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Abstract: Existing image captioning models usually build the relation between
visual information and words to generate captions, which lack spatial infor-
mation and object classes. To address the issue, we propose a novel Position-
Class Awareness Transformer (PCAT) network which can serve as a bridge
between the visual features and captions by embedding spatial information
and awareness of object classes. In our proposal, we construct our PCAT
network by proposing a novel Grid Mapping Position Encoding (GMPE)
method and refining the encoder-decoder framework. First, GMPE includes
mapping the regions of objects to grids, calculating the relative distance among
objects and quantization. Meanwhile, we also improve the Self-attention to
adapt the GMPE. Then, we propose a Classes Semantic Quantization strategy
to extract semantic information from the object classes, which is employed
to facilitate embedding features and refining the encoder-decoder framework.
To capture the interaction between multi-modal features, we propose Object
Classes Awareness (OCA) to refine the encoder and decoder, namely OCAE

and OCAD, respectively. Finally, we apply GMPE, OCAE and OCAD to
form various combinations and to complete the entire PCAT. We utilize the
MSCOCO dataset to evaluate the performance of our method. The results
demonstrate that PCAT outperforms the other competitive methods.

Keywords: Image captioning; relative position encoding; object classes
awareness

1 Introduction

Image captioning is the research to generate human descriptions for images [1–3]. Recently, image
captioning makes great progress because of improved classification [4–6], object detection [7,8] and
machine translation [9]. Inspired by these, many researchers propose their methods based on the
encoder-decoder framework, in which the images are encoded to features by pre-trained Convolutional
Neural Network (CNN) and then decoded to sentences by Recurrent Neural Network (RNN) [10,11],
Transformer [12] or Bert [13] models. In addition, the attention mechanism has been proposed to
help the model build relevance between image regions and the generated sentence [14–17]. Therefore,
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the concentration of improving image caption can be summarized as two aspects: (1) optimizing the
image representation [14,17–19], including the visual feature, position and classes information, and (2)
improving the process of image representation by modifying the structure [14,20].

Objectively, when a man tries to generate a sentence for an image, he will implement three steps:
(1) get the region and classes of objects, (2) build the relationship among them, and (3) search the
appropriate words to complete the whole caption. However, the researches on image captioning
tend to overlook the first step and focus on the latter steps to construct directly the relationship
between the visual features and words [12,20–23]. According to the latest research, the image can
be represented by object-attribute region-based features [14] or grid features [19] whose classes and
position information are dropped. Recently, Wu et al. [24] revisit the position encoding for visual
Transformer and demonstrate that excellent relative/absolute position encoding can improve the
performance of visual features for object recognition & detection. Nevertheless, object positions often
fall into disuse for image captioning, which inevitably results in the loss of spatial information. Besides,
Li et al. [25] propose the feature pairs to solve the problem between the image features and language
features, and then apply the big-data pre-training to generate a corpus which is so time-consuming
with the Bert model.

With the enlightenment from the aforementioned works, we propose the Position-Class Awareness
Transformer (PCAT) network for image captioning, where the network is transformer-based with
distinctive position encoding and structure of class feature embedding. On the one hand, we propose
a relative position encoding method to quantize the spatial information to vectors for CNN-based
visual features. Then, we embed these quantized vectors into the Self-attention [12] (SA) module to
ameliorate the relation among objects for the encoder phase. On the other hand, we embed class names
as the language vectors and reconstruct the Transformer, which can build the semantics relationship
among the objects and narrow the gap from the vision to captions, to adopt the class information from
detected objects.

In the paper, we exploit Transformer to construct our framework. In the encoder, a novel relative
position encoding method is proposed to model the relationships among the objects and update it
to the Self-attention modules. Simultaneously, we construct an extra feature processing module to
obtain the semantic association of classes in an image. In the decoder, we improve the block units by
adding an independent attention unit, which can bridge the gap from caption features to visual features.
We employ the MSCOCO dataset and perform quantitative and qualitative analyses to evaluate our
method. The experiment results demonstrate that our method achieves competitive performance with
138.3% CIDEr scores.

The contributions include:

1. We propose the Position-Class Awareness Transformer (PCAT) network to boost image
captioning by the spatial information and detected object classes.

2. We propose a relative position encoding method, namely Grid Mapping Position Encoding
(GMPE), intuitively measuring the distances of the objects for the Self-attention module, to
strengthen the correlation and subordination.

3. We propose a Classes Semantic Quantization strategy to improve the representation of class
names and refine the encoder-decoder framework by Object Classes Awareness (OCA) to
model the interaction between vision and language.
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2 Related Work
2.1 Image Captioning

Solutions for image captioning are proposed upon the encoder-decoder in recent years. For
example, Vinyals et al. [26] propose the CNN-LSTM architecture to encode the image into features
and decode them into a caption. Anderson et al. apply the two-layer Long Short-Term Memory
(LSTM) network to concentrate on the weighting stage. These methods all employ the RNN-based
decoder, which may lose relevance if the two generating words have a large step interval [23]. Until
Google proposes the Transformer [12] which applies the Self-attention to calculate the similarity matrix
between vision and language, image captioning is trapped in this issue.

Transformer is still an encoder-decoder framework consisting of the attention and Feed Forward
Network. Upon this, some optimized Transformers are proposed to obtain better features by improv-
ing the structure of the model. M2-Transformer [22] encodes image regions and their relationships
into a multi-layer structure to fuse both shallow and deep relationships. Then, the generation of
sentences adopts a multi-level structure by low- and high-level visual relations, which is better than the
application of single semantic features. However, M2-Transformer is an optimization of Transformer,
it still researches the feature and can’t solve the splitting problem of cross-modal feature conversion for
image captioning. To address this issue, X-Transformer [20] focuses on the interaction between image
and language by spatial and channel bilinear attention distribution. According to this improvement, X-
Transformer achieves excellent performance in 2020. Furthermore, Zhang et al. [19] propose RSTNet
to count the contribution of visual features and context features while generating fine-grained captions
by novel adaptive attention. Meanwhile, RSTNet is the first to apply the grid features of the image
for image captioning and obtain excellent performance. Since 2021, many pre-training methods for
image captioning are proposed. For example, Zhang et al. [18] and Li et al. [25] research the visual
representation of an image and propose the grid features and pre-training strategy of visual objects
features respectively. The pre-training methods apply big data to construct relationships between the
visual features and language features and achieve powerful performance for image captioning.

2.2 Self-Attention and Position Encoding in Transformer

Self-attention is the sub-unit of Transformer, which maps the query, key and value to the output.
Moreover, for each input token vi ∈ R

d, the Self-attention can output a corresponding sequence zi ∈ R
d

which can be computed as follows:

zi =
n∑

j=1

∂i,j

(
vjWV

)
(1)

∂i,j = exp
(
δi,j

)
∑n

k=1 exp
(
δi,k

) (2)

δi,j =
(
viWQ

) (
vjWK

)T

√
d

(3)

where the projections W Q, W K , W V ∈ R are trainable matrixes, ∂ is the SoftMax function and δ is the
scaled dot-product attention.
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The position encoding methods that we discuss are the absence of the image captioning encoder.
As we know, the position encoding is initially designed to generate the order of sequence for the
embedding token [12] named absolute position encoding, which can be formulated as:

vi = vi + pi (4)

where the pi is the positional encodings and vi ∈ R
d
v . There are several methods to accomplish the

encoding such as the sine and cosine functions and the learnable parameters [12,27].

Besides the absolute position encoding, researchers recently reconsider the pairwise relationships
between the tokens. Relative position encoding is significant for the tasks that request distance or
sequence to measure the association [24,28]. The relative position between tokens vi and vj is encoded
to pQ

i,j, pK
i,j, pV

i,j ∈ R
d and embedded into the Self-attention, which can be defined as:

vQ
i = viWQ + pQ

i,j (5)

vK
j = vjWK + pK

i,j (6)

vV
j = vjWV + pV

i,j (7)

Although relative position encoding has been widely applied in object detection, it is hardly
employed in image captioning. Considering the semantic information of the relative distance, we
believe it can advance the interaction of vision and language.

3 The Proposed Method

The architecture of the PCAT network is presented in Fig. 1. We use the transformer-based
framework. The encoder includes the N refining blocks which are in charge of embedding position and
objects classes information to capture the relationship among detected objects. The decoder applies
the image features and reconstructs the blocks to embed the object classes information between the
captions and visual features to bridge them.

Figure 1: Overview of our proposed PCAT network
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3.1 Grid Mapping Position Encoding

As the extra information of the objects in an image, position encoding is always ignored for image
captioning. To re-weigh the attention by the spatial information, we design a novel learnable spatial
grid feature map to improve position encoding, as well as update the Self-attention to adopt it.

Given the objects detected in an image I , we first extract their center point position, height and
width of regions as Pi = {

p′
i, p′′

i , hi, wi

}
. Then, we design a learnable spatial grid feature map M and set

its size to m × m, as shown in Fig. 2, and apply the data process θ to work out the absolute distance
encoding dA

i via the objects’ positions Pi and the M, which can be formulated as:

dA
i = Mi

(
θ

(
p′

i

)
, θ

(
p′′

i

)) + Mbias

(
p′

i, p′′
i , hi, wi

)
(8)

where Mi (, ) denotes the position grid feature with indexes (the blue box in Fig. 2) and Mbias is the
compensation of the extra region which can’t be covered by a grid (the shaded area in Fig. 2). Finally,
we apply the Euclidean distance and linearization to compute relative distance and obtain the relative
distance encoding pi,j.

Figure 2: Illustration of Grid Mapping

As the spatial information of objects, we refine the Self-attention of the encoder (which is inspired
by the contextual mode in [24]) to embed the relative position encodings pi,j, as shown in the encoder
in the green box of Fig. 1 and the optimized Self-attention in Fig. 3.

Considering the interaction of visual features of objects v, we regard the relative position encoding
pi,j as the bias for the similarity matrix vQ

i

(
vK

j

)T
of query and key. Therefore, δ in Eq. (3) can be

refined as:

δi,j =
(
viWQ

p

) (
vjWK

)T + (
viWQ

p

) (
pi,j

)T

√
d

(9)

where the projection WQ
p ∈ R is trainable matrixes.

Grid Mapping. The reason that Transformer for image captioning abandons the position encoding
while encoding is that image is 2D and the regions of objects are not a sequence. To calculate the
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position on a 2D image and define the absolute distance encoding dA
i , we propose an undirected

mapping method, for the process θ and feature map Mi&Mbias.

Considering that each grid of feature map M possesses a fixed index which can be represented
as a 2D sequence, what we should concentrate on is that an object region covers how many grids.
Unfortunately, we can hardly map an object region to only a grid region entirely. Thus, we define a
parameter Mbias to represent the partial feature map of neighbor grids. According to this issue, we first
calculate the corresponding indexes of the covered grids for each of the detected regions and find out
the center of the covered grids (the blue box in Fig. 2), which can be formulated as:

θ
(
p′

i

) =
⌈

p′
i

hI
m

⌉
(10)

θ
(
p′′

i

) =
⌈

p′′
i

wI
m

⌉
(11)

where hI and wI refer to the height and width of I . Then, we collect the 8-neighbor grids of the
computed Mi and the process can be followed as:

Mbias =
8∑

n=1

(
λnMn

i

)
(12)

where λn is the intersection between the nth-neighbor grid and Mbias, calculated by Pi = {
p′

i, p′′
i , hi, wi

}
.

Note that if the 8-neighbor grids may not cover the target entirely, we can calculate the all covered grid
features for Mbias, except the center grid, by the approach of concentric circles with different weights.
The 8-neighbor is the normal situation of concentric circles. Therefore, we can obtain the absolute
position encoding dA

i .

Figure 3: Illustration of optimized Self-attention with position encoding

Relative Position Encoding. The relative position encoding pi,j is determined by the relative distance
calculation and the correlation between objects. Note that anyone relative distance isn’t mapped into
an integer because the semantic distance between two objects can’t altogether be replaced with position
distance. Therefore, we follow Eq. (8) to obtain the two mapped absolute distance encodings dA

i and dA
j ,

and measure their relative distance encoding dR
i,j. Considering that the order of the words responding
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objects can’t be predicted while generating, we regard mathematics vectors dA
i and dA

j as pA
i and pA

j to
measure their Euclidean distance and linearize them into the encoding pi,j influenced by captions:

dR
i,j =

√(
pA

i − pA
j

)2
(13)

pi,j = dR
i,jWR (14)

where WR ∈ R is a trainable matrix.

3.2 Object Classes Awareness Methods

In contrast to the positional encodings, classes are the semantic information of objects. Classes
are explained as the two different forms of token: (a) they are the attributes of the visual objects; (b)
they are the sources of words in the captions. According to these two characteristics, we propose the
Classes Semantic Quantization strategy to quantize the objects-classes word, as well as the Object
Classes Awareness network (OCA) to refine the encoder-decoder framework.

Classes Semantic Quantization

The objects-classes are essentially the words wCls. To quantize them and to ensure they hold the
same semantics field as the captions, we utilize the words dictionary (Section 4.1) from the dataset to
quantize the wCls to word embedding vectors vCls:

vCls = wClsWe (15)

where We is the word embedding matrix. Note that some classes are word groups gCls ={
w1

Cls, w2
Cls, . . . , wk

Cls |k ∈ N∗ }, such as “hot dog”, “traffic lights” and “fire hydrant”. If the word group
can be represented by the core word, for example the “fire hydrant” is almost equivalent to the word
“hydrant”, we will crop the auxiliary word. Besides, if the word group retains the new semantics
different from any word, we will add their vectors together. The process can be defined as a piecewise
function:

vCls =
{

wn
ClsWe, ∀wn

Cls ≈ gCls∑k

n=1

(
wn

ClsWe

)
, ∃wn

Cls 	= gCls
(16)

where gCls represents the word group and n ∈ {1, 2, . . . , k}.
Encoder

For the encoder, we quantize the class words to the vectors vCls and accept them as the tokens which
are homologous with the visual features v of detected objects. We refine the encoder by improving the
encoder block. The OCA module (the purple box in Fig. 1) is proposed to build the relationship among
classes, which is identical to the Self-attention for the v. We apply the extra multi-head Self-attention
(MHSA), residual structure and layer-normalization (LayerNorm) to model the semantic relationship
of objects, which can be defined as:

zCls
nhead

= SAnhead

(
vCls, vCls, vCls

)
(17)

ZCls
head =

[
zCls

1 , zCls
2 , . . . , zCls

nhead

]
W0

E (18)

ZCls = LayerNorm
(
vCls + ReLU

(
ZCls

head

))
(19)

where nhead means the n-th head of the MHSA, the projection W0
E ∈ R is a learnable matrix, the [,] is

the concatenation of the vectors, ReLU is the activation function and ZCls
head, ZCls ∈ R

d are the results
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of MHSA for classes vectors and LayerNorm respectively. Besides, we have to calculate them without
sharing layers because vCls possess a different modality from the v.

In this phase, we propose a fusion strategy to embed class information for the vision encoder,
namely OCAE. We provide ZCls

head for the visual features v to add semantic information and help the
model optimize relationships among objectives. As the blue dashed in Fig. 1, we input ZCls

head and v
simultaneously. Considering the improved Self-attention with position encoding, we can just renovate
the v with ZCls

head, defined as:

v = v + ZCls
head (20)

Decoder

The decoder aims to generate the final captions with the visual feature and class information
from the encoder. As shown in the blue box of Fig. 1, we refine the decoder with an additional
feature processing module that can embed class information between language features and visual
features, namely OCAD. The refining decoder consists of N blocks each of which can be divided
into three modules: (a) Language Masked MHSA Module, which can achieve the interaction in the
generated words; (b) Bridge MHSA Module (words-to-classes), which includes an MHSA, the residual
connection and a LayerNorm and can be regarded as the interaction between caption words and
detected objects names; (c) Cross MHSA Module (classes-to-vision), which contains an MHSA, a
feed-forward Network (FFN), the residual connections, the LayerNorms, a linear and a SoftMax
function and generates the caption word by word eventually.

Language Masked MHSA Module. We apply this module to build the relations (words-to-words)
among the words y1: t−1 that can be represented as:
∼
yt−1 = LayerNorm

(
yt−1 + MHSA

(
yt−1W

Q
l , yt−1WK

l , yt−1WV
l

) )
(21)

where WQ
l , WK

l , WV
l ∈ R are learnable matrixes and yt−1 indicates the vectors of the word at

(t − 1)-th step.

Bridge MHSA Module (words-to-classes). Because a detected object itself corresponds to a region
and the class of this object is semantic, we propose the structure of words-to-classes-to-vision. This
module aims to model the relationship between words

∼
yt−1 and class features ZCls. Therefore, we

construct bridge attention to capture the class context information, which denotes the primary multi-
modal interaction to bridge language and vision by classes and can be formulated as:

κt−1 = MHSA
(∼

yt−1W
Q
wc, ZClsWK

wc, ZClsWV
wc

)
(22)

∼
Z

Cls

t−1 = LayerNorm
(
ZCls + κt−1W0

wc

)
(23)

where WQ
wc, WK

wc, WV
wc, W0

wc ∈ R are learnable matrixes,
∼
Z

Cls

t−1 ∈ R
(t−1)×d denotes the output of the Bridge

MHSA with the
∼
yt−1 and is exploited as the input of Cross MHSA Module (classes-to-vision).

Cross MHSA Module (classes-to-vision). This module aims at modeling the relationship between

the attended classes
∼
Z

Cls

and visual features Z, which refers to another multi-modal crossing to bridge
language and vision by MHSA with classes and vision. The process can be given by:

λt−1 = MHSA
(

∼
Z

Cls

t−1W
Q
cv, ZWK

cv, ZWV
cv

)
(24)
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∼
Zt−1 = LayerNorm

(
Z + λt−1W0

cv

)
(25)

ycv
t−1 = LayerNorm

( ∼
Zt−1 + FFN

( ∼
Zt−1

))
(26)

where WQ
cv, WK

cv, WV
cv, W0

cv ∈ R are learned parameters,
∼
Z

Cls

t−1 from the former module is input into MHSA
as query, and visual features Z which are composed of position information from the encoder are fed
into MHSA as key and value.

The distribution of the vocabulary is as follows:

p (yt|y1: t−1) = Softmax
(
ycv

t−1W
y
)

(27)

where Wy ∈ R is a learnable matrix.

3.3 Training and Objectives

Train by Cross-Entropy Loss. First, we train our model by the Cross-Entropy Loss LXE:

LXE (θ) = −
T∑

t=1

log
(
pθ

(
y∗

t |y∗
1: t−1

))
(28)

where y∗
1: T represents the ground truth.

Optimize by CIDEr Score. Then, we employ Self-Critical Sequence Training (SCST) [29] to
optimize:

LRL (θ) = −Ey1: T∼pθ

[
r
(
y1: T

)]
(29)

where the reward r(.) is computed by CIDEr (Consensus-based Image Description Evaluation) [30].
The gradient can be defined as:

∇θLRL (θ) ≈ − (
r
(
ys

1: T

) − r
(
ŷ1: T

))∇θ log pθ

(
ys

1: T

)
(30)

where ys refers to the result of sampled probability and the ŷ means the result of the greedy algorithm.

4 Experiment
4.1 Dataset and Implementation Details

We apply the MSCOCO dataset [31] to conduct experiments. The dataset has 123287 images
(82783 for training and 40775 for validation) with 5 captions for each. We adopt the Karpathy split
[32] to obtain the training set, the validation set and the testing set. Besides, we collect the words that
occur more than 4 times in the training set and get a dictionary containing 10369 words. The metrics
of BLEU (Bilingual Evaluation Understudy) [33], CIDEr [30], METEOR (Metric for Evaluation of
Translation with Explicit ORdering) [34], SPICE (Semantic Propositional Image Caption Evaluation)
[35] and ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) [36] are applied to evaluate
our method. We compute these metrics with the public code from the MSCOCO dataset.

Differing from the image grid features, we demand accurate object classes and position informa-
tion for our framework. Therefore, we exploit the Objects365 [37], MSCOCO [31], OpenImages [38]
and Visual Genome [39] datasets to train the Faster-Rcnn model [7] for extracting objects features, and
merge their classes to obtain a label list with more than 1800 classes, which is similar to VinVL [18].
These objects’ visual vectors are extracted in 2048-dimension and transformed into 512-dimension
vectors to match the embedding size. The number of block N is set to 6. With Cross-Entropy Loss,
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we adopt the learning rate of 4e-4 decayed 0.8 every 2 epochs and ADAM during the total 20 epochs.
While training with CIDEr Score Optimization in another 30 epochs, we set the learning rate to 4e-5
and decay it by 50%. Furthermore, the batch size is 10 and the beam size is 2.

4.2 Comparisons with Other Models

We report the performances of the other methods and our method in Table 1. The compared
methods include Show&tell (LSTM) [26], SCST [29], RFNet [11], UpDown [14], AoANet [40], Pos-
aware [41], M2-Transformer [22], X-Transformer [20], RSTNet [19] and PureT [42]. These methods are
operated with LSTM or Transformer.

We adopt the strategy of pre-training for the visual feature in VinVL [18] and Transformer [12] as
our baseline. Therefore, our baseline achieves good scores because of the great pre-training of detection
which also provides accurate position and class information for the proposed method.

For stability, we first present the results of a single model in Table 1. Our models with XE Loss
and SCST training are both superior to others. With the XE Loss training, our single model with
different terms (OCAE and OCAD) achieves the highest scores in all metrics, especially the CIDEr
score which obtains advancement of over 1% to the X-Transformer and AoANet. With the SCST
training, our models also achieve the best comprehensive performance. While comparing with the
strong competitors M2-Transformer, X-Transformer and RSTNet, our two models are superior to
them in all terms of metrics, especially the CIDEr score improved by over 2%. Besides, the BLEU-4
score of our methods reach 41.2% and 41.6% which achieve improvements of 0.3% and 0.7% to
the latest PureT, respectively. Meanwhile, our methods surpass PrueT in terms of all metrics except
METEOR.

Table 1: The results of our method and other methods. The B, M, R, C and S represent the metrics of
BLEU, METEOR, ROUGE-L, CIDEr and SPICE. ∗indicates the results that we reproduce based on
VinVL

Method B-1 B-2 B-3 B-4 M R C S

Trained by cross-entropy loss
Baseline [18]∗ 76.7 61.3 47.1 36.7 28.2 57.1 118.5 20.9
LSTM [26] – – – 29.6 25.2 52.6 94.0 –
SCST [29] – – – 30.0 25.9 53.4 99.4 –
Adaptive-Attention [15] 73.4 56.6 41.8 30.4 257. – 102.9 –
RFNet [11] 76.4 60.4 46.6 35.8 27.4 56.5 112.5 20.5
UpDown [14] 77.2 – – 36.2 27.0 56.4 113.5 20.3
AoANet [40] 77.4 – – 37.2 28.4 57.5 119.8 21.3
X-Transformer [20] 77.3 61.5 47.8 37.0 28.7 57.5 120.0 21.8
PCATNet (w/OCAE) 77.7 61.8 47.8 37.4 28.8 57.6 122.3 22.1
PCATNet (w/OCAD) 77.8 61.7 47.8 37.2 28.7 57.5 121.2 21.9

Optimized by CIDEr Score Optimization
Baseline [18] ∗ 81.9 66.9 52.1 40.3 29.8 59.6 135.5 23.2
LSTM [26] – – – 31.9 25.5 54.3 106.3 –
SCST [29] – – – 34.2 26.7 55.7 114.0 –

(Continued)
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Table 1: Continued
Method B-1 B-2 B-3 B-4 M R C S

UpDown [14] 79.8 – – 36.3 27.7 56.9 120.1 21.4
AoANet [40] 80.2 – – 38.9 29.2 58.8 129.8 22.4
Pos-aware [41] 80.8 65.1 50.6 39.3 29.0 59.2 128.9 22.8
M2-Transformer [22] 80.8 – – 39.1 29.2 58.6 131.2 22.6
X-Transformer [20] 80.9 65.8 51.5 39.7 29.5 59.1 132.8 23.4
RSTNet [19] 81.8 – – 40.1 29.8 59.5 135.6 23.3
PureT [42] 82.1 – – 40.9 30.2 60.1 138.2 24.2
PCATNet (w/OCAE) 82.6 67.7 53.2 41.2 29.9 60.2 137.8 24.0
PCATNet (w/OCAD) 82.6 67.7 53.3 41.6 30.0 60.3 138.3 24.3

In addition, we report the results of the ensemble of four models with SCST in Table 2. Our
method also achieves excellent performance and advances the M2-Transformer and RSTNet by more
than 6% in terms of CIDEr. Furthermore, our method and PureT are about equal in performance,
as outlined in the case of the single model. We also present some generated captions in Table 3 to
demonstrate the performance of our approach.

Table 2: The ensemble results of four models

Method B-4 M R C S

SCST [29] 35.4 27.1 56.6 117.5 –
RFNet [11] 37.9 28.3 58.3 125.7 21.7
M2 [22] 40.5 29.7 59.5 134.5 23.5
PureT [42] 42.1 30.4 60.8 141.0 24.3
PCATNet
(w/OCAE)

42.3 30.2 61.0 140.6 24.2

PCATNet
(w/OCAD)

42.4 30.2 61.2 140.9 24.4

4.3 Ablative Studies

We conduct ablative experiments to understand the influence of each module in our model.

Influence of GMPE. To quantify the influence of GMPE in the refined encoder, we conduct
experiments with different modules. We adopt 6 blocks of encoder and decoder and set the size of
grid feature m×m to 16×16. Note that we adopt the Transformer as our baseline in row 1. In Table 4,
we evaluate the performance of GMPE in three combinations including the baseline with GMPE (row
2), OCAE with GMPE (row 5) and OCAD with GMPE (row 6). As we can see, combining baseline
and GMPE can achieve improvements of 1.4% in terms of the CIDEr score to the pure baseline.
Furthermore, GMPE can increase the CIDEr score of pure OCAD from 136.7% to 138.3% and improve
the performance of OCAE from 137.1% to 137.8%.
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Table 3: Visualization for generated captions of GroundTruth, Baseline and our method

GT: three people sit at a
table holding lollipops

GT: a wooden bench
sitting on a beach next
to the ocean

GT: a man on a
snowboard standing at
the bottom of the
mountain

GT: several zebras
are on the grass by a
truck

Basline: a group of
people sitting at a table
with a birthday cake

Basline: a bench on a
beach near the ocean

Basline: a man holding
a snowboard in the
snow

Basline: a herd of
zebras standing in a
field next to a car

Ours (w/OCAE): a
group of people sitting
at a table with lollipops

Ours (w/OCAE): a
wooden bench sitting
on the beach next to the
water

Ours (w/OCAE): a man
standing on a
snowboard in the snow

Ours (w/OCAE): a
herd of zebras
standing on the side
of a truck

Ours (w/OCAD): three
people sitting at a table

Ours (w/OCAD): a
wooden bench sitting
on a beach next to the
ocean

Ours (w/OCAD): a man
standing on a
snowboard on the
slopes

Ours (w/OCAD): a
group of zebras
grazing in the grass
next to a truck

Table 4: The results of ablation studies, which are obtained after CIDEr Score Optimization

GMPE OCAE OCAD B-4 R C

× × × 39.8 59.6 135.5√ × × 40.9 60.0 136.9
× √ × 40.8 60.1 137.1
× × √ 41.0 59.9 136.7√ √ × 41.2 60.2 137.8√ × √ 41.6 60.3 138.3√ √ √ 40.6 59.7 136.4

Influence of OCAE and OCAD. To better understand the influence of OCAE and OCAD in encoder
and decoder respectively, we conduct several experiments to evaluate them. Note that the number of
block N is set to 6 and m × m is set to 16 × 16. In Table 4, we present the results of OCAE in rows 3, 5
and 7, as well as the performance of OCAD in rows 4, 6 and 7. It can be seen that the baseline with only
OCAE or OCAD (row 3 and row 4) can achieve improvements of 1.6% and 1.2% in terms of CIDEr
score, respectively. Besides, the CIDEr score of OCAE and OCAD combined with GMPE (row 5 and
row 6) can reach 137.8% and 138.3%, which achieve improvements of 0.9% and 1.4% to the baseline
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with GMPE (row 2), respectively. However, while combining OCAE and OCAD, we obtain a poor
record (row 7) resulting from too much specific class information which can fragment the generated
captions.

Influence of the Number of Blocks. We fine-tune the number of refining encoder-decoder blocks N
and the size of the grid feature m × m. Note that we adopt the baseline while experimenting on N and
the baseline with GMPE for m × m. As shown in Table 5, the baseline has a continuous improvement
in the CIDEr score with the gradual increase of the value N. Besides, the baseline model tends to
be stable when N is set to 6. Therefore, we set N to 6 as the final configuration. The baseline with
GMPE also gets a significant improvement in all metrics and reaches peak performance while 16×16.
Nevertheless, we still believe in the effectiveness of the other sizes and don’t suggest setting the size
lower than 11 × 11, because the small size can result in too many objects in one grid and lose the
advantage of GMPE.

Table 5: Experiments about the number of block N and the size of grid feature m × m

N B-1 B-4 M R C

3 81.3 39.7 29.4 58.8 133.8
4 81.6 39.8 29.6 59.2 134.4
5 81.8 40.0 29.6 59.5 135.2
6 81.9 40.3 29.8 59.6 135.5
7 81.9 40.2 29.8 59.5 135.4

m × m B-1 B-4 M R C

9 × 9 81.9 40.4 29.7 59.6 135.5
11 × 11 82.1 40.5 29.7 59.8 136.2
14 × 14 82.2 40.8 29.8 59.8 136.6
16 × 16 82.2 40.9 29.9 60.0 136.9
18 × 18 82.2 40.9 29.9 59.9 136.8

5 Conclusion

In this paper, we propose a novel Position-Class Awareness Transformer network, which can
embed more information, such as spatial and classes of objects, from an image to relate vision
with language. To achieve this purpose, the GMPE module and OCA module are proposed, which
are designed by spatial information and object classes respectively. The proposed GMPE, a relative
position encoding method for embedding spatial correlations, constructs a grid mapping feature to
calculate the relative distance among objects and quantizes them to the vectors. Moreover, we propose
the OCA to refine the encoder-decoder framework, which can model the correlation between visual
features and language features by the extracted semantic information of object classes. Formally,
we also associate the GMPE with the OCA. Experiment results demonstrate that our method
can significantly boost captioning, where GMPE supplies the model with spatial information and
OCA bridges the visual features and language features. In particular, our method achieves excellent
performance against other methods and provides a novel scheme for embedding information.
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In the future, we will explore how to generate captions with object classes directly and further
develop relative position encoding with direction for image captioning. With the information of object
classes, we will attempt at combining generated word and objects classes name, which can provide more
semantic information for the next generating word. Furthermore, we plan to improve the proposed
GMPE with the directions among objects and the semantics of captions, which can capture more
interaction among objects by associating the language module.
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