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Abstract: Due to the development of digital transformation, intelligent
algorithms are getting more and more attention. The whale optimization
algorithm (WOA) is one of swarm intelligence optimization algorithms and
is widely used to solve practical engineering optimization problems. However,
with the increased dimensions, higher requirements are put forward for
algorithm performance. The double population whale optimization algorithm
with distributed collaboration and reverse learning ability (DCRWOA) is
proposed to solve the slow convergence speed and unstable search accuracy of
the WOA algorithm in optimization problems. In the DCRWOA algorithm,
the novel double population search strategy is constructed. Meanwhile, the
reverse learning strategy is adopted in the population search process to help
individuals quickly jump out of the non-ideal search area. Numerical experi-
ments are carried out using standard test functions with different dimensions
(10, 50, 100, 200). The optimization case of shield construction parameters is
also used to test the practical application performance of the proposed algo-
rithm. The results show that the DCRWOA algorithm has higher optimization
accuracy and stability, and the convergence speed is significantly improved.
Therefore, the proposed DCRWOA algorithm provides a better method for
solving practical optimization problems.

Keywords: Whale optimization algorithm; double population cooperation;
distribution; reverse learning; convergence speed

1 Introduction

The advantages of the digital economy are reflected in today’s society [1]. Based on digitization,
the helpful information mining in data becomes critical. The optimization problem in data mining has
always been the research object for many scholars [2]. As more and more factors are considered, the
optimization operation steps are complex when using traditional methods. If the solution space of the
optimization problem is high-dimensional, these traditional methods cannot solve it.

With the development of scientific research, the swarm intelligence algorithm based on bionics
has been gradually applied to solve optimization problems [3–5]. Ant colony algorithm to simulate the
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process of ants searching for food [6], wolf swarm algorithm to simulate the predation behavior and
prey distribution of wolves [7], WOA algorithm to simulate the hunting behavior of humpback whales
[8], and particle swarm optimization algorithm (PSO) to simulate the foraging of birds [9] are all belong
to swarm intelligence algorithms. The application performance of swarm intelligence algorithms has
been fully proven in many industry problems [10–13].

WOA algorithm is one of the algorithms with good performance. The basic WOA algorithm
mainly obtains the optimization target through searching, encircling, and attacking the prey. The WOA
algorithm has a simple principle, few parameters that need to be adjusted during the iterative search,
and better optimization accuracy [14]. Meanwhile, the WOA algorithm also has some shortcomings.
The convergence accuracy and speed still need to be further improved in practical application.

Scholars have improved the WOA algorithm from different aspects and made many research
achievements. First, some scholars optimized the relevant parameters of the WOA algorithm. Second,
other theories or operators are introduced into the WOA algorithm. Third, scholars used multi-
population or multiple search strategies to search the optimal solution. The performance of the
standard WOA algorithm has been improved based on the above improvement ideas. But through early
experimental research, it is found that the WOA algorithm performance is still possible to improve
further, especially in large-scale optimization problems.

This paper studies the WOA algorithm and proposes a novel DCRWOA algorithm. In the
proposed DCRWOA algorithm, the double population search strategy is constructed based on
distributed collaboration. Meanwhile, the reverse learning strategy is adopted in the population search
process to help individuals quickly jump out of the non-ideal search area. At the same time, the
adjustment equations of relevant parameters are further improved. Through experimental research,
the performance of the WOA algorithm can be improved as a whole. The research results provide a
better method for solving practical optimization problems.

The rest of the paper is organized as follows: Literature review is presented in Section 2.
Section 3 introduces the basic WOA algorithm. Section 4 presents specific ideas for WOA algorithm
improvement. Numerical experiments and analysis of results are carried out in Section 5. Section 6 fur-
ther verifies the actual engineering application performance of the proposed algorithm by optimizing
shield construction parameters. Section 7 concludes the paper and recommends future direction.

2 Literature Review

After the WOA algorithm was proposed in 2016, it has attracted the attention of many scholars.
The WOA algorithm is also gradually applied in many fields. When using WOA algorithm to solve
practical optimization problems, it is also found that the performance still needs to be improved.
Therefore, scholars have made many explorations on the performance of the WOA algorithm.

To study the diverse scales of optimal power flow, Nadimi-Shahraki et al. [15] explored the
effective combination of the WOA algorithm and a modified most flat optimization algorithm.
Tawhid et al. [16] combined the WOA algorithm and the flower pollination algorithm to reconstruct
a hybrid algorithm to solve complex nonlinear systems and unconstrained optimization problems.
Khashan et al. [17] studied the adjustment methods of parameters A and C in the WOA algorithm.
They proposed an adjustment method based on nonlinear random changes and inertial weight strategy
update. From the perspective of improving the global convergence speed and overall performance of
the WOA algorithm, Kaur et al. [18] introduced chaos theory into the WOA algorithm, and experi-
mental tests indicated that chaos mapping is beneficial to improving the WOA algorithm performance.
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Deepa et al. [19] proposed a WOA algorithm based on the Levy flight mechanism for the coverage
optimization problem of wireless sensor networks. The improved WOA algorithm enhances and
balances the exploration ability. Long et al. [20] proposed an improved whale optimization algorithm
(IWOA). In IWOA algorithm, the opposite learning strategy is adopted to initialize population, and
the diversity mutation operation is applied to reduce the probability of falling into local extremum.
Kong et al. [21] proposed a novel search strategy and the adaptive weight adjustment method to
improve the WOA algorithm performance (AWOA). Farinaz et al. [22] grouped selection according
to the individual fitness value, which is beneficial to improving the global search ability of the WOA
algorithm. Ning et al. [23] comprehensively analyzed and improved the WOA algorithm regarding
mutation operation, convergence factor and population initialization to improve the convergence
speed and accuracy. Aimed at convergence speed, stability, and the ability to avoid falling into the local
extremum, Liu et al. [24] introduced the roulette method in the search stage of the WOA algorithm.
They adopted the two groups with different evolution mechanisms to balance the search capabilities.
In addition, the quadratic interpolation method is used to update the individual position of the whale.

As the complexity of the actual project increases, more factors will be considered. The require-
ments for the algorithm also become higher and higher. Therefore, the performance of the WOA
algorithm still needs to be improved to solve more and more complex optimization problems.

3 WOA Algorithm

The design idea of the WOA algorithm is derived from the hunting behavior of humpback whale
[25]. The hunting process of humpback whales includes shrink hunting, spring bubble net predation
and random search [26].

In the WOA algorithm, the shrink surrounding strategy is implemented when the random value
p < 0.5 and |A|< 1. The position update equation is:

X (t + 1) = Xp(t) − A · |C · Xp(t) − X(t)| (1)

where Xp is the position of the optimal individual, A and C are calculated and determined by Eqs. (2)
and (3), and t is the current iteration number.

A = 2a · rand1 − a (2)

C = 2 · rand2 (3)

where a is the convergence factor, determined by Eq. (4). rand1 and rand2 are random values between
[0, 1].

a = 2 − 2t/tmax (4)

where tmax is the maximum number of iterations.

The random search strategy is performed when p < 0.5 and |A| ≥ 1. Eq. (5) is adopted to update
the position.

X (t + 1) = Xrand(t) − A · |C · Xrand(t) − X(t)| (5)

When the random value p ≥ 0.5, the WOA algorithm will execute the spiral bubble net predation,
simulating the spiral movement of the whale predation process. In this case, Eq. (6) is used to update
the position.

X (t + 1) = |Xp(t) − X(t)| · ebl · cos(2π l) + Xp(t) (6)
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where b is a constant that defines the shape of the logarithmic spiral. l is a random value between
[−1, 1].

4 DCRWOA Algorithm
4.1 Population Initialization Based on Good-Point-Set

The distribution of the initial population affects the algorithm performance. If there is no prior
knowledge, the random method is generally adopted to initialize the population. The individual
diversity obtained by the random method is generally not guaranteed, and the performance is unstable.
Yan et al. proposed a good-point-set method that can uniformly select points [27]. The basic principle
is that let Gs be the unit cube in s-dimensional Euclidean space. If r ∈ Gs, then

Pn(k) = {({
r1

(n) · k
}

,
{
r2

(n) · k
}

, . . . ,
{
rs

(n) · k
})

, 1 ≤ k ≤ n
}

(7)

The deviation ϕ(n) satisfies ϕ(n) = C(r, ε)n−1+ε, and C(r, ε) is only related to r and ε. Then Pn(k) is
a good-point-set, and the excellent point r = {2cos(2πk/p), 1 ≤ k ≤ s}, p is the smallest prime number
satisfying the condition of (p-3)/2 ≥ s.

Fig. 1 shows the population distribution in a two-dimensional space initialized by the random and
good-point-set methods. The population distribution initialized based on the good-point-set method
is more uniform and the population diversity is higher, which plays an important function in avoiding
falling into some local extreme values.

Figure 1: Population initialization distribution

4.2 Improvement of Adjustment Equation for Convergence Factor

The convergence factor affects the search performance [28]. The higher the convergence factor
value, the better the global search ability. When the value is small, the local search is performed. The
function of the convergence factor is the same as that of the inertia weight in the PSO algorithm.
According to the previous research about the inertia weight in the PSO algorithm [29], the optimal
exponential form to adjust the inertia weight value is the circular formula. Therefore, for the
adjustment of the convergence factor that affects the search ability in the WOA algorithm, the
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proposed nonlinear adjustment equation is Eq. (8).

a = amin

(
amax

amin

)(√
1−( t

T )
2
)

(8)

where amax and amin are the maximum and minimum values of the convergence factor. If they are used
for global search group update, their values are 2 and 1, respectively. If they are used for local search
group update, their values are 1.5 and 1, respectively. t is the current number of iterations, and T is the
total number.

According to Eq. (8), the convergence factor decreases from the maximum to the minimum. The
exponential form of the exponential function is a circular formula, and the exponential value decreases
from 1 to 0. Therefore, the convergence factor value decreases slowly and can maintain an enormous
value for a long time in the early stage of the iteration, which can ensure the global search performance.

4.3 Double Population Search Strategy Based on Distributed Collaboration

A novel double population search strategy is proposed in this paper based on the distributed
collaboration. In this strategy, two groups are set. One group is responsible for the global search.
Another group is responsible for the local search. These two groups complete the optimal value search
through collaboration, as shown in Fig. 2.
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Figure 2: Double population search strategy based on distributed collaboration

The initial population of group 1 is generated by the good-point-set method. The best individual
of each iteration in group 1 is put into group 2. Therefore, the population size of group 2 increases
gradually with the increase of iteration times. When the number of iterations exceeds the population
size of group 1, one individual in group 2 is eliminated according to the individual fitness value after
each iteration in this study.
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4.4 Hybrid Reverse Learning Strategy and Inertia Weight

In the iterative process, especially for large-scale optimization problems, some individuals may
search in the non-ideal area for a long time, which affects the convergence speed and accuracy.
The reverse learning strategy is adopted to solve this problem in this paper. The optimal and worst
individuals are considered. Let the upper and lower boundaries of the whale position vector be ub and
lb, respectively. The optimal individual position is represented by X Leader. The reverse learning operation
formula is shown in Eq. (9).

XLeader(t + 1) = lb + (
ub − XLeader(t)

)
(9)

The position of the worst individual is represented by X Worse and is updated with hybrid reverse
learning, as shown in Eq. (10).

XWorse(t + 1) = lb + rand · (
ub − XWorse(t)

)
(10)

The adjustment equation of inertia weight is improved as Eq. (11) or takes the value 1.

w = 0.0001 ∗ (
X

Leader
(t) − X

Worse
(t)

) + 0.0001 ∗ (ub − lb)/t (11)

Inertial weight greatly influences the convergence speed and accuracy of the algorithm. Eq. (11)
can be seen as consisting of two parts before and after the plus sign. When there is a large gap between
the positions of the best individual and the worst individual in the late iteration, the former part in
Eq. (11) will influence the inertial weight value. Improving the iterative search step will make the poor
individual update in an extensive range. The latter part can help the algorithm jump out of the local
extremum quickly when individuals fall into the local extremum in the early stage.

Therefore, the Eqs. (1) and (6) are updated as follows:

X(t + 1) = w · Xp(t) − A · |C · Xp(t) − X(t)| (12)

X(t + 1) = |Xp(t) − X(t)| · ebl · cos(2π l) + w · Xp(t) (13)

4.5 Impact Analysis of the Used Two Strategies on Algorithm Performance

Based on the distributed idea, the double population search strategy is used to assign the global
and local searches to one population, respectively. The global and local searches are performed during
the whole iteration process. Especially for large-scale optimization problems, it is helpful to reduce
the possibility of individuals falling into local extremum. Meanwhile, the double population search
strategy can also improve the search population diversity.

The reverse learning strategy is adopted to solve the problem that the algorithm can easily fall into
the non-ideal search area in solution space. For optimization problems with complex solution space,
high dimensions and many local extreme points, some individuals are easy to search in the non-ideal
area for a long time during the algorithm iteration process, which affects the convergence accuracy and
speed. The reverse learning strategy introduced can help these individuals jump out of the non-ideal
area quickly, which plays a crucial role in solving large-scale optimization problems.

4.6 DCRWOA Algorithm Flowchart

The flowchart of the DCRWOA algorithm proposed in the paper is shown in Fig. 3.
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Figure 3: The flowchart of the DCRWOA algorithm

5 Numerical Experiments and Analysis of Results
5.1 Experimental Setup

The international standard classical test functions are selected for experimental analysis. The test
functions are shown in Table 1.

The DCRWOA algorithm is compared with the WOA, improved whale optimization algorithm
(IWOA), and whale optimization algorithm with adaptive adjustment of weight and search strategy
(AWOA) to comprehensively test the algorithm performance. The dimensions selected in the experi-
ment include 10, 50, 100, and 200 to study the optimization performance in different dimensions. The
four algorithms run 30 times in all functions. The selected metrics include the minimum value, mean
value, standard deviation, and average number of iterations to converge to the final optimal value. The
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relevant algorithm parameters are set as follows: the population size is 30, the maximum number of
iterations is 300, and the constant b that defines the logarithmic spiral shape is 1 [30,31].

Table 1: Classical test functions

Number Function Search range Dimension

1 f1 (x) =
n∑

i=1

x2
i [−10, 10] 10/50/100/200

2 f2 (x) =
n∑

i=1

ix2
i [−10, 10] 10/50/100/200

3 f3 (x) =
n∑

i=1

|xi|i+1 [−10, 10] 10/50/100/200

4 f4 (x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| [−10, 10] 10/50/100/200

5 f5 =
n∑

i=1

ix4
i + random [0, 1) [−1.28, 1.28] 10/50/100/200

6 f6 (x) =
n∑

i=1

|xi sin (xi) + 0.1xi| [−10, 10] 10/50/100/200

7 f7 (x) =
n∑

i=1

(106)(i−1)/(n−1)x2
i [−10, 10] 10/50/100/200

8
f8 (x) = −20 exp

(
−0.2

√
1
n

n∑
i=1

x2
i

)

− exp
(

1
n

n∑
i=1

cos (2πxi)

)
+ 20 + e

[−32, 32] 10/50/100/200

9 f9 (x) = 1/4000
n∑

i=1

x2
i −

n∏
i=1

cos
(
xi/

√
i
) + 1 [−200, 200] 10/50/100/200

10 f10 (x) = −
n∑

i=1

(
xi sin

(√|xi|
))

[−500, 500] 10/50/100/200

5.2 Experiment Results and Analysis

The obtained minimum, mean and standard deviation values in dimension 10 are shown in
Table 2. The values of minimum, mean, and standard deviation obtained by the DCRWOA algorithm
in functions f1, f2, f3, f4, f6, f7 and f9 are all 0, indicating that it can stably converge to the theoretical
optimal value. Similarly, the theoretical optimal value can be obtained by the AWOA algorithm in f 1,
f 2, f 3, f 7 and f 9. Although the minimum values in f 4 and f 6 obtained by the AWOA algorithm and
in f 9 obtained by WOA and IWOA algorithms are 0, the mean values are not 0. Therefore, there are
obtained values that are not 0 in 30 independent runs, indicating that these algorithms have an unstable
performance to obtain the theoretical optimal value in these functions.
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Except that the values of minimum, mean, and standard deviation obtained by the AWOA
algorithm and DCRWOA algorithm in functions f 1, f 2, f 3, f 7, f 8 and f 9 are equal, the numerical
synthesis in other functions shows that the accuracy and stability of DCRWOA algorithm are better
than that of WOA, IWOA and AWOA algorithms. The mean values obtained by the AWOA algorithm
and DCRWOA algorithm are used to analyze whether their experimental results are significantly
different based on the Friedman test. The detection value p = 0.045 < 0.05. Thus, the obtained results
by AWOA and DCRWOA algorithms are significantly different. The iteration curves in f 1, f 2, f 3, f 7,
f 8 and f 9 are shown in Fig. 4

Figure 4: Iteration curves in f 1, f 2, f 3, f 7, f 8 and f 9

The iteration curves in Fig. 4 indicate that the DCRWOA algorithm has faster speed to converge
to the theoretical optimal value. The average iteration number that converges to the final optimal value
is shown in Fig. 5.
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Figure 5: Average number of iterations required in dimension 10

The iteration number that the DCRWOA algorithm obtains for the final optimal value is
controlled at about 20, which is much lower than that of the AWOA algorithm. Therefore, although
these two algorithms can converge to the theoretical optimal value in these six functions, the AWOA
algorithm convergence speed is significantly slower than that of the DCRWOA algorithm. Based on
the above analysis, the DCRWOA algorithm has high accuracy, stability and fast convergence speed
compared with the other three algorithms in 10 dimensions.

The obtained experimental data in dimensions 50, 100, and 200 are shown in Tables 3–5,
respectively.

In 50, 100 and 200 dimensions, the WOA algorithm can stably obtain the theoretical optimal value
in function f 9 with dimension 200. The IWOA algorithm can stably obtain the theoretical optimal value
in function f 9 with dimensions 50 and 100. In functions f 1, f 2, f 3, f 7 and f 9 with dimensions 50, 100
and 200, the AWOA algorithm can obtain the theoretical optimal value. According to Tables 3 to 5,
the values of minimum, mean, and standard deviation obtained by the DCRWOA algorithm in the
functions f 1, f 2, f 3, f 4, f 6, f 7, and f 9 are also 0. Therefore, the DCRWOA algorithm can still stably
obtain the theoretical optimal value of 0 in these six functions with dimensions 50, 100 and 200.

DCRWOA and AWOA algorithms also have the same convergence results in function f 8. The mean
values obtained by the AWOA algorithm and DCRWOA algorithm in these three dimensions are used
to analyze whether their experimental results are significantly different. All values of p obtained by
Friedman in three dimensions are less than 0.05. Therefore, the performance of AWOA and DCRWOA
algorithms are significantly different. For other functions with unequal convergence results, the values
in Tables 3 to 5 also indicate that the DCRWOA algorithm has better convergence accuracy and
stability than those of the other three comparison algorithms.

For these six functions where DCRWOA and AWOA algorithms have the same convergence
results, the average iteration number of the two algorithms to obtain the final optimization value is
counted. The results are shown in Figs. 6 to 8.
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Figure 6: Average number of iterations required in dimension 50

Figure 7: Average number of iterations required in dimension 100

The average number of iterations required for the DCRWOA algorithm is still only about 20 in
50, 100 and 200 dimensions. The minimum iteration number is only 10. AWOA algorithm requires
significantly more iterations than the DCRWOA algorithm. Therefore, the DCRWOA algorithm has
fast convergence speed.
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Figure 8: Average number of iterations required in dimension 200

5.3 Comparative Analysis with Other Swarm Intelligence Algorithms

To further demonstrate the performance of the DCRWOA algorithm, it is compared with
improved inertia weight decreasing speed particle swarm optimization algorithm (IIWDSPSO),
genetic algorithm (GA), linear decreasing inertia weight particle swarm optimization algorithm
(LDIWPSO) and random inertia weight particle swarm optimization algorithm (RIWPSO). The
parameter settings in the DCRWOA algorithm are the same as the above experimental values. In
the PSO algorithm and its improved algorithm, c1 = 2, c2 = 2. The crossover and mutation probability
values are 0.6 and 0.8, respectively. Ten functions in Table 1 are selected for iterative experiments when
the dimension is 100. The final iteration curves are shown in Fig. 9

According to Fig. 9, the iteration curves corresponding to the DCRWOA algorithm are the lowest.
IIWDSPSO, GA, LDIWPSO, and RIWPSO algorithms also don’t converge to the theoretical optimal
value in any function. The convergence accuracy of the DCRWOA algorithm is significantly better
than the four algorithms compared. Moreover, the change trend of the iteration curves indicates
that the four selected comparison algorithms are easy to fall into local extremum, compared with
DCRWOA algorithm. Therefore, the DCRWOA algorithm is superior to the other four algorithms in
terms of convergence accuracy and ability to avoid falling into local extremum.

Based on the above experiment results and analysis, the proposed DCRWOA algorithm has high
convergence accuracy and stability in each dimension. Therefore, no matter whether the optimization
problem is simple or complex, the DCRWOA algorithm can solve it well. Because the DCRWOA
algorithm has double population with distributed collaboration, the global and local search abilities
are better in the entire iteration process. The values of the average iteration number also indicate
that the DCRWOA algorithm has fast convergence speed. Through the reverse learning strategy, the
DCRWOA algorithm can quickly jump out of the non-ideal search area in the solution space of large-
scale problems to avoid many invalid searches. Thus, the DCRWOA algorithm guided by the double
population search and reverse learning strategy proposed in this paper is very suitable for solving
optimization problems in various dimensions.
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Figure 9: (Continued)
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Figure 9: Iteration curves in 10 test functions

6 Case Application

To verify the application performance of the DCRWOA algorithm, the optimization of shield
construction parameters is selected as an application case. Shield tunneling is carried out in the
underground space. The ground settlement is the most concerned. The critical factors affecting
ground settlement are the shield machine operation parameters. Therefore, how to optimize the shield
operation parameters is essential for construction.

Before optimizing the shield construction parameters to minimize the ground settlement value, it is
first necessary to establish their nonlinear relationship model. The tunneling parameters include cutter
head torque, shield thrust, earth pressure, the ratio of tunneling speed and cutter speed R, slag amount
and synchronous grouting amount. The paper selects the shield construction operation parameters
and the detected ground settlement of the Chang Zhu Tan intercity railway project as the modeling
samples. Geometric condition and formation condition parameters are also considered in the model.
The geometric condition parameter is the ratio of buried depth H and diameter excavation D. The
formation condition parameters are groundwater level and earthwork heavy.

The method of support vector regression (e-SVR) is used to establish a nonlinear relationship
model. After training the e-SVR model with sample data, the sample fitting is shown in Fig. 10.

Based on the obtained relationship model, the DCRWOA algorithm and other improved WOA
algorithm compared in simulation experiments are used to optimize the shield construction operation
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parameters. In the optimized geographical location range, the geometric condition parameter of H/D
is 3.7, groundwater level is 28.8 and earth heavy is 20.65. The final optimization results are shown in
Table 6.

Figure 10: Sample fitting

Table 6: Optimization results of shield construction parameters

Algorithm Cutter head
torque
(kN•m)

Shield thrust
(kN)

Earth
pressure
(Bar)

Slag amount
(m3)

Synchronous
grouting
amount (m3)

R Ground
settlement
values

AWOA 7719.8058 27570.7350 1.6542 195.0000 19.6544 20.0000 8.6451
IWOA 8536.6683 28683.2220 1.8481 194.3143 18.3369 16.3473 7.4540
WOA 8807.7257 29147.6180 1.7551 194.2823 18.3782 15.6875 7.5895
DCRWOA 8527.2741 28634.6980 1.8538 194.3169 18.3812 16.2879 7.4516

According to values in Table 6, the ground settlement values obtained by the DCRWOA algorithm
and IWOA algorithm are relatively close. But the ground settlement value obtained by the DCRWOA
algorithm is still the smallest. By comparing the corresponding shield operation construction param-
eter values from these two algorithms, thier values are very close, which also shows the accuracy of the
shield operation parameters obtained by the DCRWOA algorithm. Combined with the performance
analysis of the DCRWOA algorithm based on the classical test functions, the accuracy of shield
operation parameters obtained by the DCRWOA algorithm is more guaranteed.

There are many factors affecting the actual construction operation, so it is unrealistic to take all
factors into account. The actual construction parameters must be adjusted according to the optimized
operation parameters. Undoubtedly, the first step of parameter optimization plays a vital role in the
further adjustment of parameters. The DCRWOA algorithm proposed in the paper provides a very
accurate and efficient method for optimizing shield construction parameters.
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7 Conclusion & Future Work

The DCRWOA algorithm with distributed collaboration and reverse learning ability is proposed
in this paper. In the DCRWOA algorithm, the novel double population search strategy is constructed
based on the distributed idea. The reverse learning strategy is introduced to help individuals jump
out of the non-ideal search area. Based on these two strategies and the adjustment of the related
parameters, the performance of the WOA algorithm is improved.

Based on experimental data analysis, the results indicate that the convergence accuracy and
stability of the DCRWOA algorithm proposed in the paper are optimal in different dimensions. And
some optimization results are the theoretical optimal value. In addition, compared with the other
algorithms in the experiment, the DCRWOA algorithm only needs few iterations to converge to the
final optimization value and has faster convergence speed. The practical engineering application also
verifies that the DCRWOA algorithm has high comprehensive performance.

In the future, the knowledge model of the learning-based swarm intelligence algorithm is the main
research direction. The knowledge model is adopted to guide the iterative process of the algorithm.
Meanwhile, expanding the application field of the improved swarm intelligence algorithm is also a
research work.
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