach [42], and named
a few more [43].

In summary, the above techniques faced the challenge of complex datasets, huge similarity among
several gaits of different subjects, and selection of essential features. Moreover, they tried reducing the
computational time by employing feature selection techniques. However, still, due to covariant factors
and the addition of video frames, this challenge is active for more research. Also, several researchers
used only a few angles of the CASIA-B dataset for the experimental process; however, there was a
considerable gap in accuracy when the experimentation was conducted on all angles. Based on these
challenges, a clear gap is observed that is considered in this work. This paper proposes an improved
optimization technique that enhances the accuracy and decreases the computational time during the
classification phase to tackle the abovementioned issues.
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3 Proposed Methodology

In this section, the proposed deep learning and improved optimization-based framework have
been presented for HGR. Fig. 2 shows the framework of the proposed HGR. This figure illustrates
that inputs are passed to fine-tuned MobileNet V2 architecture in two ways, i.e., raw images and
optical-flow-based motion estimation. First, the estimated motion regions are cropped later for
the deep learning model training. Deep transfer learning-based training is performed with fixed
hyperparameters. Features are extracted from both trained models that are later fused using a proposed
high-index fusion approach. An improved butterfly optimization technique is chosen later, and the best
features are selected. The selected features are classified using a Bi-Layered neural network.

Figure 2: Proposed architecture for human gait recognition using deep learning and improved
optimization algorithm

3.1 Motion Extraction and Cropping

In this article, as presented in Fig. 2, motion is extracted from the original video sequences and
later cropped for input to the selected pre-trained fine-tuned model. The primary purpose of this
phase is to get the temporal information of the subject during the movement that is later fused with
raw features to get better accuracy. The Horn-Schunck optical flow (OF) method is employed for
motion extraction. This method estimated the motion region that four coordinates have cropped.
Mathematically, OF is defined as follows:

Fux + Fvy + Ft = 0 (1)

where, Fu, Fv, and Ft denote the spatiotemporal image brightness derivatives. The horizontal and
vertical OF are represented by x and y, respectively. The Horn-Schunck method estimates the velocity
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for [x, y]T as follows:
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where
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denotes the velocity estimation for each pixel (u, v).
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u,v. The initial value of k = 0. To solve u and v, already defined filters are utilized
[44]. Sample visual effects of this process are shown in Fig. 3. The motion regions are further cropped
through dynamic coordinates, and visual images are illustrated in Fig. 4. These cropped images are
later passed to a pre-trained fine-tuned model for the feature extraction.

Figure 3: Optical flow-based motion estimation

3.2 Fine-Tuned MobileNet-V2 Features

In 2018, Google introduced MobileNetV2, which contains 53 deep layers [45]. This network
showed improved performance for object recognition, segmentation, and classification [46]. This
network accepts an input image of 224 × 224. A contracting path (left side) and a classifier head make
up the model (right side). By repeated application, two 3 × 3 convolutions (unpadded convolutions),
each followed by a rectified linear unit (ReLU), and a 2 × 2 max pooling operation with stride 2 for
downsampling. A set of fully connected layers is produced from repeatedly performing these three
processing steps, referred to as “blocks,” which makes the network deep (classifier stage). Convolution
layers compute filters repeatedly applied over the whole dataset to increase training efficiency, resulting
in locally weighted sums (referred to as “feature maps”) at every layer. The nonlinear layers then
enhance the nonlinear properties of the feature maps. Finally, the largest element in the rectified feature
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map is chosen by employing max pooling. Instead of only using the largest element, one may use
the average pooling [47]. Fig. 5 shows the architecture of MobileNet-V2. This network was initially
trained using the ImageNet dataset. There are 1000 object classes in this dataset; therefore, the network
output layer contains 1000 outputs. We fine-tuned this network and removed the last three layers.
Afterward, three new layers are added and trained on original and cropped OF-based frames using
transfer learning (TL).

Figure 4: Cropped motion estimated regions for model training

Figure 5: The main architecture of MobileNet-V2
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During the training through Deep TL, fixed hyperparameters, such as a learning rate of 0.05,
epochs 100, the momentum of 0.6, cross-entropy loss function, and stochastic gradient descent (SGD)
set as an optimizer, have been initialized. Training is performed in two phases. In the first phase,
original video frames are employed, and training is conducted. The trained model is further utilized
and extracted deep features from the average pooling layer. On this layer, N × 1280 features are
extracted. In the second phase, cropped OF frames are employed, and performed training. Similar to
the first phase, deep TL-based training is conducted, and features are extracted on the average pooling
layer and obtained a vector of dimensional N × 1280. A complete process of deep TL is illustrated in
Fig. 6.

Figure 6: Process of deep transfer learning for training and features extraction on gait datasets

3.3 Features Fusion

Feature fusion is a process that improves the accuracy of an object by combing different
characteristics of the same thing. This article proposed a new normal distribution along a precision-
based serial approach for feature fusion. The proposed method consists of three steps: i) serial fusion
of both vectors, ii) computation of normal distribution and iii) threshold-based final selection. The
serial fusion is defined as follows:

f1 (k) =
(

vec1

vec2

)
(N×K1, N×K2)

(5)

where, vec1 and vec2 are originally extracted feature vectors of dimension N × 1280 and N × 1280,
respectively. After that, a normal distribution formulation based single point is selected and put into
a threshold function.

S (f1 (k)) = ρ

2π
e−ρ

(f1(k)−μ)
2

2 (6)
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where ρ denotes the precision and is computed as:

ρ = 1
σ 2

(7)

σ 2 = E
[
(f1 (k) − μ)

2] (8)

Based on the value of S, a threshold is defined for the final fused vector.

T (f1) =
{

F̃V for S ≥ f1 (k)

Ignore, Elsewhere
(9)

where, F̃V is a fused vector of dimension N ×1650 that is further refined by the improved optimization
algorithm.

3.4 Improved Monarch Butterfly Optimization

This article employed an improved monarch butterfly optimization (IMBO) algorithm for the best
feature selection. The purpose of this algorithm is to improve accuracy and reduce computational time.
Initially, the population can be classified as Ceil (β × MP). The monarch butterflies [48] are moved
to Land 1 and Land 2 based on the following shifting procedure:

yi+1
l,m = yi

b1,m (10)

Here, yi+1
l,m represented the mth element of yl at i+1 generation and yi

b1,m represent the mth element for
yb1

, and the current generation is denoted by i. Randomly, the butterfly b1 is chosen from subpopulation
1. In the above equation, b ≤ δ, yi+1

l,m that is computed as follows:

b = rand × peri (11)

In the main MBO approach, the shifting period is presented by peri, and its value is set to 1.2, rand
represents the random number between 0 and 1. If b > δ, yi

b1,m, then Eq. (2) can be written as follows:

yi+1
l,m = yi

b2,m (12)

Here, yi
b1,m represent the mth element of yb1

and b2 a butterfly is selected randomly from subpopu-
lation 2. In the next phase, the update the butterfly positions if rand ≤ p for each element k:

yi+1
k,m = yi

best,m (13)

where, mth element of yk at generation i + 1 and yi
best,m represent the mth element of the butterfly that is

the fittest ybest. If rand > p then it allows for updating as:

yi+1
k,m = yi

b3,m (14)

Here, yi
b3,m represent the mth element for yb3

, where, b3 ∈ {1, 2, . . . MP2}.
Also, if rand > BR, then it can be updated as follows:

yi+1
k,m = yi+1

k,m + β × (sym − 0.5) (15)

Here, BR represents the adjustments of the butterfly rate. For butterfly k, the notation sy shows
the walk step, and a Levy flight can fund that.

sy = Levy
(
yi

k

)
(16)
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β = Dmax

i2
(17)

Here, β represents the weighting factor while Dmax is the max walk step. In the improved algorithm,
we first used a new equation to update the butterflies:

yi+1
l,new =

{
yi+1

l , f
(
yi+1

l

)
< f

(
yi

l

)
yi

l, else
(18)

Here, yi+1
l,new represents the individual butterfly newly created for the next generation, f

(
yi

l

)
and

f
(
yi+1

l

)
are the fitness function for the yi

l and yi+1
l butterfly. The second improvement is made in Eq. (15)

by selecting a dynamic value instead of a static value like 0.5. We computed the mean deviation of input
features and updated this equation.

yi+1
k,m = yi+1

k,m + β × (sym − MD) (19)

The fine k-nearest neighbor (KNN) is employed as a fitness function and computes the mean error
rate for each iteration. Until all iterations have been completed, this process is repeated. In this work,
the initial number of iterations is 200. This algorithm returns an output feature matrix of N × 870.
The resultant matrix is finally passed to Bi-Layered NN for final classification.

4 Results and Discussion

The detailed experimental process of the proposed framework has been conducted in this section
using visual graphs and well-defined performance measures. For the experimental process, three
publicly accessible datasets, including CASIA-A, CASIA-B, and CASIA-C, have been used. Half the
frames of each dataset have been employed for training the model, and the rest have been used for test-
ing. Features are extracted, fused, selected, and passed to classification algorithms for final accuracy.
All the results are computed through 10-fold cross-validation. Several classifiers have been employed
for the performance comparison with Bi-Layered Neural Networks. The performance of each classifier
is evaluated by accuracy and computational time (in seconds). MATLAB2022a simulates the entire
framework on a personal computer with 16 GB of RAM and an 8 GB graphics card.

4.1 CASIA-A Dataset Results

The results of the CASIA-A dataset have been discussed in this sub-section. This dataset consists
of angles 0, 45, and 90 degrees. For each angle, accuracy is computed separately, as shown in Table 1.
This table represents that the Bi-Layered NN obtained the best accuracy for all three angles for 99.4%,
99.5%, and 99.9%. The computational time of this classifier is also recorded. For each angle, the noted
time is 66.1274 (s), 71.1005 (s), and 70.5429 (s), respectively. The obtained accuracy on each angle of Bi-
Layered NN is further confirmed by a confusion matrix, illustrated in Fig. 7. Moreover, this accuracy
is further compared with a few other state-of-the-art techniques such as Cubic SVM, Fine-KNN, and
named a few more. The Cubic SVM performed the second and obtained an accuracy of 95.8%, 96.0%,
and 96.7%, respectively. Based on the results and discussion, we can claim that the performance of the
proposed framework is well on the Bi-Layered NN classifier using the CASIA-A dataset.
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Table 1: Gait recognition results using proposed architecture for CASIA A dataset

Classifier Angle Performance measure

0 45 90 Avg accuracy (%) Time (s)

Bi-Layered neural network
� 99.4 66.1274

� 99.5 71.1005
� 99.9 70.5429

Cubic SVM
� 95.8 81.9236

� 96.0 80.1125
� 96.7 92.5006

Fine-KNN
� 91.5 80.5639

� 94.2 82.9960
� 93.8 81.3629

Ensemble baggage tree
� 93.5 92.5296

� 94.8 96.3004
� 96.5 95.1529

Decision tree
� 86.5 62.5296

� 89.2 60.1123
� 91.8 59.2042

Figure 7: Confusion matrix Bi-Layered Neural Network using the proposed method for the CASIA-A
dataset

4.2 CASIA B Dataset Results

The results of this dataset have been described in this section. This dataset includes three classes
such as walking with a bag (BG), normal walking (NM), and walking with carrying a coat (CL). The
total angles in this dataset are 11, starting from 0 and ending at 180. The difference between each
angle is 18 degrees. We computed the results for each angle separately, as presented in Table 2. This
table presents that the Bi-Layered NN obtained better accuracy for all angles than the other listed
classifiers mentioned in this table. The accuracy of the NM class is in the range of 93.0–98.5, whereas
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the average accuracy is 96.9%. The BG class accuracy range is 90.1–95.9, whereas the average accuracy
is 93.6%.

Table 2: Gait recognition results using proposed architecture on the CASIA-B dataset

Classifier Class Angle Mean

0 18 36 54 72 90 108 126 144 162 180

Bi-Layered neural
network

NM 97.4 98.0 95.5 93.0 98.5 97.6 97.3 97.0 98.5 95.1 98.0 96.9
BG 94.6 95.8 92.3 93.9 94.1 90.1 94.2 92.7 92.6 93.4 95.9 93.6
CL 80.1 83.6 83.4 86.0 80.1 90.1 87.1 82.4 81.0 89.5 84.2 84.3

Cubic SVM
NM 93.5 95.2 93.4 91.2 95.2 94.3 94.1 93.2 92.9 91.6 93.9 93.5
BG 92.1 91.4 90.0 92.5 91.4 89.7 91.8 89.6 89.2 90.1 92.3 90.9
CL 74.8 81.0 80.6 83.1 76.3 86.1 84.7 80.5 73.3 85.5 81.6 80.7

Fine-KNN
NM 90.2 92.6 91.4 89.5 93.6 92.5 93.4 93.2 91.5 90.5 91.9 91.8
BG 90.6 90.3 87.4 91.2 90.3 89.1 90.5 89.2 86.0 88.4 90.4 89.4
CL 72.5 80.2 78.6 80.3 74.9 84.8 84.2 80.1 75.6 83.4 80.2 79.5

Ensemble baggage
tree

NM 90.6 91.3 90.5 88.0 91.9 90.1 91.7 89.6 88.7 90.3 90.8 90.3
BG 91.5 88.4 85.3 89.2 86.3 87.5 88.2 86.6 83.9 88.6 91.2 87.9
CL 70.2 76.7 77.4 79.5 70.3 80.5 82.2 80.6 76.3 82.1 80.5 77.8

Decision tree
NM 89.4 91.5 90.2 89.6 90.2 90.3 90.8 88.5 89.6 90.1 87.5 89.8
BG 90.2 88.7 86.2 88.3 88.4 89.3 87.5 87.2 84.3 90.1 90.4 88.2
CL 71.3 74.5 76.3 78.2 71.3 81.4 82.5 81.3 77.5 80.9 77.6 77.5

Similarly, the accuracy for CL-class is also computed, and the accuracy range is 80.1–90.1, whereas
the average accuracy is 84.3%. The accuracy of Cubic SVM is second best such as 93.5%, 90.9%, and
80.7%, respectively. Based on the results, we can claim that the proposed framework performed well,
but still, there is much room to improve accuracy for BG and CL. The main issue is still similar to
walking with a coat and carrying a bag.

4.3 CASIA-C Dataset Results

The results of this dataset have been discussed in this section. This dataset contains four classes
such as quick walk (QW), normal walk (NW), slow walk (SW), and normal walk with carrying a
bag (CB). The average accuracy for each class is separately computed, as presented in Table 3. In this
table, it is noted that the accuracy of Bi-Layered NN is better than the other mentioned classifier in this
table. For this classifier, the average accuracy of CB, SW, NW, and QW is 99.2%, 91.5%, 93.6%, and
95.8%, respectively. The computational time is also noted for each class, as mentioned in this table, as
45.1162 (s), 49.2504 (s), 41.6602 (s), and 39.1056 (s), respectively. The Cubic SVM classifier achieves
the second-best accuracy for all four classes. Based on the results, we can analyze that the similarity
between SW and NW is very high; therefore, the accuracy is degraded.

Moreover, the accuracy of QW class can be further improved. In addition, Fig. 8 shows the
confusion matrix of Bi-Layered NN. This figure shows that the error rate of SW and NW is higher
than in the other classes.
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Table 3: Gait recognition results using proposed architecture on the CASIA-C dataset

Classifier Angle Performance measure

CB SW NW QW Avg accuracy (%) Time (s)

Bi-Layered neural network

� 99.2 45.1162
� 91.5 49.2504

� 93.6 41.6602
� 95.8 39.1056

Cubic SVM

� 96.5 51.0429
� 87.2 53.6605

� 89.5 48.1040
� 91.2 45.2096

Fine-KNN

� 95.2 50.4215
� 88.5 51.0049

� 86.4 46.2291
� 90.9 43.2510

Ensemble baggage tree

� 93.2 63.2914
� 88.4 66.3910

� 83.5 60.5990
� 85.8 56.1129

Decision tree

� 89.4 41.6629
� 81.8 39.0100

� 84.2 31.2259
� 82.0 27.0429

Figure 8: Confusion matrix of Bi-Layered NN using the proposed method for the CASIA-C dataset
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4.4 Analysis

A short analysis is conducted at the end of the proposed framework and other possible methods;
the investigation is done for all three selected datasets. Several methods have been selected and
implemented on chosen datasets. The average accuracy is recorded for each method, as mentioned
in Table 4. This table provides the accuracy values for CASIA A and CASIA C datasets. The
implemented methods are OF-MobilenetV2, OR-MobilenetV2, OF-AlexNet, OR-AlexNet, OF-
ResNet50, OR-ResNet50, OF-Densenet201, OR-Densenet201, Fusion (OF-MobilenetV2, OR-
MobilenetV2), Fusion (OF-AlexNet, OR-AlexNet), Fusion (OF-ResNet50, OR-ResNet50), and
Fusion (OF-Densenet201, OR-Densenet201). Compared with these methods, the proposed framework
shows improved accuracy. The fusion of MobilenetV2 performed second best after the proposed
framework. Similarly, Table 5 presented the analysis of the CASIA-B dataset on above listed
methods. The proposed framework achieved better accuracy than other listed methods. Moreover,
in comparison with the recent technique [6], it is shown that the proposed framework offers improved
accuracy.

Table 4: Comparison of the proposed architecture in terms of accuracy rate with several deep learning
and fusion techniques on CASIA A and CASIA C datasets. ∗ OF represents optical flow, and OR
represents original images

CASIA A dataset CASIA C dataset

Method Accuracy (avg) Method Accuracy (avg)

Proposed 99.6 Proposed 95.02
OF-MobilenetV2 94.2 OF-MobilenetV2 91.71
OR-MobilenetV2 96.3 OR-MobilenetV2 92.30
OF-AlexNet 93.1 OF-AlexNet 87.65
OR-AlexNet 92.6 OR-AlexNet 91.10
OF-ResNet50 94.4 OF-ResNet50 89.34
OR-ResNet50 95.7 OR-ResNet50 90.50
OF-Densenet201 97.3 OF-Densenet201 90.45
OR-Densenet201 95.8 OR-Densenet201 91.14
Fusion (OF-MobilenetV2,
OR-MobilenetV2)

97.5 Fusion (OF-MobilenetV2,
OR-MobilenetV2)

93.24

Fusion (OF-AlexNet,
OR-AlexNet)

95.2 Fusion (OF-AlexNet,
OR-AlexNet)

90.45

Fusion (OF-ResNet50,
OR-ResNet50)

96.9 Fusion (OF-ResNet50,
OR-ResNet50)

91.36

Fusion (OF-Densenet201,
OR-Densenet201)

97.3 Fusion (OF-Densenet201,
OR-Densenet201)

92.59
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Table 5: Comparison of proposed architecture accuracy with several available techniques

Method Accuracy (avg)

NM BG CL

Proposed 96.9 93.6 84.30
OF-MobilenetV2 91.56 88.13 77.50
OR-MobilenetV2 90.77 88.30 80.21
OF-AlexNet 86.50 84.74 74.24
OR-AlexNet 85.14 83.70 75.44
OF-ResNet50 86.95 87.90 72.57
OR-ResNet50 85.70 88.14 79.36
OF-Densenet201 89.41 85.30 76.15
OR-Densenet201 87.60 86.74 80.04
Fusion (OF-MobilenetV2, OR-MobilenetV2) 93.4 90.2 81.7
Fusion (OF-AlexNet, OR-AlexNet) 88.9 88.2 79.6
Fusion (OF-ResNet50, OR-ResNet50) 90.3 89.6 80.9
Fusion (OF-Densenet201, OR-Densenet201) 92.4 90.5 81.8

5 Conclusion

Gait recognition is a critical biometric application in which humans are identified by their walking
patterns. This article proposes deep sequential learning and an improved MBO-based framework for
HGR. First, the optical flow-based motion regions were extracted and cropped through dynamic
coordinates. The advantage of this step is that it enhances the information for each subject under
different walk patterns. Also, the raw frames were used separately to train a deep model. Then, features
were extracted from the optical flow frames-based and raw frames-based trained models. Finally, the
extracted features were fused using a proposed normal distribution-based approach that improved the
accuracy.

Further, an improved optimization algorithm decreases the computational time during the
classification process and improves accuracy. The main limitation of this framework is the reduction in
some features during the fusion and selection processes. However, there exist chances that the reduced
features may have some critical points that can be beneficial in improving the accuracy of the proposed
framework for the CASIA-B dataset. This problem shall be considered in the future, and a more
optimized approach will be designed. Moreover, the fusion technique shall be employed that neglect
the redundant information.
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[6] H. Arshad, R. Damaševičius, A. Alqahtani, S. Alsubai and A. Binbusayyis, “Human gait analysis: A
sequential framework of lightweight deep learning and improved moth-flame optimization algorithm,”
Computational Intelligence and Neuroscience, vol. 2022, no. 3, pp. 1–23, 2022.

[7] L. Tianyi, S. Riaz, Z. Xuande and A. Mirza, “Federated learning based nonlinear two-stage framework for
full-reference image quality assessment: An application for biometric,” Image and Vision Computing, vol.
128, no. 13, pp. 104588, 2022.

[8] M. A. Haq, “CNN based automated weed detection system using UAV imagery,” Computer System Science
and Engineering, vol. 42, no. 6, pp. 837–849, 2022.

[9] S. Qiu, H. Zhao, N. Jiang, Z. Wang and L. Liu, “Multi-sensor information fusion based on machine
learning for real applications in human activity recognition: State-of-the-art and research challenges,”
Information Fusion, vol. 80, no. 6, pp. 241–265, 2022.

[10] G. Revathy, S. A. Alghamdi, S. M. Alahmari and M. A. Haq, “Sentiment analysis using machine learning:
Progress in the machine intelligence for data science,” Sustainable Energy Technologies and Assessments,
vol. 53, no. 5, pp. 102557, 2022.

[11] B. Santosh Kumar, M. A. Haq, P. Sreenivasulu and D. Siva, “Fine-tuned convolutional neural network for
different cardiac view classification,” The Journal of Supercomputing, vol. 3, no. 2, pp. 1–18, 2022.

[12] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras and H. Janicke, “Edge-IIoTset: A new comprehensive
realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning,” IEEE
Access, vol. 10, no. 6, pp. 40281–40306, 2022.

[13] H. Chao, K. Wang, Y. He, J. Zhang and J. Feng, “GaitSet: Cross-view gait recognition through utilizing
gait as a deep set,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4, no. 2, pp. 1–8,
2021.

[14] C. Fan, Y. Peng, C. Cao, X. Liu and S. Hou, “Gaitpart: Temporal part-based model for gait recognition,”
in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, NY, USA, pp. 14225–14233,
2020.

[15] B. Lin, S. Zhang and X. Yu, “Gait recognition via effective global-local feature representation and local
temporal aggregation,” in Proc. of the IEEE/CVF Int. Conf. on Computer Vision, NY, USA, pp. 14648–
14656, 2021.

[16] X. Li, Y. Makihara, C. Xu, Y. Yagi and M. Ren, “Joint intensity transformer network for gait recognition
robust against clothing and carrying status,” IEEE Transactions on Information Forensics and Security, vol.
14, pp. 3102–3115, 2019.

[17] Z. Lv, X. Xing, K. Wang and D. Guan, “Class energy image analysis for video sensor-based gait
recognition: A review,” Sensors, vol. 15, pp. 932–964, 2015.

[18] S. Yu, D. Tan and T. Tan, “A framework for evaluating the effect of view angle, clothing and carrying
condition on gait recognition,” in 18th Int. Conf. on Pattern Recognition (ICPR’06), NY, USA, pp. 441–
444, 2006.

[19] C. Shen, B. Lin, S. Zhang and G. Q. Huang, “Gait recognition with mask-based regularization,” ArXiv
Preprint, vol. 5, no. 2, pp. 1–21, 2022.



CMC, 2023, vol.75, no.3 5139

[20] H. Arshad, M. I. Sharif, M. Yasmin and J. M. R. Tavares, “A multilevel paradigm for deep convolutional
neural network features selection with an application to human gait recognition,” Expert Systems, vol. 39,
pp. e12541, 2022.

[21] Z. Zhang, L. Tran, F. Liu and X. Liu, “On learning disentangled representations for gait recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 4, pp. 1–9, 2020.

[22] H. Chao, Y. He, J. Zhang and J. Feng, “Gaitset: Regarding gait as a set for cross-view gait recognition,” in
Proc. of the AAAI Conf. on Artificial Intelligence, NY, USA, pp. 8126–8133, 2019.

[23] R. Liao, S. Yu, W. An and Y. Huang, “A model-based gait recognition method with body pose and human
prior knowledge,” Pattern Recognition, vol. 98, no. 4, pp. 107069, 2020.

[24] K. Shiraga, Y. Makihara, D. Muramatsu and Y. Yagi, “Geinet: View-invariant gait recognition using a
convolutional neural network,” in 2016 Int. Conf. on Biometrics (ICB), NY, USA, pp. 1–8, 2016.

[25] Z. Wu, Y. Huang, L. Wang and T. Tan, “A comprehensive study on cross-view gait based human
identification with deep CNNs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
pp. 209–226, 2016.

[26] C. Song, Y. Huang, Y. Huang, N. Jia and L. Wang, “GaitNet: An end-to-end network for gait based human
identification,” Pattern Recognition, vol. 96, pp. 106988, 2019.

[27] K. H. Abdulkareem, N. Arbaiy, Z. H. Arif and S. Kadry, “Mapping and deep analysis of image dehazing:
Coherent taxonomy, datasets, open challenges, motivations, and recommendations,” International Journal
of Interactive Multimedia & Artificial Intelligence, vol. 7, pp. 1–21, 2021.
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