
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.037933
Article

Data and Ensemble Machine Learning Fusion Based Intelligent Software
Defect Prediction System

Sagheer Abbas1, Shabib Aftab1,2, Muhammad Adnan Khan3,4, Taher M. Ghazal5,6,
Hussam Al Hamadi7 and Chan Yeob Yeun8,*

1School of Computer Science, National College of Business Administration & Economics, Lahore, 54000, Pakistan
2Department of Computer Science, Virtual University of Pakistan, Lahore, 54000, Pakistan

3Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam,
13120, Korea

4Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus,
Lahore, 54000, Pakistan

5School of Information Technology, Skyline University College, University City Sharjah, Sharjah, UAE
6Center for Cyber Security, Faculty of Information Science and Technology, UKM, Bangi, Selangor, 43600, Malaysia

7College of Engineering and IT, University of Dubai, 14143, UAE
8EECS Department, Center for Cyber Physical Systems, Khalifa University, Abu Dhabi, 127788, UAE

*Corresponding Author: Chan Yeob Yeun. Email: chan.yeun@ku.ac.ae
Received: 22 November 2022; Accepted: 16 March 2023

Abstract: The software engineering field has long focused on creating high-
quality software despite limited resources. Detecting defects before the testing
stage of software development can enable quality assurance engineers to con-
centrate on problematic modules rather than all the modules. This approach
can enhance the quality of the final product while lowering development costs.
Identifying defective modules early on can allow for early corrections and
ensure the timely delivery of a high-quality product that satisfies customers
and instills greater confidence in the development team. This process is
known as software defect prediction, and it can improve end-product quality
while reducing the cost of testing and maintenance. This study proposes a
software defect prediction system that utilizes data fusion, feature selection,
and ensemble machine learning fusion techniques. A novel filter-based metric
selection technique is proposed in the framework to select the optimum
features. A three-step nested approach is presented for predicting defective
modules to achieve high accuracy. In the first step, three supervised machine
learning techniques, including Decision Tree, Support Vector Machines, and
Naïve Bayes, are used to detect faulty modules. The second step involves
integrating the predictive accuracy of these classification techniques through
three ensemble machine-learning methods: Bagging, Voting, and Stacking.
Finally, in the third step, a fuzzy logic technique is employed to integrate
the predictive accuracy of the ensemble machine learning techniques. The
experiments are performed on a fused software defect dataset to ensure
that the developed fused ensemble model can perform effectively on diverse
datasets. Five NASA datasets are integrated to create the fused dataset: MW1,

https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.037933
https://www.techscience.com/doi/10.32604/cmc.2023.037933
mailto:chan.yeun@ku.ac.ae

6084 CMC, 2023, vol.75, no.3

PC1, PC3, PC4, and CM1. According to the results, the proposed system
exhibited superior performance to other advanced techniques for predicting
software defects, achieving a remarkable accuracy rate of 92.08%.

Keywords: Ensemble machine learning fusion; software defect prediction;
fuzzy logic

1 Introduction

Most of the researchers from the software engineering domain have been working to minimize the
cost of the Software Development Life Cycle (SDLC) without compromising on the quality [1,2]. The
activity of software testing aims to ensure the high quality of the end product [3–5]. A minor defect
in software can lead to system failure and a catastrophic event in the case of a critical system [1–3].
The importance of identifying and removing the defects can be reflected by an example of “NASA’s
$125 million Mars Climate Orbiter”, which was lost because of a minor data conversion defect [1].
Software defects can be of different types, including wrong program statements, syntax errors, and
design or specification errors [1,2]. In SDLC, the testing process plays a crucial role in achieving
a high-quality end product by eliminating defects [6,7]. However, it has been proved that software
testing is the most expensive activity as it takes most of the resources as compared to other tasks
of SDLC [3,8–10]. Identifying and fixing the defects before testing would be less costly compared
to the cost of repairing the defects at later stages, especially after integration [11,12]. This objective
can be achieved by incorporating an effective Software Defect Prediction (SDP) system [13,14], which
can identify faulty software modules before the testing stage, allowing for focused testing efforts on
those particular modules [1]. This approach can guarantee the delivery of high-quality end products
with limited resources [3]. Many supervised machine learning-based defect prediction techniques and
frameworks have been proposed by researchers for the effective and efficient detection of defect-prone
software modules [1,2]. In the supervised machine learning technique, a classifier is trained by using a
pre-labeled dataset. The dataset which is used to train the classifier includes multiple independent
features and at least one dependent feature. The dependent feature is known as the output class,
which is classified or predicted by exploring the hidden pattern and relationship between independent
attributes and dependent attributes. That hidden pattern and relationship are learned by the supervised
classifier, which is further used for prediction on the unseen dataset (testing data) [6–8]. The SDP
dataset typically pertains to a specific software component, with independent attributes represented
by software quality metrics collected during development. The dependent feature, on the other hand,
is the predictable class which reflects whether the particular module is defective or not. Instances
in the SDP dataset reflect the modules, and by classifying a specific instance as defective or non-
defective, we are predicting a particular module that is reflected by the instance. This study presents
the Intelligent Software Defect Prediction System (ISDPS), which utilizes data and decision-level
ensemble machine learning fusion, along with a novel filter-based ensemble feature selection technique
to improve accuracy and reduce costs. The ISDPS follows a three-step process for software defect
prediction, beginning with the use of three supervised classification techniques—Decision Tree (DT),
Support Vector Machines (SVM), and Naïve Bayes (NB)—to build classification models for SDP.
The second step employs ensemble techniques such as Bagging, Voting, and Stacking to merge the
predictive accuracy of the classification models. The third step uses fuzzy logic to fuse the predictive

CMC, 2023, vol.75, no.3 6085

accuracy of the ensemble models. The proposed system was evaluated by combining five datasets
from NASA’s repository and achieved a high accuracy rate of 92.08%, outperforming other published
techniques.

2 Related Work

Researchers have presented various models and frameworks to detect faulty software modules
before the testing stage. Several studies have been conducted on this topic, and some are discussed here.
In [14], researchers applied a metric selection algorithm and ensemble machine learning approach to
detect defective software modules. The research was conducted on six different software defect datasets
taken from NASA’s software repository. The performance of the proposed method was evaluated using
statistical measures such as Receiver Operating Characteristic (ROC) value, Matthews’s Correlation
Coefficient (MCC), F-measure, and Accuracy. The study compared various search methods for metric
selection using ensemble machine learning. The results demonstrated that the proposed method
outperformed all other techniques, as evidenced by its superior performance compared to various
supervised classifiers. Researchers in [15] proposed an Artificial Neural Network (ANN) based system
for detecting faulty software modules, along with a metric selection algorithm that uses a multi-filter-
based approach. The proposed system uses oversampling to handle class imbalance and performs
classification in two dimensions, one with oversampling and one without. NASA’s cleaned software
defect datasets were used for implementation, and the system’s performance was evaluated using
various statistical metrics such as MCC, ROC, Accuracy, and F-measure. The study compared the
proposed SDP technique with other methods, and the results showed that the proposed technique
outperformed other techniques in terms of accuracy and other statistical measures. In their study
[16], researchers introduced a framework for predicting faulty software modules based on Multi-
Layer Perceptron (MLP) with bagging and boosting as ensemble machine learning techniques. The
framework employs three approaches for predicting defective modules, including tuning the MLP for
classification, creating an ensemble of tuned MLP using bagging, and developing an ensemble of tuned
MLP using boosting. The study utilized four cleaned datasets from NASA’s repository to implement
the proposed framework and evaluated its performance using statistical metrics such as Accuracy,
MCC, F-measure, and ROC. The results indicated that the proposed technique outperformed various
classifiers from published research, as determined by the test of Scott Knott Effect Size Difference.
According to [17], researchers conducted a thorough comparative analysis of four commonly used
training techniques for back-propagation algorithms in ANN to predict defective software modules.
They also proposed a fuzzy logic-based layer to determine the most effective training technique. The
researchers utilized cleaned versions of NASA software defect datasets and assessed the performance
of the proposed framework using several metrics, such as Accuracy, Specificity, F-measure, Recall,
Precision, ROC, and Mean Square Error. The study compared the results with those of various
classifiers, and the proposed framework outperformed other methods. In [18], a machine learning-
based framework using a variant ensemble technique is presented for predicting faulty software
modules. The proposed framework also incorporates a metric selection method to optimize the
performance of the classification technique. The variant selection process involves identifying and
selecting the best version of the classification technique to achieve high performance. The ensemble
technique integrates the predictive accuracy of the optimized variants to further increase the accuracy
of the proposed framework. The proposed framework was tested using four cleaned software defect
datasets from NASA’s repository, and its performance was evaluated using three statistical measures:
MCC, Accuracy, and F-measure. The results of the framework were compared with various other
classifiers to assess its effectiveness. The analysis showed that the proposed framework outperformed

6086 CMC, 2023, vol.75, no.3

all other classifiers, indicating its superiority in predicting faulty software modules. The authors of
[19] performed a thorough comparative analysis of multiple supervised machine learning techniques
for software defect prediction. They used twelve cleaned software defect datasets from NASA and
evaluated the performance of the models using various statistical measures such as F-measure,
Precision, Accuracy, Recall, ROC, and MCC. The authors concluded that the results obtained from
their study could serve as a benchmark for future comparisons between different SDP techniques.
In [20], researchers designed an Artificial Neural Network (ANN) tool to detect defective software
modules. They compared different training functions of ANN and identified that the Bayesian
Regularization training function outperformed others. The objective of this study was to decrease
the cost of software development by detecting faulty modules before they reach the testing stage, thus
reducing the burden on the quality assurance team.

3 Materials and Methods

The study introduces an intelligent system that employs data fusion to detect defective software
modules. The system integrates feature selection and decision-level ensemble machine learning fusion
techniques to improve the accuracy and efficiency of identifying faulty software modules. The ISDPS
proposed in this study can be viewed from two perspectives: external and internal. The exterior view,
as shown in Fig. 1, outlines the workflow surrounding the defect prediction system. The development
team initiates the workflow during the development stage of the software development life cycle
(SDLC). Understanding the surrounding scenario is crucial to comprehend the importance of the
proposed system. A software metric dataset is prepared during the process of software development.
The dataset consists of various quality metrics captured automatically or manually during develop-
ment. Every single dataset reflects a particular Software Component (SC) in which there are many
modules. Each module in a specific SC dataset is reflected by an instance, and the values of quality
attributes/features of that instance are populated during development. Each SC dataset consists of
various quality attributes (independent features) and one dependent feature (also known as output
class). Initially, the developed software components in SDLC are stored in Software Metric Dataset
Repository (SMDR). Each component has its Quality Metrics Dataset (QMD), which contains the
values of various quality attributes recorded during the development stage. The SMDR consists of two
further sub-repositories: The untested Software Components Repository (USCR) and Tested Software
Components Repository (TSCR). Initially, the developed components are not tested and are stored in
USCR. Some selected components from USCR are tested by the Quality Assurance (QA) team, and
an additional attribute is added to the QMD, known as “Result”. This column will reflect the nominal
value of “yes” if the particular module is defective and “no” if the module is non-defective. The tested
component, along with its QMD with result attribute, is stored in the TSCR sub-repository. When the
TSCR is initially populated with tested components, then the proposed ISDPS will come into work as
it will need the pre-labeled dataset for training.

Two or more datasets from TSCR are extracted into the training layer of the proposed defect
prediction system, where data fusion will be performed, and the prediction model is developed, which
will be stored in the cloud for later use. The testing layer of the proposed system will receive QMD as
input from USCR to perform real-time defect predictions. The “Result”attribute in QMD is populated
by the testing layer after prediction and then will be sent to the QA team. The QA team will add
the QMD to its related SC, and if the module is predicted as defective, then thorough testing of that
particular module will be performed, and the detail of identified defect will be sent to the development
team in SDLC. The development team will correct the defective module, and then it will be again

CMC, 2023, vol.75, no.3 6087

transferred to USCR for the next iteration. If the module is predicted as non-defective by the proposed
ISDPS, then it would be considered as good to go to the integration stage of SDLC.

Figure 1: External view of proposed ISDPS

The internal view (Fig. 2) of the proposed ISDPS contains two layers: training and testing. These
layers are comprised of several stages and activities. The workflow in the training layer initiates with
the extraction of pre-labeled QMDs from SMDR. Data fusion is the first stage of the training layer
in the proposed system, in which datasets of multiple software components will be extracted, and
instance-level fusion will be performed. The main objective of the data fusion process is to develop an
effective and efficient classification model, which can be used for prediction on diverse test datasets
from multiple sources. No doubt, training the model with higher accuracy on the fused dataset is
challenging but eventually fruitful for later use, especially when prediction has to be performed on
multiple datasets from multiple sources. However, it should be ensured that the nature of the test data
would be the same as that of the training dataset. For this study, five cleaned datasets were chosen
from NASA’s repository, including MW1, PC1, PC3, PC4, and CM1. The details of the used datasets
and their attributes are available in [21]. After extraction, all five datasets are fused. The fused dataset
consists of 3579 instances and 38 attributes. Of 38 attributes, 37 attributes are independent, whereas
one attribute named “Defective” is dependent, which aims to determine whether a module is defective.
The dependent attribute, also known as the output class, can contain two values, “Yes” for defective
modules and “No” for non-defective modules.

Pre-processing is the second stage of the training layer, which will deal with four data pre-
processing activities, including 1) cleaning, 2) normalization, 3) splitting of data for training and
testing, and 4) feature selection for efficient and effective prediction. The cleaning process of the
pre-processing stage will be responsible for handling the missing values in the dataset. The missing
values will be replaced by using the technique of mean imputation. Missing values in any attribute of
the dataset can misguide the classification model, which may result in low accuracy of the proposed
framework. The second activity deals with the normalization process, which scales the values of all
independent attributes to a range of 0 to 1. It has been observed that cleaning and normalization
activities aid the classification techniques to work efficiently and effectively. The third activity will
deal with the splitting of the dataset into the groups of training and testing datasets with a ratio of
70:30 by using the split class rule. The fourth and final activity of pre-processing stage will deal with

6088 CMC, 2023, vol.75, no.3

the selection of optimum features [14,15] from training and test sets by using a novel feature selection
(FS) technique. A novel filter-based ensemble feature selection (FEFS) technique is proposed in which
feature selection is performed three times in a nested way. The proposed FEFS technique consists
of four steps. First, the complete feature set of training data is given as input to the Correlation-
based FS technique with Genetic Search (GS) method. In the second step, Consistency based FS
is performed on complete training data with Best First (BF) search method. In the third step, an
intersection is performed among both of the resultant feature sets from step 1 and step 2 (Correlation
FS and Consistency FS). Finally, in step four, the feature set generated from the intersection operation
from step 3 is given as input again to the correlation-based FS technique with the GS method, and
the resultant feature set is selected from training and test datasets. The detailed steps of the proposed
FEFS technique are given below (Table 1).

Figure 2: Internal view of proposed ISDPS

Table 1: Proposed FEFS technique

Input:
Training Dataset: Dataset A
Test Dataset: Dataset B
Attribute Evaluator: Correlation FS, Consistency FS
Search Methods: GS—BF
Output:
n = numbers of features
Steps:
1 Dataset A → Correlation FS-GS → Subset 1: a1, a2 . . . , an;
2 Dataset A → Consistency FS-BF → Subset 2: b1, b2 . . . , bn;
3 Subset 1 Intersection Subset 2 → Subset 3: c1, c2 . . . , cn;
4 Subset 3: → Correlation FS-GS → Subset 4: d1, d2, . . . dn;
5 Select Subset 4 as Feature Set from Dataset A and Dataset B.

CMC, 2023, vol.75, no.3 6089

Classification is the third stage which deals with the development of classification models to
identify defective and non-defective modules. Selected features of pre-processed datasets (training and
testing) are used as input to the classification stage. The study employed three supervised machine
learning techniques, namely NB, SVM, and DT, for classification. These classifiers were fine-tuned
iteratively to achieve the highest possible accuracy on the testing dataset. During the tuning process
on training data, default parameters are used in NB as the performance decreases after optimization.
In SVM, the polynomial kernel is selected, and the value of the complexity parameter (C) is set to 1.
In DT, the confidence factor has been set to 0.3. The classification stage will end by producing the
optimized prediction models of the used supervised machine learning techniques.

Ensemble Modeling is the fourth stage in the training layer which deals with the development of
ensemble models by integrating the optimized classification classifiers (NB, SVM, and DT), which are
given as input to the ensemble modeling stage. The ensemble machine learning approaches can further
increase the prediction accuracy than individual optimized classification techniques [3,7,14,22,23].
Three ensemble techniques will be used for the development of ensemble models, including Bagging,
Voting, and Stacking. One by one, all of the optimized classification models are used as input to the
ensemble techniques for the development of ensemble models. Three ensemble models are developed
in the proposed system: Bagging with DT, Voting with NB, SVM, and DT, and Stacking with NB
and SVM along with DT as a Meta classifier. All three developed ensemble models have shown better
accuracy on test data than each of the optimized individual classifiers.

The fifth and final stage of the training layer deals with the fusion of ensemble machine-learning
techniques. This stage is responsible for decision-level fusion by integrating the predictive accuracy
of optimized ensemble models [24]. Fuzzy logic is used for decision-level fusion, where membership
functions are developed using if-then rules (as shown in Table 2). These rules form the basis of the
final prediction and enhance the accuracy of the defect prediction system. The fused ensemble model
is then stored in cloud storage for real-time predictions.

Table 2: Membership functions of proposed fusion method

Membership functions Graphical representation

∏
�() =

{
max

(
min

(
1,

0.5 − bg

0.05

)
, 0

)}

∏
() =

{
max

(
min

(
bg − 0.45

0.05
, 1

)
, 0

)}

(Continued)

6090 CMC, 2023, vol.75, no.3

Table 2: Continued
Membership functions Graphical representation

∏
V Y () =

{
max

(
min

(
1,

0.5 − vt

0.05

)
, 0

)}

∏
V N () =

{
max

(
min

(
vt − 0.45

0.05
, 1

)
, 0

)}

∏
sky () =

{
max

(
min

(
1,

0.5 − sk

0.05

)
, 0

)}

∏
skn () =

{
max

(
min

(
sk − 0.45

0.05
, 1

)
, 0

)}

∏
Ď () =

{
max

(
min

(
1,

0.5 −
0.05

)
, 0

)}

∏
Ď () =

{
max

(
min

(− 0.45
0.05

, 1
)

, 0
)}

If-Then conditions that are used to develop membership functions are given below:

IF (Bagging is yes and Voting is yes and Stacking is yes) THEN (Module is defective).

IF (Bagging is yes and Voting is yes and Stacking is no) THEN (Module is defective).

IF (Bagging is yes and Voting is no and Stacking is yes) THEN (Module is defective).

IF (Bagging is no and Voting is yes and Stacking is yes) THEN (Module is defective).

CMC, 2023, vol.75, no.3 6091

IF (Bagging is no and Voting is no and Stacking is also no) THEN (Module is not defective).

IF (Bagging is yes and Voting is no and Stacking is no) THEN (Module is not defective).

IF (Bagging is no and Voting is no and Stacking is yes) THEN (Module is not defective).

IF (Bagging is no and Voting is yes and Stacking is no) THEN (Module is not defective).

Fig. 3 depicts the ruled surface of the proposed fuzzy logic-based fusion method for final
prediction, in contrast to the bagging and voting ensemble techniques. In cases where both techniques
predict that the software module is not defective, the fused model will make the same prediction.
Likewise, if both techniques predict that the module is defective, the fused model will also predict that
the module is defective.

Figure 3: Rule surface of fused ensemble method with bagging and voting

Fig. 4 shows the graphical representation of fuzzy logic based if-then rule for the scenario; when
bagging and stacking, both techniques predict that the particular module is defective, whereas the
voting technique predicts the opposite (non-defective). In this case, the proposed technique would go
for a majority decision (defective).

Fig. 5 illustrates that if bagging and stacking both predict that the module is non-defective, the
proposed technique will also predict that the module is non-defective.

The testing layer is the implementation layer of the proposed ISDPS. In this layer, three activities
are performed. The first activity deals with the extraction of unlabeled QMD from USCR for the
prediction of defective software modules. The second activity involves extracting the fused model
from the cloud for prediction. The third activity of the testing layer deals with real-time prediction
in which unlabeled QMD is given as input to the fused model, which is then labeled after prediction.
The labeled QMD is attached to its related SC in TSCR and then sent back to the development life
cycle. If the software is predicted as defective, then the particular defect is rectified by the development
team; otherwise, the particular software component would be considered good to go for integration.

4 Results and Discussion

An empirical analysis was conducted to assess the effectiveness of the proposed ISDPS using
a fused software defect dataset. The dataset was created by combining five of NASA’s cleaned
datasets. The fused dataset contains 3579 instances, with 428 defective and 3151 non-defective. In

6092 CMC, 2023, vol.75, no.3

Figure 4: Result of proposed fused ensemble method with defective module (1)

Figure 5: Result of proposed fused ensemble method with non-defective module (0)

the pre-processing stage of the training layer, the dataset underwent cleaning and normalization
processes, followed by the splitting process, where the dataset was divided into training and test subsets
with a 70:30 ratio. The training subset comprised 2506 instances, while the test subset contained
1073 instances. A novel FEFS technique is proposed for effective and efficient prediction, which
is implemented on the complete feature set of training data to select the optimum feature set. The
proposed method chose 7 out of 37 independent features. The detail of the full features of the fused
dataset is available at [21], whereas the feature set selected by the proposed FEFS technique is shown
in Table 3.

CMC, 2023, vol.75, no.3 6093

Table 3: Selected features using the proposed FEFS technique

No. Selected features

1 LOC_BLANK
2 LOC_CODE_AND_COMMENT
3 CYCLOMATIC_DENSITY
4 PARAMETER_COUNT
5 HALSTEAD_CONTENT
6 NUM_OPERATORS
7 PERCENT_COMMENTS

In the proposed ISDPS, prediction is performed in three steps. Initially, three supervised machine
learning techniques (NB, SVM, and DT) are iteratively optimized for classification in the first step until
the highest possible accuracy is attained for each model. The optimized classification models created
from these classifiers are given to the second step of prediction, where three ensemble techniques
(Bagging, Voting, and Stacking) are used to integrate the predictive accuracy of used classifiers.
The classifiers are integrated by ensemble methods with all possible combinations until we get three
ensemble classification models, one from each ensemble technique that performed higher than the base
classifier. The results of ensemble techniques are given as input to the final prediction step, which is
empowered by fuzzy logic.

The accuracy measures used for the performance analysis of the proposed ISDPS are discussed
below:

Misrate = (AOR1/EOR0 + AOR0/EOR1)

EOR0 + EOR1

(1)

Accuracy = (AOR0/EOR0 + AOR1/EOR1)

EOR0 + EOR1

(2)

Positive Prediction Value = AOR1/EOR1

(AOR1/EOR1 + AOR0/EOR1)
(3)

Negative Prediction Value = AOR0/EOR0

(AOR0/EOR0 + AOR1/EOR0)
(4)

Specificity = AOR0/EOR0

(AOR0/EOR0 + AOR0/EOR1)
(5)

Sensitivity = AOR1/EOR1

(AOR1/EOR0 + AOR1/EOR1)
(6)

False Positive Ratio = 1 − Specificity (7)

False Positive Ratio = 1 − Specificity (8)

Likelihood Ratio Positive = Sensitivity
(1 − Specificity)

(9)

6094 CMC, 2023, vol.75, no.3

Likelihood Ratio Negative = (1 − Sensitivity)

Specificity
(10)

The training data, which consists of 2506 instances, are used to train the classifiers and ensemble
models. During the NB training process, 2061 instances are correctly predicted as negative, whereas 80
instances are correctly predicted as positive. The output result and achieved results can be compared
in Table 4, which reflects that the training process achieved 85.43% accuracy and a 14.57% miss rate
in NB. In the process of testing, 865 instances are correctly predicted as negative, whereas 46 instances
are correctly predicted as positive. After comparing the output result and expected results (Table 4),
84.90% accuracy is achieved, with a miss rate of 15.10% in NB testing.

Table 4: NB results

Training data Testing data

Samples = 2506 Output (AOR0, AOR1) Samples = 1073 Output (AOR0, AOR1)

Input Expected Result
(EOR0, EOR1)

AOR0

(Negative-0)
AOR1

(Positive-1)
Expected Result
(EOR0, EOR1)

AOR0

(Negative)
AOR1

(Positive)
EOR0 = 2206
(Negative-0)

2061 145 EOR0 = 945
(Negative-0)

865 80

EOR1 = 300
(Positive-1)

220 80 EOR1 = 128
(Positive-0)

82 46

In the training process of SVM, 2135 instances are correctly predicted as negative, whereas 40
instances are correctly predicted as positive. In the training process with SVM, 86.79% accuracy is
achieved, along with a miss rate of 13.21% after analyzing the results in Table 5. Testing results show
that 905 instances are correctly predicted as negative, whereas 24 instances are correctly predicted as
positive. After analyzing the expected and output results, the achieved accuracy in SVM testing is
86.58%, with a miss rate of 13.42%.

Table 5: SVM results

Training data Testing data

Samples = 2506 Output (AOR0, AOR1) Samples = 1073 Output (AOR0, AOR1)

Input Expected Result
(EOR0, EOR1)

AOR0

(Negative-0)
AOR1

(Positive-1)
Expected Result
(EOR0, EOR1)

AOR0

(Negative)
AOR1

(Positive)
EOR0 = 2206
(Negative-0)

2135 71 EOR0 = 945
(Negative-0)

905 40

EOR1 = 300
(Positive-1)

260 40 EOR1 = 128
(Positive-0)

104 24

In DT training, 2122 instances are correctly predicted as negatives, whereas 100 instances are
correctly predicted as positives. Upon reviewing the expected and achieved outputs presented in
Table 6, 88.67% accuracy with an 11.33% miss rate is achieved. In the testing process of DT, 884
instances are correctly predicted as negative, whereas 51 instances are correctly predicted as positive.
After analyzing the results (Table 6), 87.14% accuracy is achieved with a miss rate of 12.86%.

CMC, 2023, vol.75, no.3 6095

Table 6: DT results

Training data Testing data

Samples = 2506 Output (AOR0, AOR1) Samples = 1073 Output (AOR0, AOR1)

Input Expected result
(EOR0, EOR1)

AOR0

(Negative-0)
AOR1

(Positive-1)
Expected result
(EOR0, EOR1)

AOR0

(Negative)
AOR1

(Positive)
EOR0 = 2206
(Negative-0)

2122 84 EOR0 = 945
(Negative-0)

884 61

EOR1 = 300
(Positive-1)

200 100 EOR1 = 128
(Positive-0)

77 51

After the development of classification models using supervised machine learning techniques (NB,
SVM, DT), ensemble machine learning models are developed. In training with the bagging technique,
2205 instances are correctly predicted as negative, whereas 164 instances are predicted as positive.
After analyzing the training results shown in Table 7, 94.53% accuracy is achieved with a miss rate
of 5.47%. Testing with bagging correctly predicted 913 instances as negative, whereas no of correctly
predicted positive instances 55. Upon comparing the expected results with the achieved results, it can
be concluded that the testing yielded an accuracy of 90.21% and a miss rate of 9.79%.

Table 7: Bagging results

Training data Testing data

Samples = 2506 Output (AOR0, AOR1) Samples = 1073 Output (AOR0, AOR1)

Input Expected result
(EOR0, EOR1)

AOR0

(Negative-0)
AOR1

(Positive-1)
Expected result
(EOR0, EOR1)

AOR0

(Negative)
AOR1

(Positive)
EOR0 = 2206
(Negative-0)

2205 1 EOR0 = 945
(Negative-0)

913 32

EOR1 = 300
(Positive-1)

136 164 EOR1 = 128
(Positive-0)

73 55

Training with voting correctly predicted 2196 instances as negative, whereas 39 instances were
correctly predicted as positive. After analyzing the results from Table 8, 89.19% accuracy is achieved
with a 10.81% miss rate. The testing process with voting correctly predicted the 897 instances as
negatives, whereas 58 instances were correctly predicted as positives. The results reflect 89% accuracy
and an 11% miss rate.

During the training process with stacking ensemble, 2201 instances are correctly classified as
negatives, whereas 53 instances are correctly predicted as positives. Table 9 presents the output results
and expected outcome, demonstrating an accuracy of 89.94% and a miss rate of 10.06%. Testing with
stacking ensemble correctly classified 911 instances as negatives, whereas 54 instances were classified
as positives. A comparison of the expected and output results reveals an accuracy of 89.93% and a
miss rate of 10.07%.

Finally, the test dataset is given to the proposed model, which correctly predicted 926 instances
as negatives out of 945 instances, whereas, on the other hand, it correctly predicted 62 instances as

6096 CMC, 2023, vol.75, no.3

Table 8: Voting results

Training data Testing data

Samples = 2506 Output (AOR0, AOR1) Samples = 1073 Output (AOR0, AOR1)

Input Expected result
(EOR0, EOR1)

AOR0

(Negative-0)
AOR1

(Positive-1)
Expected result
(EOR0, EOR1)

AOR0

(Negative)
AOR1

(Positive)
EOR0 = 2206
(Negative-0)

2196 10 EOR0 = 945
(Negative-0)

897 48

EOR1 = 300
(Positive-1)

261 39 EOR1 = 128
(Positive-0)

70 58

Table 9: Stacking results

Training Data Testing Data

Samples = 2506 Output (AOR0, AOR1) Samples = 1073 Output (AOR0, AOR1)

Input Expected result
(EOR0, EOR1)

AOR0

(Negative-0)
AOR1

(Positive-1)
Expected result
(EOR0, EOR1)

AOR0

(Negative)
AOR1

(Positive)
EOR0 = 2206
(Negative-0)

2201 5 EOR0 = 945
(Negative-0)

911 34

EOR1 = 300
(Positive-1)

247 53 EOR1 = 128
(Positive-0)

74 54

positives out of 128 instances. The results are shown in Table 10, according to which the proposed
system has achieved 92.08% accuracy and a 7.92% miss rate.

Table 10: Fused ensemble testing

N = 1073 (No. of samples) Output result (AOR0, AOR1)

Input Expected result (EOR0, EOR1) AOR0 (Negative-0) AOR1 (Positive-1)
EOR0 = 945 (Negative-0) 926 19
EOR1 = 128 (Positive-1) 66 62

Table 11 shows the detailed results of base classifiers and ensemble classification models on
training and testing data, along with the results of the proposed ISDPS on test data. The analysis
showed that the proposed system outperformed both the base classifiers (NB, SVM, and DT) and the
ensembles (Bagging, Voting, and Stacking). It can be observed that the results achieved from ensemble
models are better than the results of base classifiers, and the results of final prediction by decision-level
fusion with fuzzy logic further increased the accuracy to 92.08%. The effectiveness of the proposed
system can be inferred from its performance on the fused dataset in comparison to other models.

CMC, 2023, vol.75, no.3 6097

T
ab

le
11

:
D

et
ai

le
d

re
su

lt
s

of
cl

as
si

fi
er

s,
en

se
m

bl
es

,a
nd

en
se

m
bl

e
fu

si
on

M
L

A
lg

or
it

hm
D

at
as

et
A

cc
ur

ac
y

M
is

s
ra

te
Se

ns
it

iv
it

y
Sp

ec
if

ic
it

y
Po

si
ti

ve
pr

ed
ic

ti
on

va
lu

e

N
eg

at
iv

e
pr

ed
ic

ti
on

va
lu

e

F
al

se
po

si
ti

ve
va

lu
e

F
al

se
ne

ga
ti

ve
va

lu
e

L
ik

el
ih

oo
d

ra
ti

o
ne

ga
ti

ve

L
ik

el
ih

oo
d

ra
ti

o
po

si
ti

ve

N
aï

ve
B

ay
es

T
ra

in
in

g
0.

85
43

0.
14

57
0.

26
67

0.
93

43
0.

35
56

0.
90

36
0.

06
57

0.
73

33
0.

78
49

4.
05

70
T

es
ti

ng
0.

84
90

0.
15

10
0.

35
94

0.
91

53
0.

36
51

0.
91

34
0.

08
47

0.
64

06
0.

69
99

4.
24

51
Su

pp
or

t
ve

ct
or

m
ac

hi
ne

s
T

ra
in

in
g

0.
86

79
0.

13
21

0.
13

33
0.

96
78

0.
36

04
0.

89
14

0.
03

22
0.

86
67

0.
89

55
4.

14
27

T
es

ti
ng

0.
86

58
0.

13
42

0.
18

75
0.

95
77

0.
37

5
0.

89
69

0.
04

23
0.

81
25

0.
84

84
4.

42
97

D
ec

is
io

n
tr

ee
T

ra
in

in
g

0.
88

67
0.

11
33

0.
33

33
0.

96
19

0.
54

35
0.

91
39

0.
03

81
0.

66
67

0.
69

31
8.

75
40

T
es

ti
ng

0.
87

14
0.

12
86

0.
39

84
0.

93
54

0.
45

54
0.

91
99

0.
06

46
0.

60
16

0.
64

31
6.

17
25

B
ag

gi
ng

T
ra

in
in

g
0.

94
53

0.
05

47
0.

54
67

0.
99

95
0.

99
39

0.
94

19
0.

00
05

0.
45

33
0.

45
35

12
05

.9
46

7
T

es
ti

ng
0.

90
21

0.
09

79
0.

42
97

0.
96

61
0.

63
22

0.
92

60
0.

03
39

0.
57

03
0.

59
03

12
.6

89
2

V
ot

in
g

T
ra

in
in

g
0.

89
19

0.
10

81
0.

13
0.

99
55

0.
79

59
0.

89
38

0.
00

45
0.

87
0.

87
40

28
.6

78
T

es
ti

ng
0.

89
00

0.
11

00
0.

45
31

0.
94

92
0.

54
72

0.
92

76
0.

05
08

0.
54

69
0.

57
61

8.
92

09
0

St
ac

ki
ng

T
ra

in
in

g
0.

89
94

0.
10

06
0.

17
67

0.
99

77
0.

91
38

0.
89

91
0.

00
23

0.
82

33
0.

82
52

77
.9

45
3

T
es

ti
ng

0.
89

93
0.

10
07

0.
42

18
0.

96
40

0.
61

36
0.

92
49

0.
03

60
0.

57
81

0.
59

97
11

.7
25

7
P

ro
po

se
d

fu
ss

ed
en

se
m

bl
e

T
es

ti
ng

0.
92

08
0.

07
92

0.
48

44
0.

97
99

0.
76

54
0.

93
35

0.
02

01
0.

51
56

0.
52

62
24

.0
91

3

6098 CMC, 2023, vol.75, no.3

The performance of the proposed ISDPS is compared with other techniques in terms of accuracy
in Table 12. It is reflected that the accuracy achieved by the proposed ISDPS is higher than other
published techniques. The data fusion technique usually decreases the accuracy of the prediction
system as training of classification models on the dataset extracted from multiple sources is challenging
as compared to training on a dataset extracted from a single source. However, the proposed FEFS
technique for the selection of optimum attributes as well as the multi-step prediction system played
crucial roles in achieving high accuracy of the proposed ISDPS.

Table 12: Accuracy comparison of proposed system with other methods

Algorithm Accuracy % Miss rate %

MLP-FS [15] 85.13 14.87
Boosting-OPT-MLP [16] 79.08 20.92
ANN-BR-fused [17] 85.45 14.55
FS-variant ensemble ML [18] 84.97 15.03
NB [19] 82.65 17.35
MLP [25] 89.96 10.04
Tree [25] 84.94 15.06
Bagging ensemble [26] 80.20 19.8
Boosting ensemble [26] 81.30 18.7
Heterogeneous classifier [27] 89.20 10.8
Stacked ensemble [28] 89.10 10.9
RBFNN-based ADBBO [29] 88.65 11.35
LWL-based bagging ensemble [30] 90.10 9.9
Proposed ensemble ml fusion approach 92.08 7.92

5 Conclusion

Software testing is considered an expensive activity of SDLC, which aims to ensure the high
quality of the end product by removing software bugs. Anticipating software faults before the testing
phase can assist the quality assurance team in directing their attention towards potentially defective
software modules during the testing process instead of having to scrutinize every module. This process
would limit the cost of the testing process, which would ultimately reduce the overall development
cost without compromising on software quality. The current study aimed to develop a system that
can predict faulty software modules before the testing stage by utilizing data fusion, feature selection,
and decision-level ensemble machine-learning fusion techniques. A novel FEFS technique is proposed
to select optimum features from the input dataset. The proposed system used NB, SVM, and DT
for initial predictions, followed by the development of ensemble models using Bagging, Voting,
and Stacking. The predictions from ensemble models are then given to the decision-level fusion
phase, which works on a fuzzy logic-based technique for the final prediction. The decision-level
fusion integrated the predictive accuracy of ensemble models by if-then rules-based fuzzy logic. Five
clean datasets are fused from NASA’s software repository to implement the proposed system. After
comparing the performance of the proposed ISDPS with other defect prediction techniques published
in the literature, it was found that the ISDPS outperformed all other methods on the fused dataset.

CMC, 2023, vol.75, no.3 6099

The proposed system achieved an accuracy of 92.08% on the fused data, indicating the effectiveness of
the novel FEFS and decision-level ensemble machine-learning fusion techniques. For future work, it is
suggested that hybrid filter-wrapper feature selection and deep extreme machine-learning techniques
should be incorporated into the proposed system. Moreover proposed design should also be optimized
for cross-project defect prediction problems.

Acknowledgement: Thanks to our families & colleagues who supported us morally.

Funding Statement: This work was supported by the Center for Cyber-Physical Systems, Khalifa
University, under Grant 8474000137-RC1-C2PS-T5.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] F. Matloob, S. Aftab, M. Ahmad, M. A. Khan, A. Fatima et al., “Software defect prediction using

supervised machine learning techniques: A systematic literature review,” Intelligent Automation & Soft
Computing, vol. 29, no. 2, pp. 403–421, 2021.

[2] D. R. Ibrahim, R. Ghnemat and A. Hudaib, “Software defect prediction using feature selection and random
forest algorithm,” in Int. Conf. on New Trends in Computer Science, Amman, Jordan, pp. 252–257, 2017.

[3] F. Matloob, T. M. Ghazal, N. Taleb, S. Aftab, M. Ahmad et al., “Software defect prediction using ensemble
learning: A systematic literature review,” IEEE Access, vol. 10, pp. 13123–13143, 2022.

[4] A. Boucher and M. Badri, “Software metrics thresholds calculation techniques to predict fault-proneness:
An empirical comparison,” Information and Software Technology, vol. 96, pp. 38–67, 2018.

[5] L. Chen, B. Fang, Z. Shang and Y. Tang, “Tackling class overlap and imbalance problems in software defect
prediction,” Software Quality Journal, vol. 26, no. 1, pp. 97–125, 2018.

[6] S. Goyal and P. K. Bhatia, “Empirical software measurements with machine learning,” in Computational
Intelligence Techniques and Their Applications to Software Engineering Problems, Boca Raton: CRC Press,
pp. 49–64, 2020.

[7] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya et al., “An ensemble oversampling model for class
imbalance problem in software defect prediction,” IEEE Access, vol. 6, pp. 24184–24195, 2018.

[8] H. K. Lee and S. B. Kim, “An overlap-sensitive margin classifier for imbalanced and overlapping data,”
Expert Systems with Applications, vol. 98, pp. 72–83, 2018.

[9] D. L. Miholca, G. Czibula and I. G. Czibula, “A novel approach for software defect prediction through
hybridizing gradual relational association rules with artificial neural networks,” Information Sciences, vol.
441, pp. 152–170, 2018.

[10] R. Özakıncı and A. Tarhan,. “Early software defect prediction: A systematic map and review,” Journal of
Systems and Software, vol. 144, pp. 216–239, 2018.

[11] S. S. Rathore and S. Kumar, “Towards an ensemble based system for predicting the number of software
faults,” Expert Systems with Applications, vol. 82, pp. 357–382, 2017.

[12] S. S. Rathore and S. Kumar, “A study on software fault prediction techniques,” Artificial Intelligence
Review, vol. 51, no. 2, pp. 255–327, 2019.

[13] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. T. M. Phuong et al., “Empirical study of software defect
prediction: A systematic mapping,” Symmetry, vol. 11, no. 2, pp. 2–28, 2019.

[14] F. Matloob, S. Aftab and A. Iqbal, “A framework for software defect prediction using feature selection and
en-semble learning techniques,” International Journal of Modern Education and Computer Science, vol. 11,
no. 12, pp. 14–20, 2019.

6100 CMC, 2023, vol.75, no.3

[15] A. Iqbal and S. Aftab, “A classification framework for software defect prediction using multi-filter feature
selection technique and mlp,” International Journal of Modern Education and Computer Science, vol. 12,
no. 1, pp. 18–25, 2020.

[16] A. Iqbal and S. Aftab, “Prediction of defect prone software modules using mlp based ensemble techniques,”
International Journal of Information Technology and Computer Science, vol. 12, no. 3, pp. 26–31, 2020.

[17] M. S. Daoud, S. Aftab, M. Ahmad, M. A. Khan, A. Iqbal et al., “Machine learning empowered software
defect prediction system,” Intelligent Automation & Soft Computing, vol. 31, no. 32, pp. 1287–1300, 2022.

[18] U. Ali, S. Aftab, A. Iqbal, Z. Nawaz, M. S. Bashir et al., “Software defect prediction using variant based
ensemble learning and feature selection techniques,” International Journal of Modern Education & Computer
Science, vol. 12, no. 5, pp. 29–40, 2020.

[19] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana et al., “Performance analysis of machine learning techniques
on software defect prediction using nasa datasets,” International Journal of Advanced Computer Science and
Applications, vol. 10, no. 5, pp. 300–308, 2019.

[20] R. Mahajan, S. K. Gupta and R. K. Bedi, “Design of software fault prediction model using br technique,”
Procedia Computer Science, vol. 46, pp. 849–858, 2015.

[21] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data quality: Some comments on the nasa software defect
datasets,” IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013.

[22] Y. J. Cruz, M. Rivas, R. Quiza, A. Villalonga, R. E. Haber et al., “Ensemble of convolutional neural
networks based on an evolutionary algorithm applied to an industrial welding process,” Computers in
Industry, vol. 133, pp. 103530–103538, 2021.

[23] M. Shahhosseini, G. Hu and H. Pham, “Optimizing ensemble weights and hyperparameters of machine
learning models for regression problems,” Machine Learning with Applications, vol. 7, pp. 100251–100260,
2022.

[24] A. U. Rahman, S. Abbas, M. Gollapalli, R. Ahmed, S. Aftab et al., “Rainfall prediction system using
machine learning fusion for smart cities,” Sensors, vol. 22, no. 9, pp. 3504–3519, 2022.

[25] S. Goyal and P. K. Bhatia, “Comparison of machine learning techniques for software quality prediction,”
International Journal of Knowledge and Systems Science, vol. 11, no. 2, pp. 20–40, 2020.

[26] A. O. Balogun, F. B. L. Balogun, H. A. Mojeed, V. E. Adeyemo, O. N. Akande et al., “Smote-based
homogeneous ensemble methods for software defect prediction,” in 22nd Int. Conf. on Computational
Science and its Applications, Cagliari, Italy, pp. 615–631, 2022.

[27] T. T. Khuat and M. H. Le, “Evaluation of sampling-based ensembles of classifiers on imbalanced data for
software defect prediction problems,” SN Computer Science, vol. 1, no. 2, pp. 1–16, 2020.

[28] S. Goyal and P. K. Bhatia, “Heterogeneous stacked ensemble classifier for software defect prediction,”
Multimedia Tools and Applications, vol. 81, pp. 37033–37055, 2022.

[29] P. Kumudha and R. Venkatesan, “Cost-sensitive radial basis function neural network classifier for software
defect prediction,” the Scientific World Journal, vol. 2016, pp. 1–20, 2016.

[30] A. S. Abdou and N. R. Darwish, “Early prediction of software defect using ensemble learning: A
comparative study,” International Journal of Computer Applications, vol. 179, no. 46, pp. 29–40, 2018.

	Data and Ensemble Machine Learning Fusion Based Intelligent Software Defect Prediction System
	1 Introduction
	2 Related Work
	3 Materials and Methods
	4 Results and Discussion
	5 Conclusion
	References

