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Abstract: Coronavirus has infected more than 753 million people, ranging
in severity from one person to another, where more than six million infected
people died worldwide. Computer-aided diagnostic (CAD) with artificial
intelligence (AI) showed outstanding performance in effectively diagnosing
this virus in real-time. Computed tomography is a complementary diagnostic
tool to clarify the damage of COVID-19 in the lungs even before symptoms
appear in patients. This paper conducts a systematic literature review of deep
learning methods for classifying the segmentation of COVID-19 infection in
the lungs. We used the methodology of systematic reviews and meta-analyses
(PRISMA) flow method. This research aims to systematically analyze the
supervised deep learning methods, open resource datasets, data augmentation
methods, and loss functions used for various segment shapes of COVID-19
infection from computerized tomography (CT) chest images. We have selected
56 primary studies relevant to the topic of the paper. We have compared
different aspects of the algorithms used to segment infected areas in the CT
images. Limitations to deep learning in the segmentation of infected areas still
need to be developed to predict smaller regions of infection at the beginning
of their appearance.

Keywords: COVID-19 segmentation; chest CT images; deep learning;
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1 Introduction

Coronavirus is a severe acute respiratory syndrome, an acronym called (SARS-CoV-2), and the
world health organization (WHO) termed it COVID-19 in February 2020 [1]. Due to the ongoing
spread of COVID-19 despite strict preventive efforts, WHO declared Coronavirus as a global pan-
demic at the International Health meeting held in March 2020 [2]. Furthermore, the WHO announced
a global emergency on 30th January 2020 after the quick spread of Coronavirus within 1 month
worldwide from the first case recorded on 8 December 2019 in Wuhan, China [3]. COVID-19 is a highly
contagious beta-coronavirus; until now, the confirmed cases are about 753,001,888 and 6,807,572
deaths, and the right source of this virus is unknown [4]. The lung infection is called pneumonia
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and causes inflammation of the tiny air sacs, filling with a lot of fluid and pus, making breathing
difficult. These sacs are where the inhaled oxygen is processed and delivered to the blood. This damage
causes tissue to rupture and block the lungs. In addition, the walls of these sacs can thicken, making
breathing very hard. Pneumonia strikes people as a complication of viral illnesses like COVID-19,
the flu, or the common cold, but bacteria, fungi, and other microorganisms can also generate it
[5,6]. This infection does diagnose by reverse transcription-polymerase chain reaction (RT-PCR) as
a standard examination. The test takes an oropharyngeal or nasopharyngeal swab, bronchial lavage,
or tracheal aspirate. The RT-PCR test has a high error rate that is considered low sensitivity at 60%–
71% for detecting COVID-19 and needs to be repeated until the existence of the virus is confirmed.
Blood tests, X-Ray images, and computed tomography can also use as complementary tools to the
RT-PCR test. A computed tomography scan of the chest area can complement the diagnosis even
before symptoms appear in patients, where it clarifies the damages of COVID-19 on the lungs [7].
Computerized tomography (CT) can visualize almost all body parts, diagnose disease or injury, and
plan medical, surgical, or radiological treatment. CT computer processing creates cross-sectional
images (slices) of the bones, blood vessels, and soft tissues to provide better-detailed information.
For example, CT scans of people with COVID-19 infection contain ground-glass opacity (GGO),
consolidation (CON), and pleural effusion [8].

Computer-aided diagnosis (CAD) based on artificial intelligence (AI) has recently played an
effective and influential role in medical imaging and effective diagnoses. Machine learning and deep
learning algorithms help assign a class to every pixel location of the image to extract the regions of
interest (ROI), called segmentation [9]. Segmentation is the primary field of medical image processing
to help radiology specialists make decisions about diagnosing diseases such as infections, cancer,
and many others by taking images of the lung, heart, liver, or even the whole body. In addition,
the medical images, two-dimensional (2D) or three-dimensional (3D), are used as complementary
tools with other tests to give a doctor an overview of the patient, which shows the organ parts, and
facilitates decision-making, especially in the early stages [10]. Many deep learning algorithms are
widely used in medical image segmentation. For example, a fully convolutional network (FCN) [11]
was suggested as a pixels-to-pixels network for image segmentation, and U-Net [12] was presented
for biomedical image segmentation. After the emergence of the Coronavirus and the presence of
datasets in open resources that helps identify damaged areas of infection, researchers worked to find
a solution for the segmentation of the infected areas in the lung. This paper aims to show the 2D
and 3D supervised methods and solutions to the image segmentation problem to find the area of
lung inflammation COVID-19 from computed tomography images. A systematic literature review
composes of searching papers related to certain keywords, selecting the papers according to well-
defined inclusion and exclusion criteria, and managing the selected research in a meaningful way. This
systematic literature review is undertaken to answer the following questions:

RQ1: What are the existing deep learning methods applied to detect and segment the

COVID-19 infection area in CT images?

RQ2: What are data augmentation methods for the datasets used in the deep learning methods?

RQ3: What are the loss functions to optimize the free parameters in the deep learning methods?

Different two-dimensional and three-dimensional deep learning methods are compared with
emphasis on their usefulness and performance to answer the question RQ1. Moreover, due to smaller
datasets and deep learning demands larger datasets, different augmentation methods are compared
in the paper (RQ2). Loss functions are also essential in the training of learning algorithms. Hence
different loss functions are discussed in the paper (RQ3).
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Remainder of this paper includes the following sections; Section 2 defines the methodology of
systematic reviews and meta-analyses (PRISMA) flow to provide an abstraction layer for searching
the papers on COVID-19 image segmentation. Section 3 summarizes methods to segment the infection
areas in 2D and 3D images. In the next section, different data augmentation methods are listed and
explained. Loss functions used to optimize the free parameters are compared in Section 5. Section 6
compares the published methods and discusses their application in the segmentation of COVID-19
infection. Finally, the Conclusion and future work are presented in the last section.

2 Literature Review Methodology

We have done this systematic review using systematic reviews and meta-analyses (PRISMA) flow
with metadata analysis [13]. We initially identified the published research to segment COVID-19
infection from computed tomography by deep learning methods. The research on segmentation on
CT images started in 2020 when the first open-source COVID-19 segmentation dataset was published
by the European Institute for Biomedical Imaging Research (EIBIR). We have used Google scholar,
IEEE Xplore, and ScienceDirect databases to find all the papers related to COVID-19 segmentation
in the CT scan images. As shown in Fig. 1, in the PRISMA flow identification stage, we used the
following keywords for search about studies: COVID-19 segmentation, COVID-19 pneumonia, CT-
images segmentation, and COVID-19 deep learning with a limitation for the years from 2020 to 2022.
As a result, we found 991 studies in Google scholar, 37 in IEEE Xplore, and 551 in ScienceDirect.

Figure 1: Selection of papers for the systematic literature review
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Subsequently, the second stage of PRISMA flow is screening; we excluded some papers reading
the title and abstract using the exclusion criteria explained below,

Exclusion criteria in the first and second steps include:

EC1. Studies must be peer-reviewed articles published in the English language.

EC2. This review does not include books, notes, theses, letters, and patents.

EC3. Papers focusing on methods or application areas other than applying deep learning methods
to the problem of COVID-19 infection area segmentation in CT images are excluded.

EC4. A unique contribution is considered for inclusion, and repeated studies are not included.

EC5. Those articles which do not describe the methodology and result sufficiently are excluded.

EC6. Those articles that do not address the research questions mentioned above are not included.

Since this paper focuses on the problem of segmentation using deep learning, so any task other
than segmentation is excluded. Also, papers that contain lung segmentation only and do not segment
infections are also excluded. So, our focus is on segmentation infections caused by COVID-19. In
addition, this paper includes only one type of medical image, computed tomography, and we excluded
any other type used to solve this problem. Depending on excluded criteria, we checked the paper’s
eligibility by analyzing the literature review and excluding those who did not achieve it. The basis for
this review is the deep learning algorithms used in supervised hashing to solve the infection hashing
problem. Finally, we selected 56 papers related to COVID-19 segmentation in CT scan images.

3 Methods Used for COVID-19 Infection Segmentation

Several algorithms have already performed very well in medical image segmentation to help
clinicians support decision-making. However, the segmentation model performance depends on the
kind of disease, dataset quality, and type of medical image device. Since the computed tomography
scan is three-dimensional, each scan has several two-dimension cross-sectional images (slices) from
each angle. Therefore, the segmentation task to segment the COVID-19 infection can be designed in
2D based on slice level or it can also be done on CT images at the 3D level.

Fig. 2 shows the framework of the medical image analysis for COVID-19 lung infection seg-
mentation. The workflow begins with preparing the chest CT COVID-19 dataset by preprocessing
methods. After that, the data augmentation method increases datasets for better generalization. Then,
the dataset is split into training, validation, and testing sets. Afterward, the training and validation set
is fed to deep learning segmentation models for the training process. Finally, the model is tested on
the testing set and predicts the segmentation mask of infection, different shapes of infection, and lung
regions.

This section explains different two-dimensional and three-dimensional models developed to deal
with computed tomography images of COVID-19 pneumonia.

3.1 Two-Dimensional Models

Computed tomography images are three-dimensional images taken from different angles of
organs. The slices of CT-scan for each patient were extracted and fed as two-dimensional images to
the 2D models. These models then segment the infection area on the 2D images. 2D deep learning
segmentation algorithms use 2D functions can capture context maps for one slice across the height
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and width. The 2D model is robust against changes in CT images, have low computational costs, and
has better results in diagnosing diseases [14].

Figure 2: Flowchart diagram of the implemented COVID-19 infection segmentation

3.1.1 Fully Convolutional Network (FCN)

The COVID-19 infection was segmented from a CT scan by an FCN-8 comprising of convolution,
pooling, and up-sampling layers [11,15]. An FCN network does not contain a dense layer like classic
convolutional neural network (CNN); instead, it includes 1 × 1 convolution that achieves the task
of fully connected layers and decreases the number of parameters and computation time. FCN
architecture contains two parts: the down-sampling (encoder) path, which is responsible for capturing
contextual information, and the upsampling (decoder) path, which retrieves spatial information.

3.1.2 2D U-Net Models

U-Net [12] is an artificial neural network (ANN) built upon the FCN with incredible accom-
plishments in medical image segmentation. It has been used for segmenting COVID-19 infection from
CT images [16]. The U-Net has a symmetric structure with four stages. The encoder is organized to
extract the features from input images by convolutional layers. The decoder outputs the segmentation
mask. The encoder and decoder are connected using a bottleneck. Moreover, U-Net is characterized
by a Skip-Connections connection between encoder stages and corresponding decoder stages by a
concatenation operator rather than a sum. It allows the decoder to use feature information from
the deeper layers and the spatial information from before layers to generate high-resolution output
masks. The light U-Net was proposed with three stages of encoder and decoder [15]. This U-Net model
required less than 3 MB of storage space.

An adjusted version of the U-Net model was proposed with a block change to deal with a small
COVID-19 CT image dataset [17]. It has four encoder blocks and four decoders as the U-Net model.
Each block consists of two convolutional, rectified linear activation function (ReLU), then batch
normalization and max-pooling layers. In the decoder part, an up-sampling operation aims to recover
spatial information. For each decoder, the block consists of an upsampling layer followed by the
concatenate layer to join the previous layer. The last layer is a convolutional layer containing a single
neuron to illustrate the single-segmented result with a sigmoid function. ResNeXt-Attention U-Net
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proposed based on U-Net with ResNeXt blocks [18] with better training costs in encoder-decoder and
attention mechanism in the decoder to segment COVID-19 lesion. An increase in cardinality is more
helpful than an increase in layers in ResNet.

The Attention R2 U-Net proposed to extract the pixel information of COVID-19 segmentation
[19]. This model integrates a recurrent residual convolutional neural network based on U-Net (R2U-
Net) [20] and Attention U-Net [21] to deal with this issue. In Attention R2U-Net uses recurrent
convolutional blocks with the residual unit in the encoder and decoder parts where the attention gate
is used in the decoder. The ensemble learning of two U-Net models is proposed to segment COVID-
19 infection [22]. The first U-Net model segment the lung regions from CT images. The lung mask
extracted by the first model is fed as input for the second U-Net model to extract infection or shapes
of lesions (GGO and CON).

The Deformable Attention Net (DDANet) model [23] is proposed based on U-Net, and criss-
cross attention (CCNet) [24]. The proposed model has the same structure as Oktay et al. [21], with
three stages of the U-Net model structure with criss-cross attention module inserts in the bottleneck
to capture non-local interactions. A Feature Fusional U-Net (FDA-UNet) with deep supervision and
attention mechanism with feature fusion technology and attention blocker is proposed to segment
different infection shapes [25]. It combines several levels of features to generate global information
that helps extract features in a balanced way to deal with various regions of COVID-19 infections.

Residual Dilated U-net is proposed based on U-Net with replaced encoder and decoder blocks
with repetitive residual blocks [26]. The output of residual blocks is fed to the Squeeze Excitation
(SE) unit to remove repetitious features. Afterward, squeeze excitation output is provided to the
Dilated Convolution (DC) module to increase the receptive field and capture multiscale context.
As an improvement of the U-NET model, the total variation U-Net (TV-Unet) is proposed, which
is U-Net architecture with Total Variation (TV) addition that enhances computationally backward
pass gradient update [27]. TV work to penalize the generated images has considerable dissimilarities
between neighboring pixels. They suggested adding a 2D-TV regularization term to the loss function
to improve the connectivity for the predicted segmentation areas [28]. Multi-point Supervised Network
(MPS-Net) is suggested on U-Net to extract multiscale features for COVID-19 areas from CT images
[29]. MPS-Net model replaced the U-Net’s convolution operation by Inception structure with various
kernel sizes (1 × 1, 3 × 3, 5 × 5) to improve generalization. Moreover, the skip connection in U-Net
is replaced with a sieve connection module (SCM) that reduces the channels to half. The multi-point
supervision (MPS) was used by doubling the decoder. After each up-sample, they applied the attention
gate (AG) in the second decoder path to focus on more important features.

Channel Attention U-Net architecture proposed based on U-Net encoder-decoder to deal with
different areas of COVID-19 infection [30]. The encoder contains a convolutional block 3 × 3 with
stride 2 to replace the pooling layers, res_dil block, heeded with skip connection to get feature
representations. The decoder consists up-sampling layer followed by a convolution, then concatenation
with corresponding encoder features. The res_dil block is a residual block with dilated convolutions
that are useful in getting multiple scale features. The spatial and channel SE blocks (scSE) attention
mechanism is proposed in the encoder and decoder to obtain features representation channel-wise
and spatial-wise. Chest-Net (CHS-Net) is a model developed based on a U-Net with two residual
attention inception U-Net (RAIU-Net) networks in a sequence of encoder-decoder [31]. The first
model produces lung shape maps, and the second identifies the infected regions from the first output
image. The architecture of RAIU-Net replaces each convolution in U-Net with inception blocks.
The inception block contains linked 1 × 1, 3 × 3, and 5 × 5 depth-wise separable convolution and
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hybrid pooling heeded by batch normalization and ReLU. After the inception block, the residual
learning approach and the output features from each residual inception block (RIB) connect with
the corresponding decoder by skip connection. The skip connection also contains spectral-spatial,
and depth attention (SSD) holds the essential feature maps. Attention gate-dense network-improved
dilation convolution U-Net (ADID-UNET) is proposed based on U-Net with an encoder-decoder
structure [32]. They add a dense network proposed by [33], improved dilation convolution (IDC), and
the attention gate (AG). IDC increases the receptive field and collects exact edge features from the little
lesion areas used between the encoder and decoder. The decoder skips the encoder and replaces the
first two up-sampling operations with two dense networks to avoid losing features. The decoder final
layer feature map is given to the Sigmoid function to predict the COVID-19 infection mask. The model
D2AU-Net is proposed and established on the U-Net structure with add gate attention module (GAM)
and a decoder attention module (DAM) to obtain better feature representation [34]. The ResNeXt-
50 (32 × 4d) model [35] pre-trained on the ImageNet dataset used in the encoder can offer a better
parameter initialization and improve generalization ability. A gated attention mechanism with channel
and spatial attention is added inside skip connections to use high and low feature representations.
Furthermore, they used another fused attention mechanism in the decoder to refine feature maps
after up-sampling. This hybrid dilated convolution module [36] was employed in a decoder’s residual
attention block (RAB) to improve the receptive field.

COVSeg-Net model is based on the architecture of U-Net [37]. The model combines convolutional
layers in the encoder with the corresponding decoder to increase contextual information. Each encoder
block of COVSeg-NET has convolution layers with 3 × 3 kernels and a max-pooling layer. A max
pooling layer with an exponential linear unit (ELU) activation function is used to decrease the
dimension of features. The decoder block consists of an upsampling layer of 2 × 2 kernel, a convolution
layer, and a dropout layer. In the last layer, the convolutional layer of the 1 × 1 kernel with the Sigmoid
function predicts the COVID-19 segmentation mask. O-Net is a light model proposed based on U-
Net consisting of two convolutional auto-encoders with up-sampling and down-sampling channels
and two bottlenecks [38]. Each up-sampling and down-sampling channel contains a stage with two
convolution layers, each layer followed by batch normalization and a ReLU. The skip connections are
applied between the channels.

The MultiResU-Net model is proposed to analyze entities at various scales [39]. It uses some
modifications to segment COVID-19 infection [40]. MultiResU-Net contains an encoder and decoder,
where the encoder has five residual blocks and four MultiRes blocks in a decoder. Change the
convolution structure by using a skip connection with LeakyReLu and Batch Normalization in the
encoder inside Residual Block. HADCNet model is proposed based on U-Net and contains hybrid
attention modules in five stages of encoder and decoder [41]. It helps balance the semantic differences
between various levels of features that refine the feature information. The hybrid attention modules
are used in the encoder with densely connected features, and hybrid dilated convolutions to extract
contextual information and increase the receptive domain.

A residual guided U-Net (RGU-Net) model is proposed based on an encoder and decoder
to alleviate the vanishing gradient problem by replacing direct convolutional with residual guided
blocks [42]. The encoder extracts spatial and contextual information by initializer-Block, four U-
Block, and five Skip-Connection blocks. Residual-Block consists of a skip-connection block that joins
the initializer block and each U-Block to localize the minor infection regions. In the bridge, after the
encoder part, the spatial feature map is fed to the Connector-Block and then to the decoder. The
decoder has the same structure as the encoder, with add 2D-Upsample layer after each U-Block and
skip-connection block.
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3.1.3 Three-Encoder, Three-Decoder Model

The architecture has two parts: encoder and decoder proposed to deal with limited datasets
problem [43]. The encoder has three stages of extracting features; each consists of one from the
convolutional 3 × 3, ReLU, and max-pooling layers. In the decoder, an up-sampling operation aims to
recover spatial information. The decoder is the opposite of the encoder function within three stages.
The decoder part consists of three deconvolutional 4 × 4 layers. The SoftMax’s last decoder layer,
followed by the pixel classification layer, generates a mask of COVID-19.

3.1.4 Ensemble Models in the Encoder

The end-to-end framework includes different pre-trained encoder segmentation models on the
ImageNet dataset, including Inception-V3, Xception, InceptionResNet-V2, and DenseNet-121, with
some improvements to aggregate their advantages to overcome the complexity of covid-19 infection
[44]. The fully connected of each model is replaced by the decoder that contains four decoding blocks
per decoder consisting of a 2 × 2 up-sampling layer, a convolution layer with a kernel size of 3 × 3, the
ReLU activation function, and the Batch-Normalization layer. Finally, the SoftMax function is used
to predict each pixel class. Finally, aggregate the results of multiple models by soft voting for each
image pixel. The proposed model used the pixel-level majority vote to aggregate outcomes to get the
last class probabilities for each image pixel.

3.1.5 DMDF-Net

A dual multiscale dilated fusion network (DMDF-Net) is proposed with two same DMDF-Net
networks architecture, one for extracting lung masks and the other for infection [45]. DMDF-Net is
contained from pre-trained MobileNetV2 as an encoder with four multiscale dilated convolutional to
enhance segmentation. The decoder includes two transposed convolutional layers with four dilated
convolutional.

3.1.6 Miniseg Model

The Miniseg model is proposed to extract multiscale features and deal with limited datasets with
83 K parameters [46]. It is an encoder-decoder structure and consists of four stages. The encoder is
a sub-network that focuses on learning multiscale representations. The encoder contains two paths
connected by a series of nested skip pathways. After that, an encoder connects with a decoder by
nested skip connections in each stage. The decoder’s first stage contains Parametric ReLU (PReLU)
activation function, and the other two stages have Feature Fusion Module (FFM) for aggregation
features. The last stage includes just FFM.

3.1.7 Resnet-101 Backbone

The proposed network used the first four stages of resnet101 as the backbone [47,48]. After that,
the pyramid attention module (PAM) takes two feature maps of current and deeper stages as inputs.
PAM contains merges of atrous spatial pyramid pooling module [49] and channel attention module [50]
that help extract multiscale features by concentrating on the background. Second, the feature obtained
from PAM is fed to a residual convolution module (RCM) which can improve the segmentation
accuracy of the network. Next, the output is provided to RCM, which enhances segmentation by
describing features. The output of RCM blocks is upsampled to previous PAM modules.
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3.1.8 Cogseg Model

CogSeg is proposed to enhance segmentation focus on spatial dimension [51]. The network
contains two parts: segmentation as the primary task and super-resolution (SR) as an extra task. SR is
reconstruction supervision optimization, which uses boundary information to improve segmentation
performance. This network used the U-Net encoder-decoder architectures as SR and segmentation
backbone. CogSeg contains two common-weight encoders and two decoders that aim to learn task-
independent representations of SR and segmentation.

3.1.9 QAP-Net

Quadruple Augmented Pyramid Network (QAP-Net) is proposed based on encoder-decoder
architecture [52]. This network backbone used four proposed augmented pyramid network modules.
First, Atrous spatial convolutional replaced the traditional convolutional to increase the receptive
field. The CNN-based augmented pyramid consists of two parallel atrous modules that act as a skip
connection from an encoder to the decoder.

3.1.10 SegNet and A-SegNet

The SegNet is a network consisting of encoder-decoder pairs to learn various resolutions [53].
Each block in the encoder applies the Convolution, Batch-Normalization, and ReLu activation
functions. After that, the max-pooling operation is applied to the obtained result and fed as input for
the following encoder and corresponding decoder. The decoder inputs have been received upstream
using the features of an encoder. The last of SegNet output is fed to the SoftMax layer from the
previous decoder. A-SegNet model combines attention gates (AG) with the traditional SegNet model
[54]. The hybrid deep learning method is proposed both Visual Geometry Group (VGG) and ResNet
as an encoder for standard SegNet and U-Net to deal with infection segmentation [55].

3.1.11 PSGR Module with U-NET and U 2-NET

The pixel-wise sparse graph reasoning (PSGR) module is proposed to use an inside segmentation
model, which enhances the feature extraction process, mainly unsure pixels, and prevents the spread
of noise [56]. PSGR is a graph generated by displaying each pixel on a node based on the features
generated by the segmentation backbone model. It contains sparse graph construction and long-
range information reasoning with a higher-order graph neural network (HO-GNN) [57] to capture
the complex structure. The PSGR module was tested and added to the decoder of standard U-Net
[12] and U 2-Net [58] models.

3.1.12 Focal Attention Module (FAM)

A focal attention module (FAM) is inspired by a residual attention network that contains channel
and spatial attention, a residual branch into the feature map [59]. Channel attention helps extract
meaningful features. The residual branch works as a feature chooser; if the input slice is negative,
it gives fewer feature values. At the same time, spatial attention focuses on this feature by using a
convolutional block attention module (CBAM) [60] to capture features at different scales.

3.1.13 MASC-Net

A multi-level atrous spatial convolution network (MASC-Net) was proposed on an
encoder-decoder structure [61]. The encoder part extract features by taking the CT scan and the
histogram-equalized version of it because some areas of the lesion have low contrast compared to
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most infection-annotated regions. The two feature maps input is generated by passing through a
receptive field block (RFB).

3.1.14 MLCA2F

The multi-Level Context Attentional Feature Fusion (MLCA2F) framework is proposed to
concentrate on the lesion regions and capture contextual information [62]. It contains three multiscale
context-attention networks (MSCA-Net) blocks. Each MSCA-Net block has six integrating Multiscale
Contextual Feature Fusion (MC2F) and multi-context attentional feature (MCAF) modules to extract
the COVID-19 infection sufficiently.

3.1.15 Anam-Net

Anamorphic depth embedding-based lightweight CNN called (Anam-Net) was developed for
COVID-19 infection segmentation from computed tomography images [63]. It is light with 4,47M
parameters that make inferences in mobile or resource control point-of-care platforms. Anam-Net
combines UNet’s and ENet’s models, which take from U-Net encoder-decoder architecture and ENet
fewer parameters. This model uses the lung mask, segmented before by pre-trained U-Net as input,
and predicts with SoftMax the mask with three-pixel classes background, abnormal (infection), and
normal (lung pixels).

3.1.16 DUDA-Net

The double U-shaped dilated attention network (DUDA-Net) is proposed to enhance segmen-
tation [64]. The DUDA-Net contains a coarse-to-fine network with a coarse network for lung
segmentation and a fine network for infection segmentation. First, the CT image is input to a coarse
segmentation network. The small-sized segment infection is more complex than lung segmentation, so
a fine segmentation network is added. The fine network takes the lung region segmented by the coarse
network as input. Fine segmentation uses a dilated convolutional attention (DCA) block channel
attention mechanism to focus on regions and obtain multiscale receptive fields.

3.1.17 Covid-Rate Model

Covid-Rate is a network proposed based on an encoder-decoder with a context perception
boosting module (CPB) [65]. They adopted the CPB module to deal with the failing convolution
layer in learning long-range dependencies. The features extracted are fed to the decoding path, which
contains four decoding blocks.

3.1.18 LungInfseg

LungInfseg is based on an encoder and decoder structure [66]. The encoder includes discrete
wavelet transform (DWT) and four receptive fields aware module (RFA) blocks. Moreover, RFA
also contains a learnable parallel dilated group convolutional block (LPDGC) and a feature attention
module (FAM). The LungINFseg method obtains CT images as input and creates binary masks with
a threshold of 0.5 and the same input image size.

3.1.19 nCovSegNet

nCovSegNet is a model proposed with ResNet50 backbone network, global context-aware (GCA),
and dual-attention fusion (DAF) modules [67]. The nCoVSegNet encoder used the four initial layers of
pre-trained ResNet50 with component-enhanced channel attention (ECA) [68] in each ResNet block
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(RB) to retain texture information. The encoder extracts multi-level features from the input by the
hierarchical layers.

3.1.20 Contour-Enhanced Attention Decoder CNN

The contour-enhanced attention decoder CNN model is proposed with an encoder and decoder
structure [69]. The six-encoder block has three convolutional branches and various receptive field
sizes. The encoder block has four outputs, one to the next encoder block and the rest for the
five corresponding cross-attention models in the decoder. In two final decoder blocks, the contour
established on features to guide in tracing of the infected regions. Moreover, spatial attention combines
structural features, including shape and boundary information, to predict infection.

3.1.21 Multiscale and Multi-Level Feature Extraction Structure

A multiscale and multi-level feature extraction network is proposed at each pyramid level in
encoder and decoder to collect hierarchical contextual information features [70]. In the encoder with
five stages, the kernel atrous spatial pyramid pooling layer (KASSP), EDP (expansion, depthwise, and
projection), and squeeze and excitation blocks are applied. The equal convolutional depth block is
applied to deal with the semantic problem. In contrast, the decoder has EDP squeezes and excitation
blocks. The residual connection is also added between the encoder and decoder to work like ResNet.
The output generates labels at various scales by applied spatial pyramid pooling on the ground truth
segmentation.

3.1.22 Plug-and-play Attention Module

A plug-and-play attention module is proposed to extract spatial features by adding them after the
segmentation model [71]. The output features from the segmentation model are fed to the proposed
module and obtain the same dimension. After that, the final result is obtained by connecting the output
features map with the initial feature map. The plug-and-play attention module has a position offset to
build the positional relationship between pixels and capture the pixel’s affinity.

3.2 Three-Dimensional Models

As we mentioned before, three-dimensional computed tomography can use as patient-level input
with the 3D segmentation model to capture interslice context. The 3D at the patient level is practically
desired, but a large patient number dataset is needed to train the model. The other drawback of
3D models is the high computational cost because of the increased number of parameters used [14].
The standard 3D U-Net has been applied to segment computed tomography images without residual
to avoid unnecessary parameter growth [72]. It is the same 2D-Unet structure with an encoder and
decoder and four stages. The pixel patch size CT images input to model to overcome the high-cost
computational and single channel containing normalized Hounsfield units (HU). 3D ResNet U-Net
architecture proposed to solve COVID-19 computed tomography image segmentation [73]. This model
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encoder consists of four blocks with 18-layer from 3D ResNet pre-trained on the Kinetics-400 dataset
[74]. The 3D ResNet fully connected layers replace with a 3D convolutional layer and four decoder
blocks. Each decoder block has one transposed convolutional and two traditional convolutional layers,
followed by ReLU. The 3D Attention U-Net model is based on standard U-Net an encoder for feature
extraction and decoder full-resolution, with four stages with dropout to reduce parameters [75]. The
3D Attention Module is used to discover skip-connection information with more target features that
reduce the interference of the background of the CT image. The 3D nnU-Net was proposed based
on 3D U-Net to adapt preprocessing automatically and network architectures without manual tuning
[76]. It contains five stages and two parts: encoder and decoder. A cascaded 3D UNet is proposed with
two 3D UNet, the first segment lung volumes and the second for infection volume [77]. The CT scans
with 256 × 256 image size extract patches first and applied augmentation; then fed to 3D U-Net to
segment lung volume. These crop volumes output with 128 × 128 × 32 are post-processing to decrease
the background pixels and used as input of the second 3D UNet to segment the infected lung region.
3D CU-Net proposed dependent on the 3D U-Net architecture in encoder and decoder, and three
stages [78]. The encoder contains a feature encoding module with a channel attention mechanism to
focus on necessary information and weights of extracted features. After the encoder blocks, the feature
maps are fed to a pyramid fusion module with dilated convolution global information interaction (PDS
block) to transform low into high-scale features. The COLI-Net is proposed with 3D-ResNet proposed
by Li et al. [79,80] to segment lung and COVID-19. The 3D-ResNet is added to 20 convolutional layers
with different dilation factors zero for low-level, two for medium-level, and four for high level. The
residual connections connect every two layers.

3D Covid-segNet model is proposed to segment COVID-19 from computed tomography images
with an encoder and decoder [81]. The encoder contains four blocks to extract the features. The first
block has a residual block, the second and third contain residual and Feature Variation (FV) blocks
and the fourth includes residuals with progressive atrous spatial pyramid pooling (PASPP) block. They
proposed an FV block that consists of three branches: contrast enhancement branch, position-sensitive
branch, and identity branch, which help change parameters to determine the boundaries and area of
COVID-19 infection. CovSegNet2D, CovSegNet3D, a hybrid of CovSegNet2D, and CovSegNet3D
are proposed with multi-encoder-decoder architecture to enhance infection segmentation [82]. The
CovSegNet2D contains five stages of the encoder, decoder, and multiscale fusion (MSF) module,
whereas CovSegNet3D has four stages. The hybrid of the CovSegNet2D and CovSegNet3D method
divides the segmentation process into two phases to reduce the computational complexity of 3D
convolution and benefit multiscale 2D convolutions.

4 CT-Scan Datasets Related to COVID-19

Table 1 summarizes a public and private CT scan datasets related to COVID-19 lung infections.
MosMed-Data [83] includes the most number of patients (1110 patients) but is annotated for only two
classes ground-glass opacity (GGO) and consolidation (CON). Moreover, only a small subset of the
data is annotated (50 slices). Zenodo P20 [84] contains CT-Scans of 20 patients, and all 3520 slices are
annotated. Out of the available datasets, most of the published papers used MedSeg, Radiopedia, and
Zenodo datasets.
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Table 1: List of CT-Scan datasets related to segmentation of COVID-19 infection

Dataset name Public/Private Number of
patients

No. of
slices

Image size Labels

297 dataset [19] Private 297 8739 – Infection and
background

108 dataset [25] Private 108 – 512 × 512 GGO, linear
opacities, sub-solid
lesions,
solid lesions,
interstitial change
and background

4369 dataset [48] Private 36 4369 – GGO, CON and
interstitial infiltrates

40P dataset [51] Private 40 3000 512 × 512 Infection and
background

89 dataset [64] Private 89 – 512 × 512 Infection and
background

Covid-CT-Rat [65] Private 82 433 512 × 512 GGOs, CON and
background

COVID-19 CT
P861 [81]

Private 861 21,658 512 × 512 Lung, infection and
background

MedSeg [85] Public >40 100 512 × 512 1/GGO, CON, lungs,
background
2/GGO, CON and
pleural effusions

Radiopedia P9 [85] Public 9 829 512 × 512 1/GGO, CON, lungs,
background
2/GGO, CON,
pleural effusions

Zenodo P20 [84] Public 20 3520 512 × 512
630 × 630

Lung, infection, and
background

CC-CCII [86] Public – 750 512 × 512 Background, lung
field, GGO, CON

MosMedData [83] Public 1110 50 512 × 512 GGO, CON
Ricord1a [87] Public 110 9,166 Infection and

background
TCIACOVID-19
datasets [88]

Public 199 4981 512 × 512 Infection and
background
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5 Data Augmentation Methods

The deep learning algorithms need large datasets in the training process. Primarily, the fact of lack
medical image dataset for each disease results in an actual problem of segmentation tasks that help
diagnose diseases. Therefore, one problem solution is to increase the computed tomography dataset
size by using several data augmentation methods. It includes Geometric transformations, Color space
transformations, Kernel filters, Random Erasing, and Mixing images [18,66].

Another data augmentation method used is a medical image segmentation with CNN library
(medical image segmentation with convolutional neural networks (MIScnn) library developed for
medical image problems [89]. It is used for COVID-19 with three augment types: noisy, spatial, and
color augmentation [16,72]. Moreover, the medical images dataset can augment using a generative
adversarial network (GAN) dense network for data augmentation [90]. The synthetic CT data from
GAN Dense was used to augment and then use the output as inputs to the U-Net model for
segmentation. The vertical flipping process for data augmentation is used by merging the original
image and the original mask and vertically flipping, then splitting into a new image and mask [32].
The infection regions in CT images of a person infected with COVID-19 are extracted to generate a
synthetic pair (slice and related mask) from infected CT images [65]. After that, adding them to CT
images from the same CT scanner of a healthy person with a mask of the lung area is taken as input.
One way to deal with 3D volume is to split it into patches number and then augment by the rotating,
horizontal, and vertical translations, zooming, and shearing the random patch volume [74].

Table 2 illustrates the performance of the segmentation deep learning model with and without
different data augmentation methods. The Dice coefficient score when training the model with the
data augmentation method is better than the training without augmentation methods. However, these
transformations make subtle changes to existing medical images, which may affect disease recognition.
As a result, medical image data augmentation methods still need to be developed to introduce more
contrast into artificial samples to enhance the training stage.

Table 2: The performance of data augmentation methods

Study Data augmentation method Performance without data
augmentation

Performance with data
augmentation

[18] Standard method Dice = 83% Dice = 94%
[65] Generating synthetic Dice = 75.99% Dice = 78.1%
[66] Standard method Dice = 78.53% Dice = 80.34%
[72] MIScnn library Dice = 75.6% Dice = 76.1%
[74] Standard method Dice = 60.26% Dice = 66.06%

6 Losses Function

Supervising segmentation models use various loss functions to guide the convergence model
better. The loss functions of the segmentation process are essential in differentiating the categories
and covering the edge of the pixel class regions. Some of them are more streamlined to deal with
different shapes and hard-edge representations. The COVID-19 infection segments from computed
tomography images is a more critical obstacle in diagnosing infections with blurred boundaries. The
infection shapes and areas vary from patient to patient, which can mingle with tissues in the organ.
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Several loss functions are used to improve and enhance the training proposed models. The effect
of loss functions varies depending on the dataset, image resolution, number of images, and category
balance. The design of the segmentation algorithm affects the work of the loss function and the
layers used to identify pixel classes. In addition, the loss functions used with COVID-19 computed
tomography depend on the dataset quality [91]. Fig. 3 illustrates the primary loss functions used as
loss functions for segment lung COVID-19 infection on the left and right. The middle of the figure
shows the aggregation of a combination of loss functions containing more than one of the primary loss
functions to deal with the difficulty of segmenting the COVID-19 infection. In comparison, the four
loss functions in the down middle are the one-time used compensation of loss function to COVID-
19 infection segmentation. All loss functions in Fig. 3 are region loss functions that help extract the
region of interest pixels. Except for the boundary loss, edge loss which is a combination of dice loss
and wavelet loss, and the edge region mutual information loss (Edge-RMI) help extract the complex
boundaries of infection shapes and boundaries between the region and others.

Figure 3: Loss functions used in COVID-19 deep learning segmentation models

7 Performance Metrics

The most commonly used measures to estimate semantic segmentation and was used to assess the
COVID-19 infection segmentation from CT scans are the Dice coefficient score and the Intersection
over Union (IoU) score. The dice coefficient score is two multiplication in the overlap area between
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ground truth and predicted segmentation divided by the total number of pixels in both images. It can
calculate as follows

Dice (P, G) = 2|P ∩ G|
|P| + |G| = 2TP

2TP + FN + FP

Where G is the ground truth and P is predicted. TP is genuinely positive, TN is a true negative,
FP is a false positive, and FN is a false negative.

IoU is the overlap region between ground truth and predicted and divided by the area of union
between them.

IOU (P, G) = |P ∩ G|
|P ∪ G| = TP

TP + FN + FP

8 Discussion

Segment lung damage by deep learning models is considered a complex problem due to the
different sizes and locations according to the stage of the disease. The primary finding of this research
is that 83% of published studies use a 2D segmentation deep learning than 3D due to the limited size
dataset and the high-cost compensation need the huge Graphics processing unit (GPU) memory. The
2D models use the interslice of computed tomography as input to segment COVID-19 infection. For
this reason, 2D models can segment a limited number of patients more effectively than 3D.

Many factors affect the performance of the segmentation models, such as data augmentation
methods, the number of pixels class, feature extraction techniques, and loss functions. Table 3 sum-
marizes the performance of 2D models dealing with the datasets using data augmentation methods.
The U-Net [16] model trains on binary class and has the best dice score for infection (87%), and
the Multiscale and multi-level feature extraction model [70] has a dice score of 88.34% for multi-
class in the Zenodo dataset. The ResNeXt-Attention U-Net [18] train on multi-class has 94% in the
validation set, whereas the Cogseg model [51] performed well with the MedSeg dataset with 83% in
the test set. The Radioppedia P9 dataset has 87.06% when trained with the DUDA-Net model [64].
Some studies combine the MedSeg and Radioppedia P9 to deal with limited slices of CT scans and
have an 86.4% with TV-UNet [27]. The MosMedData dataset works better with the contour-enhanced
attention decoder CNN [68], which has 83.7%. Moreover, the state-of-art models are the most used
where also multiscale such as MiniSeg [46], ResNet101 backbone [48], DUDA-Net [64] and Multiscale
feature extraction [70]. PSGR module [56] is the one graphical representation used inside a decoder of
state-of-art models to segment the Covid-19 infection.

The 2D models used without dataset augmentation methods are summarized in Table 4. It shows
the MLCA2F [62] has the best work with a 98.80% dice score when a train on binary class. The MedSeg
dataset has an 81% infection class when training ensemble learning of the U-Net model [22] on binary
classes, whereas when training it on multi-class, it has a 77% in GGO and 57% in CON classes dice
score. Ensemble U-Net model-based majority voting [36] has an 85.03% dice score on combining the
MedSeg and Radioppedia P9 datasets. The MosMedData dataset has 59.69% when trained with SE-
ResNet-50 U-Net++ [92]. Table 4 MASC-Net [61] and MLCA2F [62] are multiscale models, whereas
the remaining are state-of-art models.
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Table 3: Summary of methods of 2D COVID-19 segmentation models with data augmentation

Model Dataset No of
classes

Loss function Performance

U-Net [16] Zenodo 2 Tversky loss Dice (Inf) = 87%
Dice (lung) = 89%

ResNeXt-Attention
U-Net [18]

MedSeg 3 Multi-class cross-entropy loss Dice (All) = 94%

DDANet [23] MedSeg
Radiopeadia P9

3 Class-weighted cross-entropy
loss

Dice (All) = 78.1%
Dice (GGO) = 73.4%
Dice (CON) = 61.3%

TV U-Net [27] MedSeg
Radiopaedia P9

2 Binary cross-entropy with
total variation term

Dice (All) = 86.4%

MPS-Net [29] Radiopaedia P9 2 Binary cross-entropy and
Tversky loss on the basis of
dice

Dice (All)/83.25%,
IOU (All) = 74.2%

ADID-UNet [32] MedSeg Radiopaedia P9 2 Dice loss Dice (All) = 80.31%
MultiResU-Net [40] Zenodo 4 Compensation of binary

cross-entry,
Focal and Tversky loss

Dice (Right Lung) = 90.85%,
Dice (Left Lung) = 88.91%
Dice (Inf) = 74.28% Dice
(Background) = 99.37%

MiniSeg [46] 1/MedSeg, 2/Radiopaedia
(P9)
3/Zenodo
4/MosMedData

2 Cross-entropy loss 1 Dice (All) = 75.91%
2 Dice (All) = 80.06%
3 Dice (All) = 76.27%
4 Dice (All) = 64.84%

CogSeg [51] 1/MedSeg (2),
2/Radiopaedia P9(2)

3 Infection-edge detection
guided
(RMI) loss,

1/Dice (All) = 83.04%,
IOU (All) = 89.75%
2/Dice (All) = 72.43%,
IOU (All) = 73.46%

QAP-Net [52] Zenodo 4 Categorical focal loss. Dice (All) = 81.63
PSGR U-Net,
PSGR
U2-Net [56],

1/MedSeg
2/Zenodo
3/MosMedData

2
3

Combination of binary
cross-entropy (BCE) and Dice
loss

1 Dice = 83.16%
2 Dice = 78.58%
3 Dice = 66.95%,

Anam-Net [63] MedSeg, Radiopaedia
(P9) Zenodo (P20)

3 The proposed Anam-Net loss
function

Dice (Inf) = 79.8%

DUDA-Net [64] Radiopaedia (P9) 2 Tversky loss Dice (All) = 87.06%
Dice (Inf) = 62.60%

COVID-Rate [65] Zenodo, Covid-CT-Rate
dataset Radiopaedia 9P

2 Combination of weighted
Binary Cross-Entropy
(w-BCE) and FTL

Dice (Inf) = 80.19
[Covid − CT − Rate]
Dice (Inf) = 82%
[Radiopeadia9P]
Dice (Inf) = 79.7%

LungINFseg [66] Zenodo 2 Combination of BWL
And TL functions.

Dice (All) = 80.34%

Contour-enhanced
Attention decoder
CNN [69]

1/Zenodo
2/MosMedData

2 Mean pixel-wise cross-entropy 1 Dice (All) = 88.01%
2 Dice (All) = 83.71%

Multiscale
feature extraction [70]

1/MedSeg
2/Zenodo

3 Weighted cross-entropy for
each scale

1/Dice (All) = 90.1%
2/Dice (All) = 88.16%

U-Net with
Attention Mechanism
[93]

Radiopaedia P9 2 Boundary loss and weighted,
binary cross-entropy dice loss
function.

Dice (All) = 76.4%
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Table 4: Methods for 2D COVID-19 segmentation without data augmentation

Model Dataset No of
classes

Loss function Performance

Light-U-Net [15] Zenodo10 (from 20
Radiopaedia 10)

2 – Dice (All) = 64%

Attention
R2U-Net [19]

297P dataset 2 Categorical
cross-Entropy

Dice (All) = 79%

Ensemble
learning of
U-Net [22]

1/MedSeg
2/Radiopaedia P9

2
3

Binary cross-entropy
(WCE) and Dice loss

1/Dice (GGO) = 77%,
Dice (CON) = 57%,
Dice (INF) = 81%
2/Dice (GGO) = 79%,
Dice (CON) = 68%,
Dice (INF) = 80%

Residual Dilated
U-net [26]

– 2 Dice loss Dice (All) = 85.3%

Channel-
attention
U-net [30]

MedSeg +
Radiopaedia P9 (2)

3 Focal tversky loss Dice (All) = 83.1%

CHS-Net [31] Zenodo +
Radiopaedia P9

2 WCE and dice loss Dice (Inf) = 81%, Dice
(lung) = 96%

Ensemble U-Net
[36]

MedSeg +
Radiopaedia P9 (2)

2 Dice loss Dice (All) = 85.03%

HADCNet [41] MedSeg,
Radiopaedia (P9)
CC-CCII
Zenodo

2 Cross-entropy and
dice loss

1/Dice (All) = 79.2%
2/Dice (All) = 79.6%
3/Dice (All) = 78.5%
4/Dice (All) = 72.3%

RGU-Net [42] CC-CCII 4 Dice focal loss Dice (All) = 90.23%
3-Encoder,
3Decoder [43]

Zenodo 2 – Dice (All) = 79.9%

DMDF-Net [45] Zenodo (train,
valid),
MosMedData(test)

2 Balanced
cross-entropy loss

Dice (Inf) = 75.7%,
Dice (Lung) = 98.66%

ResNet-UNet [51] 40P dataset 2 Cross-entropy loss Dice (inf) = 83%
FAM [59] Zenodo 2 Binary cross-entropy

(BCE)
Dice (All) = 88,54%

MASC-Net [61] Radiopaedia (P9)
(train. validation)
Zenodo
(Coronacases 10)
(test)

2 Dice loss Dice (All) = 70.7%
Dice (All) = 65.5%

MLCA2F [62] Zenodo 2 – Dice (All) = 98.84%
Plug-and-play
Attention
U-Net [71]

MedSeg 2 – Dice (All) = 83.85%

(Continued)
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Table 4: Continued
Model Dataset No of

classes
Loss function Performance

SE-ResNeXt50
[92]

Zenodo 4 Evaluated F-score
and (IoU)

IOU (All) = 70.91%

RegNetx-002
U-Net [92]

Ricord1a 2 Evaluated F-score
and (IoU)

IOU (All) = 84.82%

From the tables, we see that training the model on multi-class has lower results than on binary
class. The models trained on four classes with promising results are the RGU-Net [42] model with CC-
CCII dataset (90.23%), and MultiResU-Net [40] trained on Zenodo has an 88.35% dice score. FDA-
Unet [25] trained on the highest number of infection shape classes: GGO, linear opacities, sub-solid
lesions, solid lesions, interstitial change, and background with a 64.1% dice score. As mentioned before,
many data augmentation methods were used with CT covid-19 datasets. MedSeg, MosMedData, and a
combination of MedSeg and Radiopedia 9P have better results when using the augmentation methods
(Table 3). In contrast, the Zenodo dataset has better results without using augmentation methods
(Table 4). Increasing the datasets using the standard methods is the best so far to deal with the limited
datasets problem of the tomographic images of Covid-19, using the rotation of the images for several
angles, which gave better results than others. The loss functions use as an optimization function for
the medical image segmentation task, as it helps capture the difficult pixel classification and edges
between classes and fuzzy infection boundaries. There are many lung diseases, and determining the
damage from COVID-19 is complicated, where CT images complement the standard RT-PCR test
and other tests.

In the 3D models shown in Table 5, some researchers proposed dividing the 3D volume by the
number of patches pixel-wise to reduce the high computational cost. The hybrid of CovSegNet2D and
CovSegNet3D [82] has a 94.1% dice score on the validation set with the Zenodo dataset, another
cost and GPU memory solution. Moreover, the Cascaded 3D UNet [77] has an 82% dice score
in the infection class. The MosMedData dataset has 66.8% dice with 3D CU-Net, whereas 58.8%
dice with nnU-Net++ in the infection class. Pneumonia has different shapes ground-glass opacity,
consolidation, and pleural effusion, where first and second appear inside the lung where pleural
effusion may occur out of the lunges edge. Furthermore, the infections have unclear edges, making it
more challenging to identify their presence. The most significant impact on the model’s performance
is the dataset’s quality, which has several aspects. The image resolution: The organ’s tissues appearing
in the CT scan may lead to mixing the categories of pixels. The annotation process for each pixel, as
some radiologists may introduce noise.

The biggest challenge for researchers is to develop frameworks that recognize early-stage COVID-
19 pneumonia that contain the fewest number of pixels in an image. It is more beneficial to determine
the disease’s stage at its beginning stage so that doctors can treat the patient before the disease
progresses.
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In the literature review, it is evident that many researchers have used U-Net or variants of U-Net
to segment the COVID-19 infection. The architecture of U-Net is also widely used in other medical
applications [94,95].

Table 5: Summary of methods for 3D segmentation

Model Dataset No of
classes

Loss function Best performance

3D
U-Net [72]

Zonodo,
Covid-19-20 Grand
Challenge

2 Tversky index
+categorical
cross-entropy

Dice (Inf) = 76.1%,
Dice (lungs) = 95.6%

3D ResNet U-Net
[73]

RICORD,
MosMedData,
Zenodo,
Radioppadia

2 Dice loss + pixel-wise
CE loss.

Dice (All) RICORD =
67.9%

3-D Attention
U-Net [74]

89P dataset
X-Ray (1700) [96]

2 Binary
cross-entropy+Dice loss

Dice (All) = 75.22%

3D-nnU-Net [76] MosMedData,
MSD Lung Tumor
StructSeg [97],
NSCLC [98],
Zenodo,

2
3

Binary
cross-entropy+Dice loss

[Zonodo] Dice (L-lung)
= 85.8%, Dice (R-lung)
= 87.9%, Dice (Inf) =
67.3%,

3D CU-Net [78] Zenodo (train,
valid) MosMedData
(test)

3 Categorical
cross-entropy and the
Tversky loss
α = 0.3 and β = 0.7.

[Zenodo] Dice (inf) =
77.1%
Dice (L-Lung) = 96%,
Dice (R-Lung) =
96.3% [MosMedData]
Dice (Inf) = 66.8%

COLI-Net [79] 120P datase 2 Dice loss Dice (Inf) = 91%
3D COVID-SegNet
[81]

COVID-19 CT P
861

2 Combination of dice
and cross-entropy loss

Dice (Inf) = 72.6%,
Dice (lung) = 98.7%

9 Conclusion and Future Work

Determining the damage COVID-19 causes in the lungs of patients is becoming an important
problem for researchers after the COVID-19 pandemic infected and the death of many people
worldwide. Many researchers were published to develop a CT scan segmentation framework and the
assistance of a radiologist. This systematic research brings several details of a framework designed to
improve finding areas of damage, which is challenging due to the varying size, location, and hazy lung
inflammation edges.

This paper discusses the effects of datasets, data augmentation methods, and loss functions on
training performance. The number of patients, infection stage, and contrasts of CT scan considerably
impact the chest CT dataset quality. Data augmentation methods also affect training performance.
Data augmentation may change some information in CT scan that influences the generalization where
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medical pixel classification is a susceptible task. Using different loss functions in training the same deep
learning model does not differ much in performance. However, they have the impact of extracting the
region of interest and its complex boundaries. Likewise, the loss functions are used as optimization
methods to extract regions and edges features and spatial features in the encoder and decoder of the
model. We have investigated the performance of different deep learning algorithms architectures on
segmentation accuracy. The state-of-art and multiscale models also the graph representation module
are used within state-of-art models.

In Future work, we will analyze the impact of different data augmentation methods and loss
functions on the performance of the weak, semi-supervised and unsupervised models.
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