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Abstract: Detecting non-motor drivers’ helmets has significant implications
for traffic control. Currently, most helmet detection methods are susceptible
to the complex background and need more accuracy and better robustness of
small object detection, which are unsuitable for practical application scenar-
ios. Therefore, this paper proposes a new helmet-wearing detection algorithm
based on the You Only Look Once version 5 (YOLOv5). First, the Dilated
convolution In Coordinate Attention (DICA) layer is added to the backbone
network. DICA combines the coordinated attention mechanism with atrous
convolution to replace the original convolution layer, which can increase the
perceptual field of the network to get more contextual information. Also, it
can reduce the network’s learning of unnecessary features in the background
and get attention to small objects. Second, the Rebuild Bidirectional Feature
Pyramid Network (Re-BiFPN) is used as a feature extraction network. Re-
BiFPN uses cross-scale feature fusion to combine the semantic information
features at the high level with the spatial information features at the bottom
level, which facilitates the model to learn object features at different scales.
Verified on the proposed “Helmet Wearing dataset for Non-motor Drivers
(HWND),” the results show that the proposed model is superior to the current
detection algorithms, with the mean average precision (mAP) of 94.3% under
complex background.

Keywords: Helmet-wearing detection; dilated convolution; feature pyramid
network; feature fusion

1 Introduction

Private or shared electric bicycles have become popular, bringing traffic convenience and safety
hazards. Some cities have issued helmet safety initiatives, proposing that non-motor drivers wear
safety helmets to guarantee travel safety. Currently, the supervision of non-motor drivers wearing
helmets mainly relies on traffic policies to monitor the road scene. This method is labor-intensive, tends
to omit objects, and disallows effective monitoring during inclement weather. Therefore, automatic
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monitoring can effectively solve the shortcomings of manual monitoring. Object detection, a hotspot
of computer vision, provides excellent convenience for intelligent surveillance.

Traditional object detection algorithms are suitable for targets with apparent features and simple
backgrounds. However, the variable backgrounds and complex targets in the actual scenes prevent
excellent detection results. Object detection algorithms based on deep learning have applicated widely
in road vehicle monitoring, medical research, mask-wearing detection, video surveillance detection,
image classification, and others [1–6]. Deep learning-based object detection algorithms mainly include
two-stage algorithms based on region extraction and one-stage algorithms based on regression. The
two-stage object detection algorithm first extracts the region of interest from the input image to
generate candidate frames. Then it performs regression classification on the candidate frames in the
second step. Standard two-stage algorithms include Region CNN (R-CNN) [7], Fast R-CNN [8],
Faster R-CNN [9], etc. One-stage object detection algorithm omits the step of generating candidate
regions and performs feature extraction, target regression and classification directly in the same CNN.
The main algorithms include Single Shot MultiBox Detector (SSD) [10] and You Only Look Once
(YOLO) [11–14]. Experiments show that the two-stage object detection algorithm surpasses the one-
stage detection algorithm in terms of detection accuracy, but the one-stage algorithm is faster [15].

In the non-motor drivers’ helmet-wearing detection tasks, capturing accurately under complex
and changing actual scenes is difficult because the monitoring images have many targets, few pixels,
rich colors, and similar shapes to ordinary hats. In addition, the detection tasks also have strict
requirements for real-time. At present, helmet detection algorithms based on deep learning are
developing rapidly. However, there are still problems, such as low accuracy for tiny targets, poor
robustness and complex operations. There is also a need for wealthy non-motor drivers’ helmet-
wearing datasets to evaluate algorithms’ performance comprehensively. This paper creates a new
dataset HWND, containing different image attributes (e.g., different categories, different angles,
different weather) to restore the natural environment of the detection scene as much as possible. In
addition, this article uses the improved YOLOv5s network and achieves intelligent detection of helmet-
wearing for non-motor drivers. The main contributions in this paper can be summarized as follows:

(1) Construct a dataset of non-motor drivers wearing helmets. A portion of the dataset comes
from our shots in realistic traffic scenarios containing 1332 high-quality images with multiple
targets, ample categories and complex backgrounds. The images cover non-motor drivers in
excellent road conditions, angles, lighting, and road congestion conditions. The other part is
from the public dataset “Bike Helmets Detection,” which contains 764 images.

(2) Propose the helmet-wearing detection model YOLOv5s-Dilated and Rebuild (YOLOv5s-
DR) for non-motor drivers. This model combines the dilated convolution with the attention
mechanism to increase the perceptual field, and the network acquires more information. Also,
it establishes the dependency of target features in the channel and spatial dimensions so that
the model pays more attention to small targets such as helmets and heads and enhances
the network detection ability for small targets. The weighted Bi-directional Feature Pyramid
Network (BiFPN) [16] is used for feature extraction, and a cross-scale feature fusion network is
added. The blended feature map contains rich semantic and location information at different
levels.

The rest of the paper is organized as follows: It summarizes related literature in Section 2. Dataset
HWND is introduced in Section 3. The details of the improved YOLOv5-DR and the underlying
methods are described in Section 4. Finally, it analyzes the experimental environment and results in
Section 5 and the conclusion in Section 6.
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2 Related Work

The helmet-wearing detection of non-motor drivers based on deep learning is still in the early
research stage. However, it is similar to the wearing detection of motorcycle helmets and helmets on
construction sites. This section classifies the helmet-wearing detection algorithms into two-stage and
one-stage to summarize the related literature.

2.1 Two-Stage

Yogameena et al. [17] first segmented the foreground target using the Gaussian model and then
used Faster R-CNN to detect motorcycle helmet wear. Chen et al. [18] adopted the Retinex image
enhancement technique to improve image quality. K-means++ clustering algorithm was introduced
to cluster the helmet sizes in the images, and helmet wearing was detected using the improved Faster-
RCNN algorithm. The literature [19] employed multi-scale training and increasing anchors strategies
to enhance the robustness of the Faster R-CNN algorithm. Online Hard Example Mining (OHEM)
[20] was used to optimize the model and prevent imbalance between positive and negative samples.
The issue [21] applied Faster R-CNN and SSD algorithms to detect helmets for motorcycle drivers. A
comparative analysis of the detection effects was performed to derive suitable application scenarios for
the different algorithms. The results showed that Faster R-CNN captures images slower but performs
better in accuracy and can be deployed in places where vehicles move forward slowly. SSD is faster
and less accurate, suitable for deployment in fast-flowing traffic scenarios like highways.

2.2 One-Stage

Aiming at the matching problem of small targets and detection head scale, Chen et al. [22] changed
the backbone network layer number of YOLOv4, removed the deep feature layer that lacked semantic
information, and added a shallow feature layer to enhance the detection effect on small targets.
Reference [23] improved based on YOLOv5 by adding a triple attention mechanism to the last layer
of the backbone network. In the parallel three-branch structure, two extract the interdimensional
dependencies between spatial and channel dimensions, and another extracts the spatial feature
dependencies. As a result, the occlusion problem under congestion was solved. Han et al. [24] proposed
a cross-layer attention mechanism approach to refine the features of targets. Based on the SSD model,
a spatial attention mechanism is used for low-level features, and the high-level features use a channel
attention mechanism. The literature [25] used the Sandglass-Residual [26] model for the feature
extraction process based on the lightweight algorithm YOLOv3-Tiny to reduce the parameters and
computational effort of the network. Paper [27] used the cross-stage hierarchy [28] module to replace
a stack of the module made of convolution, BatchNormalization and LeakyReLU (CBL) in the feature
pyramid of YOLOv4. This improvement improved the feature richness and reduced the memory and
computational effort. Sadiq et al. [29] combined the YOLOv5 with a fuzzy-based data enhancement
module to effectively remove the noise in the monitoring system and improve image clarity. The
literature [30] used deformable convolutional networks [31] instead of the traditional convolution in
the backbone. The Convolutional Block Attention Module Network (CBAM) [32] was also introduced
in the neck. This method solved the challenges posed by complex construction environments, dense
targets, and irregular shapes of safety helmets. Reference [33] proposed an improved hierarchical
matching positive sample strategy. The Intersection over Union (IoU) of Prior_box and Ground Truth
(GT) was used as the basis. For 0.1 < IoU < 0.2, the feature points at the location of the GT centroid
are selected as positive samples, the two adjacent feature points of the GT centroid at the grid position
are used as additional positive samples while 0.2 < IoU < 0, and if IoU > 0.5, the four feature points
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closest to the centroid are selected as positive samples. This hierarchical strategy effectively improved
the feature learning ability of the network.

Essays [17–19] have achieved excellent detection accuracy, but real-time detection is still a problem.
Papers [22–25,27,29,30,33] take into account the interference factors existing in the factual background
and make a series of measures to improve the ability of the network to extract features, which effectively
improves the detection accuracy of helmets. In real scenarios, a helmet occupies a small number of
pixels in an image. However, the features learned by the network are limited, which will inevitably cause
the loss of small target information. Therefore, this work focuses on improving the feature expression
of small objects, making the network learn complete and richer features about small objects.

3 HWND Dataset

Dataset is a primary condition for implementing experiments and evaluating algorithms’ perfor-
mance in helmet detection tasks. However, a large dataset of non-motorized drivers wearing helmets
needs to be improved in research. In this section, the paper proposes a high-quality helmet-wearing
detection dataset for non-motor drivers named “Helmet Wearing dataset for Non-motor Drivers
(HWND),” which mainly covers electric bicycles in separate streets. The HWND has 2096 images
in JPG format, which consists of two parts: the publicly available dataset “Bike Helmets Detection
[34]” on the Kaggle website and our photographic collection. Next describes the process of creating
the benchmark dataset and the information about the composition of the dataset.

3.1 Image Screening and Annotation

A part of the dataset is the images we took. They are first filtered to remove the samples
with similar content and single targets. High-quality images with many targets, rich categories, and
complex backgrounds are retained. The preserved dataset contains 1332 images of non-motor drivers
in different periods, roads, angles, and lighting conditions, with a resolution is 4032 × 3024 pixels.
This dataset uses the LableImg software to manually label the images by category and calibrate the
annotated coordinates. All the images are annotated into three categories: “non-motor,” “helmet,” and
“head”. Among them, the head area without a helmet, sun hat, baseball cap, and other standard hats
are all defined as “head”. Each image generates an annotation file in an EXtensible Markup Language
(XML) format, which contains the file name of the image, the name of the target category, and the
coordinates of the target annotation box.

The other part is the public dataset “Bike Helmets Detection” from the Kaggle website. This
dataset contains 764 images of bicyclists wearing helmets and their annotated files in XML format,
including two categories, “With helmet” and “Without helmet”. The experiment modifies them to
“helmet” and “head” to unify the label names.

3.2 Dataset Description

1757 images are selected as the training set, including 1070 from our shooting pictures and 687
pieces from “Bike Helmets Detection”. In order to increase the diversity of the training set, photos
are taken in multiple scenarios. For capturing non-motor vehicles in different traffic flow states,
this dataset obtains images of non-motor drivers in various road conditions, including intersections,
non-motor lanes and sidewalks. Acquired pictures are taken from multiple angles, including front,
rear and side, which enrich the state types of non-motor vehicle riders. Images of multiple driver
situations are also included in the dataset, including a single rider, two people riding together, and
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three people riding together. Get images of multiple e-bike types to increase the diversity of non-
motor vehicles, including shared bikes, standard household e-bikes and take-out electro mobiles. To
restore the weather conditions in the genuine scene as much as possible, get pictures of various light
intensities, including sunny days, cloudy days and tree shadows. These images of various wearing types
are gained to improve the richness of small objects in the dataset, including helmets and ordinary hats.
Get images with complex backgrounds, including scenes with high traffic density, similar target color
and background color, and many occlusions. The training set samples are shown in Fig. 1.

Figure 1: Some examples of the training set in HWND

A validation set of 339 images is selected, including 262 self-photographed images and 77 images
from “Bike Helmets Detection.” The images selected for the validating set are helmets of various colors
and shapes. There are also a variety of distractions, such as baseball caps, sun visors, and helmets
placed in the basket. A rich and diverse validation set helps to evaluate the model comprehensively,
and samples in the validation set for the experiment are shown in Fig. 2.

Ultimately, the integrated HWND contains a total of 2096 images with three category labels:
“non-motor,” “helmet,” and “head.” The number of each label in the HWND is counted, and the
comparison of labels in the training and validation set is shown in Fig. 3.

Considering the effect of realistic complex road conditions, the training set is increased to 14056
using horizontal flip, random rotation, increasing noise, and changing image brightness and contrast.
The expanded non-motor labels are 10720, helmets are 14472, and heads are 8360.
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Figure 2: (a) Shows the helmets in different colors and styles; (b) displays situations in the absence of
a helmet and the wearing of a regular hat

Figure 3: Comparison of the number of categories in HWND

4 Methodology
4.1 Dilated Convolution in Coordinate Attention (DICA)

In computer vision tasks, there is always information closely related to the study and some
irrelevant information. However, the attention mechanism can help the network focus on analyzing
vital information and ignore insignificant information. In recent years, attention mechanisms have
been widely used for tasks such as semantic segmentation, image classification, and target detection
[31,32,35–37], which have achieved remarkable works. However, most attention mechanisms have
limited perceptual fields and do not easily capture contextual information at different scales. Therefore,
this paper proposes the DICA mechanism, which combines the dilated convolution with the Coordi-
nate Attention (CA) mechanism [38]. DICA block uses a multi-branch dilated convolution structure
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with different dilation rates to obtain multi-scale features. The structure of the DICA mechanism is
shown in Fig. 4.

Figure 4: DICA block

First, the input feature map obtains a larger perceptual field by dilated convolution. In this paper,
the dilated convolution structure is set as follows: convolution kernel size is 3 × 3, step size of 2,
expansion rates are 1, 2 and 3, and the convolved perceptual fields are 3 × 3, 5 × 5, and 7 × 7. The
feature map obtained after the convolution of the three branches has the same number of channels as
the input feature map, but the size is reduced by 1/2.

Ti = DConv (P) (1)

In Eq. (1), Ti represents the output feature map of the ith (i = 1, 2, 3) branch, DConv() represents
the dilated convolution operation, and P is the input feature map.

The feature map U is obtained by concating the feature maps obtained from the three branches,
and then the number of channels is recovered by 1 × 1 convolution. As shown in Eq. (2), where [·, ·, ·]
delegates the concat operation of the three feature maps T1, T2, and T3 in the channel dimension, F1

represents the 1 × 1 convolutional transform function.

U = F1 ([T1, T2, T3]) (2)

After that, the feature map U is divided into horizontal and vertical directions. Each channel is
encoded using pooling layers with kernel sizes (H, 1) and (1, W), respectively, to obtain the output of
both directions in each channel. The calculation processes are shown in Eqs. (3) and (4).

zh
c(h) = 1

W

∑
0≤i<W

uc (h, i) (3)

zw
c (w) = 1

H

∑
0≤j<H

uc (j, w) (4)
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where H, W are the height and width of the feature map U, respectively. zh
c (h) denotes the output of

the cth channel with height h, and zw
c (w) is the output of the cth channel with width w.

Then the feature maps zh and zw are concated, the dimensionality is reduced using a shared 1 × 1
convolution, batch normalized, and finally fed into the activation function to obtain the feature map
f . In Eq. (5), δ represents the nonlinear activation function, f represents the intermediate feature map
obtained by encoding spatial information in the horizontal and vertical directions, the range of f is
set to f ∈ RC/r×(H+W), and r is the reduction rate for controlling module size, which is set to 32 in the
experiment.

f = δ
(
F1

([
zh, zw

]))
(5)

Next, the feature map f is divided into two separate tensors f h ∈ RC/r×H and f w ∈ RC/r×W .
The number of channels is recovered from being consistent with the input feature map U using two
1 × 1 convolutional transform functions Fh and Fw, respectively. The attention weights gh and gw of
the feature map in height and width are obtained after the Sigmoid activation function. Detailed
expressions are shown in Eqs. (6) and (7), where σ denotes the Sigmoid activation function.

gh = σ
(
Fh

(
f h

))
(6)

gw = σ (Fw (f w)) (7)

Finally, the output feature map Y of the DICA block is obtained by multiplicative weighting
calculation on the original feature map, and the formula is shown below.

yc (i, j) = uc (i, j) × gh
c (i) × gw

c (j) (8)

In this paper, the DICA module is added to the backbone and placed in front of the SPP module to
replace the original CBL module. The DICA mechanism sets different dilation rates for multi-branch
dilated convolution networks to expand the perceptual field from different scales. The convolved
feature map acquires more high-resolution information in the shallow feature maps. After that, the
channel information and the position information of the feature map are encoded simultaneously to
obtain the attentional feature maps in both horizontal and vertical directions. Each element of the
feature map visually reflects whether the target is present in the corresponding row and column.

4.2 Rebuild-Bidirectional Feature Pyramid Network (Re-BiFPN)

The dataset proposed in this paper contains numerous helmet and head labels, and these small
targets have few pixel values and inconspicuous feature information. As the network’s layers increases,
too much convolution will reduce or even disappear small target features. Therefore, to improve the
feature representation of small targets, the Re-BiFPN structure is proposed in this paper to fuse feature
maps of different scales. Based on BiFPN [16], cross-scale connections are added to nodes with two
inputs to ensure that each node contains at least three inputs, effectively reducing the loss of features.
Fig. 5 shows the structure of our Re-BiFPN.
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Figure 5: The structure of Re-BiFPN

In Fig. 5, the blue arrows represent top-down pathways, red arrows represent bottom-up pathways,
purple arrows represent jump-connected pathways of nodes at the same level, and the same color nodes
have the same size.

The Re-BiFPN proposed in this paper adds jump connections of high-level input nodes to
the bottom nodes, as shown by the blue dashed arrows in Fig. 5, incorporating the rich semantic
information of the high-level feature maps. The connection of lower-level nodes is added to the higher-
level nodes, as shown by the red dashed arrows in Fig. 5. The rich contour and edge information of
the low-level feature map are fused with the high-level feature map by taking advantage of the high
resolution of the low-level feature map.

In the Bi-FPN, the original large target detection layer Pout
3 is obtained by fusing the feature map

Pin
3 of 80 × 80 size from the same layer, and Ptd

4 obtained by convolving the feature map of 40 × 40
size from the lower layer. The output expression of Ptd

4 is shown in Eq. (9). The original small target
detection layer Pout

5 is obtained by fusing the feature map Pin
5 of 20 × 20 size from the same layer, and

the output feature map Pout
4 of 40 × 40 size from the upper layer. Re-BiFPN adds a channel to the input

Pin
4 and Ptd

4 , respectively, as shown by the blue dashed line and the red dashed line in Fig. 6. The final
outputs of Pout

3 and Pout
5 are shown in Eqs. (10) and (11).

Ptd
4 = Conv

(
w1 · Pin

4 + w2 · Resize
(
Pin

5

)
w1 + w2 + ε

)
(9)

Pout
3 = Conv

(
w′

1 · Pin
3 + w′

2 · Resize
(
Ptd

4

) + w′
3 · Resize

(
Pin

4

)
w′

1 + w′
2 + w′

3 + ε

)
(10)

Pout
5 = Conv

(
w′′

1 · Pin
5 + w′′

2 · Resize
(
Ptd

4

) + w′′
3 · Resize

(
Pout

4

)
w′′

1 + w′′
2 + w′′

3 + ε

)
(11)
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In the formula, wi represents the weights obtained from network training, and the ReLu activation
function is used after each wi to ensure that the weights wi ≥ 0, the values of output weights are
controlled between 0 and 1 by regularization, and the learning rate ε is set to 0.0001 to avoid unstable
values, Ptd

4 represents the intermediate feature layer of the fourth layer in the top-down pathway, Conv()
represents the convolution operation, and Resize stands for up-sampling or down-sampling operation.

Figure 6: YOLOv5s-DR network structure

4.3 YOLOv5s-DR

To address the problems of poor robustness and low accuracy of small targets detection in the
current helmet detection algorithms, we optimize the YOLOv5s network and propose the YOLOv5s-
DR model with the structure in Fig. 6. This paper adds the DICA block to replace the original
CBL module in front of the SPP module, and the DICA step size is set to 2. DICA combines the
dilated convolution with the CA [38] mechanism to obtain more dense information by expanding
the perceptual field. The attention mechanism ignores irrelevant information in the background and
improves the network’s focus on small targets. Re-BiFPN increases the cross-scale feature extraction
layer and improves the feature fusion capability of the model.

5 Experimental Results and Analysis
5.1 Experimental Setup and Model Training

This experiment sets the momentum to 0.937, the weight decay rate to 0.005, and uses SGD with
the initial learning rate of 0.001 to optimize the model. The experiment adopts the K-means algorithm
to recalculate the anchors’ values of the model before training. The optimal anchors’ values obtained
are (7,9), (13,18), (21,30), (28,39), (38,57), (52,86), (80,122), (138,197) and (230,309). Since the original
YOLOv5s network structure is improved in this experiment, the official pre-trained weights are not fit.
Therefore, this experiment uses the modified YOLOv5s-DR model to retrain the HWDN. Batchsize
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is set to 32, and iterations are 200 epochs. Training platform parameters are detailed in Table 1, and
the changes in training loss are shown in Fig. 7.

Table 1: Hardware and software platforms

CPU Intel(R) Core(TM) i5-10600KF CPU @4.10 GHz
GPU NVIDIA GeForce RTX 3080
Deep learning framework PyTorch
Development of language Python 3.8

Figure 7: Training loss change curve

5.2 Ablation Experiments for YOLOv5s-DR

To explore the effects of different improvements on the model, the DICA module and Re-biFPN
are used sequentially on the original YOLOv5s model to evaluate the rationality and effectiveness of
the proposed method. Table 2 shows the performance of the ablation study.

Table 2: Each module ablation contrast experiment

Model DICA Re-BiFPN Precision (%) Recall (%) mAP (%)

YOLOv5s × × 84.2 87.4 92
YOLOv5s-D √ × 90.9 89.5 94
YOLOv5s-R × √ 93.3 88.7 93.1
YOLOv5s-DR √ √ 93.5 91.1 94.3

For the analysis of Table 2, adding the DICA module results in a 2% improvement in mAP
compared to the original YOLOv5s. Using Re-BiFPN for feature fusion, mAP is improved by 1.1%.
Combining the DICA and Re-BiFPN, the mAP is improved by 2.3%, and Recall is improved by
3.7%, indicating that the model’s comprehensiveness and correctness are improved. The accuracy of
different target scales has improved when comparing different classes of targets, as shown in Fig. 8.
Adding the DICA module brings 2.2% and 1.6% improvement for small targets such as helmets
and heads. The experimental results show that the DICA module preserves the detailed information
while increasing the perceptual field, effectively improving the network’s feature extraction capability.
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Integrating the spatial information of the feature map with the channel information on a larger
scale makes it easier to capture the feature information of small targets and effectively improves the
network’s attention to small targets. The Re-biFPN module brings 0.9% and 1.2% improvement to
helmets and heads, respectively. The experimental results show that the improved Re-BiFPN obtains
richer contextual information, enhances the feature representation of small targets, and effectively
improves the detection accuracy of helmets and heads.
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Figure 8: Comparison of the accuracy per category

The detection effects of YOLOv5s-DR and YOLOv5s models in the test set are compared, and
the results are visualized. Fig. 9a is the detection effect of the YOLOv5s model, and Fig. 9b is the
detection effect of the YOLOv5s-DR model. In Fig. 9a, the prediction probability of small targets
such as helmets and heads reached 88% at the lowest level, and there is even a phenomenon that the
detected object is lost. In Fig. 9b, the prediction probability of targets has been effectively improved,
and small targets not detected by the YOLOv5s model are also correctly classified, especially in the case
of helmet occlusion. In general, the YOLOv5s-DR model effectively improves the detection accuracy
when targets are occluded, and the shapes of the helmet and the head are similar. The analysis shows
that the addition of the two modules, DICA and Re-BiFPN, effectively reinforces the robustness of
the model and can also achieve effective detection in complex situations.

5.3 Performance Comparison of Different Models

To further analyze the detection performance of the YOLOv5s-DR model, our dataset is tested
on other target detection models, such as YOLOv5s, Faster-RCNN, YOLOv4 and YOLOv7 [39].
Comparing the experimental results and analyzing them, our model is 2.3% higher than YOLOv5s
in mAP, 33.2% higher than Faster-RCNN, and higher than YOLOv4 by 26.3%. Compared with
YOLOv7, although the mAP is reduced, YOLOv5s-DR is slightly better in detection speed. Detailed
metrics comparison is shown in Table 3. Experiments show that the YOLOv5s-DR model proposed
in this paper effectually improves the detection accuracy by 94.3%. In terms of speed, it can recognize
81 images per second.
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(a) YOLOv5s (b) YOLOv5s-DR

Figure 9: Detection results of YOLOv5s and YOLOv5s-DR

Table 3: Performances of all comparison models

Model Param (M) Speed (fps) mAP (%)

YOLOv5s 7.1 90 92
Faster-RCNN 108 3 61.1
YOLOv4 244 11 68
YOLOv7 6.3 71 96.05
YOLOv5s-DR (ours) 9.7 81 94.3
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6 Conclusions and Future Work

This paper proposes a helmet-wearing detection dataset for non-motor drivers called HWND.
It contains 1332 helmet-wearing images taken by us and 764 images from a public dataset, and we
annotate the dataset in detail. The article also proposes a non-motor drivers helmet wearing detection
model YOLOv5s-DR. It adds a DICA mechanism combining dilated convolution and attention
mechanisms to YOLOv5, which expands the perceptual field and facilitates the network to extract
high-level semantic features. Besides, it enhances the network’s ability to model the dependencies
between channels, extracts more precise information, and effectively improves the feature represen-
tation capability of the model. Meanwhile, Re-BiFPN is used for feature extraction to enhance the
feature fusion capability of the network, and the feature map acquires richer contextual information
while reducing the computational effort. It is tested on the HWND dataset to verify the proposed
method’s performance. Extensive experiments demonstrate that the proposed method improves the
accuracy of helmet detection, providing an effective solution for helmet-wearing detection of non-
motor drivers in practical scenarios. We plan to produce a larger dataset and study a more lightweight
helmet detection model for future work.
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