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Abstract: In recent years, deep generative models have been successfully
applied to perform artistic painting style transfer (APST). The difficulties
might lie in the loss of reconstructing spatial details and the inefficiency of
model convergence caused by the irreversible en-decoder methodology of the
existing models. Aiming to this, this paper proposes a Flow-based architecture
with both the en-decoder sharing a reversible network configuration. The
proposed APST-Flow can efficiently reduce model uncertainty via a compact
analysis-synthesis methodology, thereby the generalization performance and
the convergence stability are improved. For the generator, a Flow-based
network using Wavelet additive coupling (WAC) layers is implemented to
extract multi-scale content features. Also, a style checker is used to enhance
the global style consistency by minimizing the error between the reconstructed
and the input images. To enhance the generated salient details, a loss of
adaptive stroke edge is applied in both the global and local model training. The
experimental results show that the proposed method improves PSNR by 5%,
SSIM by 6.2%, and decreases Style Error by 29.4% over the existing models on
the ChipPhi set. The competitive results verify that APST-Flow achieves high-
quality generation with less content deviation and enhanced generalization,
thereby can be further applied to more APST scenes.

Keywords: Artistic painting style transfer; reversible network; generative
adversarial network; wavelet transform

1 Introduction

With the improvement of hardware computing capability, large-scale deep learning, as an impor-
tant method in the field of artificial intelligence, has made significant progress in many applications
[1–6]. In recent years, image processing tasks [7–10] have gradually become a research hotspot.
One potential application is artistic painting style transfer (APST), which is to transfer the style
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of an artistic painting to another painting or real image so that the generated image has the style
of the former while retaining the content of the latter. It has rich application scenarios, such as
quickly providing painters with different styles of reference image examples [11,12], and efficient
post-production video rendering [13]. Nevertheless, the current main deep generative models, such
as Variational Auto-encoder (VAE) [14] and Generative Adversarial Network (GAN) [15], suffer from
the loss of generated details caused by the incompact feedforward process and the uncertainty of the
generated content through the noise-driven network. Therefore, this paper attempts to introduce a
more compact analysis framework into the APST to alleviate the above bottlenecks.

Early studies of artistic painting style transfer focused on how manual design synthesizes the
spatial details of a particular style, such as highlighting the detailed features of a certain style by
planning the generation process via modeling textures and brushstrokes [11,16,17]. Wang et al. [11]
proposed a watercolor painting style transfer framework, which realizes the drawing of different
features of watercolor painting through several sets of filters. Efros et al. implemented an image texture
synthesis method based on an image mosaic, which renders textures obtained from different images
[16]. Wang et al. [17] formulated an algorithm for the automatic diffusion synthesis of color inks, which
simplifies the feature extraction process through brightness and color segmentation, and uses texture
synthesis technology to simulate the diffusion effect of color inks. The above methods usually design
synthesis details for a specific type of migration scene, nevertheless the modeling of different types of
art paintings is quite different, which is not conducive to the expansion of new application scenarios. In
recent years, deep generative networks have been successfully applied to the field of artistic painting
transfer. Gatys et al. [18,19] first applied Gram loss in deep network feature mapping to represent
image artistic style, which initiated the research on neural painting style transfer. After that, a large
number of artistic painting transfer methods based on deep generative networks have been proposed,
which can be roughly divided into two categories: those based on the en-decoding process and those
based on adversarial generative learning.

Referring to image segmentation, some scholars [20,21] verified that the method of decoding
and restoring the features extracted by the encoder can be used for painting style transfer tasks.
In 2017, Huang et al. proposed an en-decoder architecture-based style transfer model [22]. They
introduced an adaptive normalization module (AdaIN) to recombine the content and style features
of the encoded image so that the generated image has the same feature distribution as the artistic
painting. Then Park et al. [23] suggested SANet, which can represent global and local style patterns
and maintain the content structure without losing the richness of the style. Based on this, AdaAttN [24]
improved attention to consider both low and high-level features, and the final effect is more stable than
SANet. Similarly, the en-decoding scheme proposed by Li et al. [25] uses the Whitening and Coloring
Transform (WCT) to match the feature covariance of the content map with a given style, to statistically
model the encoded content. The Avatar-Net [20] proposed by Sheng et al. uses a multi-scale decoding
network to gradually learn the overall style decoding process to achieve adaptive style transfer. The en-
decoder architecture performs well in general adaptive style transfer tasks, but the model feedforward
process is not compact, resulting in a loss of detail in the generated results. In addition, the neglect
of the strong correlation between the encoder and decoder usually leads to large training parameters
and difficulty in convergence. Some studies [26,27] suggested using the single decoding method [12]
for style transfer of artistic paintings, that is, image style transfer through a feedforward network and
enhancement losses. This solution simplifies the model structure to a certain extent, but the quality
of the generated image details is still poor. Also, it is suitable for general style transfer tasks, but not
for advanced semantic transfer tasks such as representation and transfer of artistic painting styles.
By contrast, the methods based on GANs not only avoid the low training efficiency caused by the
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separated en-decoding modules but also facilitate the loss design for different artistic painting transfer
task scenes. For example, Lin et al. [15] proposed to extract multi-scale image edges and use generative
adversarial learning to generate corresponding ink paintings from sketches. Zhang et al. [9] designed
the corresponding loss function according to the three details of ink painting: gaps, edges, and ink
diffusion, and used GAN to generate ink paintings from real images. Zeng et al. [10] applied the one-
side cycle of the CycleGAN as the cycle consistency loss and used AdaIN [22] to edit the decoded
information to get the final style painting. Different from the aforementioned approaches [9,15], this
method enhances task performance from overall style learning. Cao et al. [28] achieved good results
by proposing a dual-domain generator and a dual-domain discriminator using spatial and frequency
domain features. Due to these scene-oriented improvements and efficient learning strategies of GANs,
GAN-based solutions generally outperform en-decoding schemes in generation quality. Nevertheless,
these methods cannot get accurate mapping through learning, and there are deviations in the generated
content caused by the introduction of noise in the training and even artifacts of unknown meaning in
the generated results. Moreover, designing an enhanced GAN-based model for specific tasks will lead
to a large number of training parameters and difficulties in model convergence.

In conclusion, the above studies provide solutions for the transfer of artistic painting style, but
there are still some shortcomings. (1) The existing deep generation model does not have an accurate
inference mechanism for latent variable mapping, which leads to inherent image semantic errors and
deviations in the generated results, as well as inaccurate reconstruction of image contents. (2) The
feedforward process of the separated en-decoding architecture is not compact, resulting in the loss of
image details in the deep generation process and the inefficiency of convergence caused by large model
parameters. (3) Most of the existing style transfer models fail to thoroughly evaluate the generation
quality on both global style and local details, so it is difficult to significantly improve the overall quality
of generated images.

To address the above problems, this paper introduces a reversible network using multiplexing
modules for parameter sharing via the en-decoding procedures. With this novel architecture, the
accuracy of cross-domain feature transfer is improved and the loss of details is reduced, resulting
in an efficient transfer of artistic style. Recently, Flow-based models [29–32], as a subclass of deep
generative models, learn the latent spatial variables of high-dimensional observations through a
reversible transformation of a series of network layers, to establish an unbiased, accurate reversible
mapping from the complex distribution of observation variables to the Gaussian distribution. Based
on the reversible architecture, this paper attempts to achieve accurate mapping and transfer of content
and style features in the transfer scene of artistic paintings. To the best of our knowledge, this is
the first time a deep reversible network has been used for artistic painting generation. In detail, an
existing Flow-based reversible model as Glow [31] is adopted and a multi-scale Wavelet architecture
is formulated to enhance the accuracy inference of spatial features and improve model convergence.
Also, an adaptive edge extractor such as Bi-Directional Cascade Network (BDCN) [33] is applied to
adaptively learn edge salient information. Moreover, a style tester is implemented to check the overall
style to ensure that the details of generated content are style consistent. The main contributions are as
follows:

• This paper proposes a novel framework APST-Flow for artistic painting style transfer. This
framework introduces a reversible Flow network with shared en-decoder parameters and
Wavelet Additive Coupling (WAC) layers to accurately infer the mapping of image content and
style to latent variable space, thereby reducing the deviation of generated results and accelerating
model convergence.
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• APST-Flow applies an adaptive painting stroke edge loss Lbrush to guide the learning of artistic
painting-specific brushstroke effects to generate salient details. Also, a multi-scale edge loss of
content and style images is calculated to constrain the local edge details. Besides, the adversarial
training of the generator is guided by the discriminator according to the adaptation task, so as
to optimize the overall generated results.

• To enhance the style transfer performance, this paper formulates a style consistency checking
network (T), which makes full use of the reverse reconstruction network to calculate the
checking loss Lsn without additional memory resources, and adds noise to drive the style encoder
to improve the generalization ability. Furthermore, this network can help the generation module
learn global style features by detecting the error between the inversely reconstructed image and
the input image.

The rest of this paper is organized as follows. Section 2 reviews related work, as a brief introduction
to artistic style transfer and Flow-based models. Section 3 illuminates the proposed APST-Flow with
the network modules, procedures, and losses. In Section 4, qualitative and quantitative experiments are
established and the results are discussed on different data sets. The major conclusions are presented in
Section 5.

2 Related Work
2.1 Image Style Transfer Based on Deep Learning

Image style transfer has gradually become a popular vision application in recent years. Its purpose
is to retain the content of one image of the two given images and the style of the other. In 2015,
Gatys et al. [18,19] introduced Gram loss in deep features to represent image style, which led to
extensive research on neural style transfer by subsequent scholars. Many neural style transfer methods
have been proposed in recent years. In this paper, these methods are categorized into application
scenarios with ink painting style transfer [8–10,15,26,27], sketch style transfer [34–38], and other
artistic painting style transfer [39–41].

In the study of artistic style transfer, the transfer scheme of ink painting has made remarkable
progress. Based on the basic framework proposed in [12], Li et al. [26] generated Chinese landscape
paintings from real landscapes and used three MXDoG-based losses to guide the network to learn
the spatial abstract elements of artistic paintings. Zhou et al. [27], through improved the inception
convolution in [12], reduced the number of parameters of the rendering module while ensuring the
quality of generated results. Lin et al. [15] proposed extracting image edges at multiple scales and
using GAN to generate ink paintings from sketches. Zhang et al. [9] proposed the corresponding
training objective functions according to the three characteristics of ink paintings: gaps, edges, and
ink diffusion. Zeng et al. [10] adopted the one-side cycle of the CycleGAN architecture as the cycle
consistency loss, and then used AdaIN [22] to edit the decoded information. To simulate the manual
painting process, He et al. [8] first used SketchGAN to generate the edge map of ink painting, and
then adopted PaintGAN to generate ink painting from the edge map. The model uses an edge map
rather than a real image as the condition, so interpolation can be used to generate non-existent
ink paintings. Significant progress is also made in the transfer scheme of sketches. For example,
Zhang et al. [36] suggested inputting real graphs into a Branched Fully Convolutional Neural Network
(BFCN) to generate structure sketches and texture sketches respectively. Some studies choose to
improve the generation quality from the generated details. For example, Wan et al. [35] used a high-
resolution network instead of a generative network for details in sketches and utilized a Laplacian of
Gaussian (LoG) filter to establish a detailed loss. In [38], an image detail denoising method was used
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to improve the generated results of ordinary GAN and achieve sketch transfer. Nevertheless, some
others improved existing models from the overall sketch style. For example, Yan et al. [34] implied
that identity information was rather important in the transfer task of a real graph to pictorial style,
so identity loss was introduced in adversarial learning and cycle consistency loss was added to assist
adversarial learning. Yu et al. [37] proposed a composition-aided generative adversarial network (CA-
GAN), which takes the real image and its corresponding face composition information as paired inputs
and uses a perceptual loss function to generate constraints.

In addition, there is extensive research on the transfer of other styles. Zhang et al. [39] replaced
the traditional decoder with residual U-Net in the transfer task of black and white sketches to color
illustrations and used the discriminator improved by CA-GAN for discrimination. Chen et al. [40]
formulated a dual style-learning network for the transfer of artistic painting. This network takes
the overall style and the detailed style as the two supervision directions of artistic painting, uses
Style Control Block (SCB) to control the style factors, and has good performance in a variety of oil
paintings. Lin et al. [41] introduced a Laplacian pyramid network (LapTsyle) as a feedforward scheme
in the style transfer of artistic paintings such as oil paintings. The above methods are all artistic painting
transfer schemes based on deep generative networks, most of which are based on GANs. Although
they are efficient in generative model training, statistical learning based on noise-driven generative
networks will lead to uncertainty in the generated content and details.

2.2 Image Generation Based on Reversible Networks

As a kind of reversible network, Flow-based models were first applied to the image and video
generation tasks [29]. The Non-linear Independent Components Estimation (NICE) [29] constructed
a reversible neural network module and applied the maximum likelihood estimation learning criterion
to fit the feature distribution of complex images. NICE could accurately sample from latent variables
and generate corresponding images through network mapping. But it simply stacked fully connected
layers and failed to give the general use for convolutional layers. RealNVP [30] further normalized the
coupling layer based on the reversible idea of NICE, and successfully introduced a convolutional layer
into the coupling model to better address high-dimensional image problems. Assuming that the input
picture is x ∈ R

D, the latent variable is z ∈ R
D, then the bidirectional mapping is established according

to the Flow model described in [30], where the forward reasoning is f : x → z, and the reverse reasoning
is g � f −1 : z → x. This mapping can be obtained by using the equation of the maximum likelihood
criterion:

pX (x) = pZ (z)

∣∣∣∣det
(

∂g (z)
∂z

)∣∣∣∣
−1

(1)

where x = g (z) and J (z) = ∂x/∂z are Jacobi matrices of x with respect to z. Further, the design
of multi-scale layers is proposed to implement a simplified reversible network algorithm based on
Jacobian determinant [30], that is, the input x is divided into x1 and x2 equally in the channel dimension.
Then the output y1 and y2 will be expressed as:{

y1 = x1

y2 = x2 exp
⊙

(s (x1)) + t(x1)
(2)

where s(·) and t(·) are arbitrarily complex neural networks (i.e., CNNs for learning features). Then,
the derivative of y with respect to x1 and x2 is obtained as a triangular determinant, where the diagonal
is the product of exp (s (x1)). Therefore, efficient calculation of the Jacobian determinant can be
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achieved, which not only reduces calculation but also provides a strong regularization effect, thereby
enhancing the generation quality.

Different from RealNVP, the subsequently proposed Glow [31] mainly introduced the Actnorm
layer before the input to replace the Batch Normal (BN) layer. The Actnorm layer, as an alternative
to the BN layer, performs a per-channel affine transformation on the input tensor x:

yi,j = w � xi,j + b (3)

where i and j are the spatial positions on the tensor; w and b are the scale and deviation parameters of
the affine transformation, which are learnable in model training. Its inverse function is:

xi,j = (yi,j − b)/w (4)

Since the affine coupling layer only processes half of the feature images, the channel dimensions
of the feature images need to be permuted so that each dimension can affect all the dimensions. The
reversible 1 × 1 convolution operation is as follows:

yi,j = Wxi,j xi,j (5)

where W is a c × c weight matrix, where c is the channel dimension of the tensors x and y. Its inverse
function is:

xi,j = W −1yi,j (6)

Based on the above work, three restrictive designs based on the previous Flow are further improved
in Flow++ [32]: the use of uniform noise for dequantization, the use of affine Flow without expression,
and the application of pure convolution conditional reflective networks in the coupling layer. In
addition, C-Glow [42] applied a conditional Flow for structured output learning, adding a conditional
before the network. SR-Flow [43] utilized a super-resolution method based on standardized Flow,
which added a conditional affine coupling layer and adopted a multi-scale method to enlarge the
resolution of the generated images. The Wavelet Flow [44] adopted the Wavelet transform scheme to
achieve the super-resolution image analysis and to construct a multi-scale Flow network. BeautyGlow
[45] implemented the transformation matrix to learn and extract the latent codes of the features before
and after makeup and added the style codes in the latent variable domain to complete the makeup
task. ArtFlow [46] is based on a general style transfer model, which encoded images through the exact
reversibility of the Flow model, then fused the image feature style, and finally obtained a style transfer
image through reverse decoding. Different from ArtFlow [46], this paper attempts to use the multi-scale
style inference based on the reversible en-decoder architecture, formulate an adaptive edge extractor
as BDCN [33] to adaptively learn edge salient information, and also implement a style consistency
tester to ensure the details of generated content are style consistent.

3 The Proposed Method

As mentioned above, given the real scene image Ic as the content image and the artistic painting
image Is as the style image, the image Ics is generated through artistic painting style transfer. And
the generated image has the artistic style of Is, while preserving the scene content of Ic. To solve
the problems such as the loss of details in generated images and difficult convergence of training
[8–10,15,26,27], this paper proposes to use three modules to complete the style transfer task: A Wavelet
additive coupling layer-based Flow network (WAC-Flow) as the generator (G), a discriminator (D)
similar to the discrimination network described in PatchGAN [47], and a style consistency checking
network as the tester (T), which corresponds to the reverse transfer process of the generator (G). As
shown in Fig. 1, generator G uses the reversible WAC-Flow model as the en-decoder for the content
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image Ic and the style image Is, and AdaIN as the style transferor. The encoder and decoder share the
same network module, which reduces the scale of trainable parameters and allows accurate inference of
the mapping of image content to the latent variable space, thereby reducing the loss of content details.
The discriminator D uses the discrimination network in [47] to discriminate the generated stylized
images and generate the discriminant loss LGAN, to optimize the generator G by adversarial training.
In addition, the tester T uses noise as an input to drive the style encoder and utilizes the reversibility
of WAC-Flow to construct the loss Lsn, to check the global features of the generated stylized images
and enhance the generalization ability of the model.

Figure 1: The APST-Flow model proposed in this paper. It contains a generator G, a discriminator
D, and a tester T , among which G involves the adaptive paint stroke edge loss Lbrush and style transfer
losses Lc and Ls, D involves loss LGAN, and T involves the style noise consistency loss Lsn. Repeated
modules in WAC-Flow are shown in the upper left corner

3.1 Generative Network Based on WAC-Flow Model
3.1.1 Image Encoding and Decoding Using WAC-Flow

In style transfer tasks, most of the previous studies use linear networks as generators and employ
adversarial learning strategies to train the network. However, the pooling operation leads to the loss
of spatial information, and the cumulation of these irreversible operations may disturb the generation
of images and cause detail loss. The Flow model theoretically has perfect reconstruction and also is
a generative model that can establish an accurate mapping between the image domain and the latent
space. Therefore, this paper will extend this reversible model to artistic style transfer scenarios.



5236 CMC, 2023, vol.75, no.3

In this paper, the existing reversible model is used as the basic module of image en-decoding
processing, and its basic working principle can be expressed as:⎧⎪⎨
⎪⎩

zc = f (Ic)

zs = f (Is)

Ics = f −1 (AdaIN (zc, zs))

(7)

where the mappings f : RD → R
D and f −1: RD → R

D are the forward and reverse transformation
processes of the Flow module. And, the optimization objective function of f is:

arg min
θ

Ex [− log pθ (x)] = Ex

[
− log pz(fθ (x)) − logdet

∣∣∣∣∂fθ (x)

∂x

∣∣∣∣
]

(8)

where θ is the parameter that can be learned, pθ (x) is the complex distribution of the image domain,
det |·| is the Jacobian determinant, and pz (·) is the Gaussian distribution of the latent space. In view
of the particularity of the artistic painting style transfer task, a WAC-Flow model consisting of four
fully reversible components is proposed in this paper.

Wavelet Additive Coupling (WAC) layer. Since this paper is the first study to apply a deep
reversible network [31] to artistic painting style transfer, the existing reversible model needs to
be regularized accordingly. The reversible model RealNVP proposed in [30] contains a reversible
transform encapsulated as an affine coupling layer, which can efficiently update part of the input
vector or latent vector. To enhance the model’s ability to represent spatial details, herein Haar Wavelet
is introduced into the traditional affine coupling layer, as shown in Fig. 2. Moreover, discrete Wavelet
is used to obtain high-frequency information that is not easy to extract from images, and to strengthen
the learning of spatial edges and textures. Due to the orthogonality of the discrete Wavelet basis
function, the correlation interference caused by the redundant representation between the two feature
points in the transform space can be eliminated, and a significant representation of the image latent
variables can be obtained. In this paper, a multi-scale discrete Wavelet pyramid is used to enhance the
adaptability of the coupling layer to the style transfer task. The equations for the forward and reverse
feed of a single WAC layer are expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Forward − feed :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1, x2 = split(x)

y1 = x1

y2 = K−1
haar(Khaar(hconv(x1))) + x2

y = concat(x1, x2)

Inverse − feed :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1, y2 = split(y)

x1 = y1

x2 = K−1
haar(Khaar(hconv(y1))) − y2

x = concat(y1, y2)

(9)

where the equation for the transformation processing based on Haar Wavelet, including forward
analysis Khaar and reverse reconstruction K−1

haar, is:

Haar − Wavlet :

{
Il : {Il, Dl} = Khaar,l(Il−1)

Îl−1 : {Îl−1, D̂l−1} = K−1
haar,l−1(Il, hconv,l(Dl))

, l ∈ 1, 2, . . . L (10)
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Figure 2: The structure of the proposed WAC layer. The left side is the inputs x1, x2. Notice
x1 is used to generate features through multi-scale Wavelet transformation, which restores
image features by levels in turn and then added on x2 as output y2, and output y1 equals x1

In Eq. (9), the function split() splits the tensor in half along the channel dimension, the function
concat() connects the two tensors along the channel dimension, and hconv() is a simple convolution
operation. It is worth noting that the Wavelet forward decomposition decomposes the input infor-
mation Il−1 : I ∈ R

2l×2l×C into low-frequency output Il : I ∈ R
2l−1×2l−1×C and high-frequency output

Dl : D ∈ R
2l−1×2l−1×3C through the discrete Wavelet kernel Khaar (channel). This transformation is

recursive, l ∈ 1, 2 . . . L is the recursive scale, the initial input is Il−1 = I0, and finally D1, D2, . . . , DL is
obtained after transformation. Then, the forward Wavelet transform is restored by the discrete Wavelet
reverse kernel K−1

haar (channel), which can recursively fuse the processed high-frequency information
hconv,l (Dl) and low-frequency information Il and restore it to the scale of the next level and ultimately
to Î0 ≈ I0 after several iterations. Here, Î0 and I0 have the same size and shape. In other words, through
the forward channel and reverse channel of the Wavelet, recursive reduction allows the input and
output to have the same shape.

In addition to the proposed WAC layer, the details of the remaining major components of the
reversible network are given below.

Reversible 1 × 1 convolutional layer. Following Glow [31], a learnable reversible 1 × 1 convolutional
layer is used for flexible channel arrangement, which can be calculated from Eqs. (5) and (6).

Actnorm layer. An activation normalization layer (Actnorm) is used as an alternative to batch
normalization following Glow [31]. The Actnorm layer performs a per-channel affine transformation
on the tensor x, as calculated by Eqs. (3) and (4).

Squeeze layer. In addition to the aforementioned reversible transformations, squeeze operations
are embedded in some parts of the model. The encapsulated squeeze layer is suitable for realizing
multi-scale architecture, for example, dividing an image into sub-images of shape 2 × 2 × c and then
reshaping them to 1 × 1 × 4c. Before the output of the current level is transmitted to the next level,
half of the dimensions of the outputs are decomposed and dumped into the latent space to reduce
computational cost and the number of parameters.
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By stacking the above four operating components in a specific order, the generative network WAC-
Flow can be obtained, which realizes the bidirectional mapping from the input image to the latent
variable domain, and obtains their spatial features. Specifically, in the encoding process, the real image
Ic and the artistic image Is are respectively input into WAC-Flow to obtain their latent variables zc

and zs. In the decoding process, the latent variable zcs transferred by AdaIN is input into the reverse
model of WAC-Flow, and the transferred image is obtained by decoding. It should be pointed out
that in the training stage, WAC-Flow shares parameters with its inverse model, and there is roughly
no information loss in the process of en-decoding.

3.1.2 Style Feature Transfer Using AdaIN

After the image is mapped to the latent variable space through WAC-Flow, the content features
and style features should be combined for transfer. Moreover, the content of the latent variable domain
should be edited to match the Tester T . To achieve this function, this paper selects the module AdaIN
that can combine content features and style features in the latent space to complete the transfer. This
module aligns the normalized channel mean and variance of the content image with the style image,
so that the generated image adaptively has the same feature distribution as the artistic image, and
introduces a Gaussian distribution to enhance the generalization ability of the model. If zc and zs

respectively are the feature codes of the content image and style image obtained through WAC-Flow
mapping, and ξ is the noise distribution, then the AdaIN layer can be given by:

hAdaIN(zc, zs + ξ) = σ(zs + ξ)

(
zc − μ(zc)

σ (zc)

)
+ μ(zs + ξ) (11)

where μ(zc) and σ(zc) are the mean and standard deviation of the content image features, respectively;
μ(zs + ξ) and σ(zs + ξ) are the mean and standard deviation of the features of the noised style image
respectively; zs + ξ is the result of adding noise to the style latent variable for the tester T , and ξ ∼
u (−0.5, 0.5). In this way, the content and style representation of the image can be separated. Then,
the WAC-Flow code is inversely mapped to the image space through the stylized decoding process
integrated with the AdaIN module.

The additional loss of the AdaIN layer in the generator G is the weighted combination of the
content loss Lc and the style loss Ls:

Lc = ||e (
f −1 (zcs)

) − zcs||2 (12)

Ls =
∑

i=1...L
||μ (

φi

(
f −1 (zcs)

)) − μ(φi (Is))||2 +
∑

i=1...L
||σ (

φi

(
f −1 (zcs)

)) − σ(φi (Is))||2 (13)

where zcs is the output code of AdaIN, Is is the style image, f −1 is the decoder, e is all the layers prior
to relu4_1 pre-trained for fixed VGG-19, φi is the layer in VGG19 used to calculate style loss. In the
experiment, relu1_1, relu2_1, relu3_1, and relu4_1 layers with the same weights are used, and μ and σ

are the mean and standard deviation of the feature image, respectively. To obtain the content loss Lc,
the Euclidean distance between the target features and the output image features needs to be calculated.
As for the style loss Ls, the mean and variance of the channel corresponding to feature code are used
to represent the image style instead of the Gram matrix [18,19]. The decoder f −1 is trained to trade off
between Lc and Ls rather than to reconstruct a perfect input image.

3.1.3 Loss of Adaptive Painting Stroke Edges

In order to generate images that are more suitable for artistic painting style transfer, the model
needs to learn a typical feature of artistic paintings, i.e., edge features. For example, traditional ink
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painting is outlined with brushes, which not only clearly depicts the outline of the object but also
embellishes the details. In a sketch, by contrast, the color is applied thickly with a pencil, while
the outline is sketched with a single stroke. To unify the edges of different thicknesses in modeling
art paintings, and also define and distinguish them to guide the generation, a stroke constraint is
introduced in the generator G to strengthen the edge consistency between the real and generated
images. This adaptive stroke edge loss can extract specific multi-scale edges in each image. It is more
flexible and accurate than Holistically-Nested Edge Detection (HED) [48] which can only extract
fixed-scale edges and thus is suitable for tasks on artistic painting datasets.

In this paper, the Bi-Directional Cascade Network (BDCN) is used to extract adaptive multi-scale
edges from the input image, to simulate strokes of different thicknesses. It uses multiple IDB (ID block)
layers to extract edge maps of specific scales that are learned by the network itself. The effect of edge
extraction varies with different scales. The shallow layer is better at extracting the edge of details better,
while the deep layer extracts the edge of the target better. The network allows each intermediate layer
to learn its own appropriate scale, and finally fuses the outputs of all layers.

Specifically, the pre-trained BDCN is used to extract the edge of the original image to get B(Ic),
and the edge of the transferred image is extracted to obtain B(G (Ic)). Then, a balanced cross-entropy
loss is computed with B(Ic) as the true guidance, so that the generator network can learn to get the
appropriate strokes. Therefore, the stroke edge loss can be expressed as:

Lbrush (G, B, Ic) = EIc∼Pdata(Ic)

[
1
N

∑N

i=1
αB (Ic)i log B(G (Ic))i

]
+ β(1 − B (Ic)i) log(1 − B(G(Ic)i)) (14)

where G is a generator that uses WAC-Flow to generate stylized image from the original image, N is
the total number of pixels in the edge map of the original image or the transferred image, and α and β

are two parameters for balancing edge and non-edge pixels respectively.{
α = λ · |Y+|/(|Y+| + |Y−|)
β = |Y+|/(|Y+| + |Y−|) (15)

where λ controls the proportion of positive and negative samples in α. |Y+| and |Y−| are the sums of
non-edge and edge probabilities for each pixel in B(x), respectively.

3.2 A Tester Based on Style Consistency Loss

This study believes that various styles have certain commonalities. For example, the style of artistic
paintings has its unique characteristics, so the generated pictures are expected to have a general style
rather than a specific style. Previous style transferors only normalize the style of each image, thus
this paper formulates a style noise consistency loss Lsn to guide the generalization of the generative
model. It uses the reverse reconstruction ability of WAC-Flow to input the stylized image Ics as content
information and the content image Ic as style information, and reversely reconstruct the stylized image
Ics back to the original content image Îc. This can improve the model utilization and further optimize
the model so that it can be applied to more types of artistic style transfer tasks.

In view of the above considerations, this paper adopts a tester T , corresponding to the blue part in
Fig. 1, where it can produce a style noise consistency loss Lsn. As mentioned above, the generator G has
added style noise to Is before it is fed to the tester T , so z̃s = zs + ξ , where ξ∼u (−0.5, 0.5). In the tester
T , the latent space code of Ic is processed with style noise again: z̃c = zc + ξ , where ξ∼u (−0.5, 0.5).
After that, the obtained code z̃c as the style code and zcs as the content code are input into the AdaIN
layer so as to obtain the latent variable z̃cs after transfer. Finally, the transfer result z̃cs is reconstructed
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from Ic to Îc through the reverse decoder f −1. To ensure that the reconstructed image Îc after style noise
processing is consistent with the input content image Ic in content and style, the loss is constructed:

Lcyc(G, T , Ic, Is) = ||T (G (Ic, Is) , zc) − Ic||1 (16)

LMS−SSIM(G, T , Ic, Is, zc) = 1 − SSIM(T(G(Ic, Is), zc), Ic) (17)

Lsn(G, T , Ic, Is, zc) = Lcyc (G, T , Ic, Is) + LMS−SSIM(G, T , Ic, Is, zc) (18)

where || · ||1 is the L1 loss, G is the module that generates the style image from the original image, and
T is the module that restores the style image to the original image. Specifically, G can be expressed as:

G (Ic, Is) = f −1(AdaIN (f (Ic) , f (Is) + ξ)) (19)

And T can be expressed as:

T (Ics, zc) = f −1(AdaIN ((zc + ξ) + f (Ics))) (20)

where the noise ξ ∼ u (−0.5, 0.5). Further, the loss Multi-scale Structural Similarity Index Measure
(MS-SSIM) can be obtained by computing the value of Structural Similarity Index Measure (SSIM)
at multiple scales:

SSIM(x, y) = [lM(x, y)]αM
∏M

j=1
[cj(x, y)]βj[sj(x, y)]γ j (21)

Then, the multi-scale SSIM and L1 loss are combined to regularize the generator output after
style noise treatment, including Ics and Îc. In addition, the similarity constraints of Îc and Ic spatial
features are added, so that the image style of the generated Ics is not limited to a single image, and the
generalization ability of image style representation is enhanced. The tester of WAC-Flow and its inverse
structure share the corresponding parameters with the generator G, thus the storage and computation
for parameters are not large.

3.3 Discriminator and Combined Loss

For artistic paintings, the processing of details is crucial, and generating reasonable details can
improve the authenticity of the image. To ensure the generative model can focus on the generated
details of the artistic painting image while considering the influence of different parts of the generated
image, this paper adopts the discriminator in PatchGAN and its loss to further improve the effect of
image style transfer. Different from the common GAN discriminator that maps the input to a real
number, that is, the probability of the input sample being a true sample, the PatchGAN discriminator
maps the input to a N × N (patch) matrix X . Each Xij corresponds to the probability of the sample in
the area where the patch is located being true. It comprehensively considers the discriminative output
of each patch of the image, and thus can enhance the spatial detail quality of the generated artistic
painting image. In this paper, the discriminator D is used to calculate the patch average discriminant

distance D(X) = 1
N × N

∑
ij Dij(xij) of the generated stylized image, thus establishing the adversarial

generative network loss:

LGAN(Ic, Is, Ireal) = EIreal∼Pdata(Ireal) [log D (Ireal)] + EIc ,Is∼Pdata(Ic ,Is) [1 − log D (G (Ic, Is))] (22)
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where G is the generator that transfers input images to stylized images through the proposed reversible
network, and D is the PatchGAN discriminator. The optimization goal here is to minimize the loss of
the generator G and maximize the loss of the discriminator D, namely:

minGmaxDLGAN(Ic, Is, Ireal) (23)

The objective function is optimized by the training strategy of cyclic confrontation in the data
batch. The discriminator (D) and the generator (G) are optimized in turn through adversarial learning,
and finally the ideal style image generation effect is obtained. In summary, the combined loss proposed
in this paper is:

L (G, T , D, B) = αLc + βLs + γ Lbrush (G, B, Ic) + μLGAN (G, D, Ic, Is, Ireal) + ωLsn(G, T) (24)

where parameters like α, β, γ , μ, and ω are a linear combination for control of these losses. The final
optimization objective is:

H = arg min
T ,G,B

max
D

L(G, T , D, B) (25)

The transfer method of artistic painting style proposed in this paper can be analyzed from the
aspects of detail processing and overall style. The reversible WAC-Flow model not only provides an
approach to obtaining the unbiased transfer map of generated content but also constructs a compact
en-decoder feedforward structure to meet the requirement of lossless spatial details in artistic painting
transfer tasks. Furthermore, an adaptive paint stroke edge loss is introduced to constrain the learning
of style painting edges. As for the overall style, this paper proposes a tester T , which can satisfy the
overall style requirements of artistic paintings, guide the optimization process of the generative model,
and obtain good style generalization performance. Fig. 3 illuminates the overall flowchart of APST-
Flow and the detailed algorithm of the Flow-based module.

Figure 3: The flowchart of APST-flow and the algorithm table of the flow-based module
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4 Experimental Results and Discussion

The proposed method was evaluated according to the main performance indicators of the genera-
tion results according to different artistic painting style transfer tasks. Specifically, the existing models
of artistic painting style transfer were tested and compared, including ChipGAN [9], CycleGAN [49],
Distance-GAN [50], AdaIN [22], ArtFlow [46], etc. To ensure test fairness, the default parameter
configurations of the above models were performed, and the same image set was used to train for
model convergence. After that, the same images were selected from the test set for qualitative and
quantitative evaluation and comparison (the details are given below). For the experimental computing
platform, the ubuntu18.04.6 system equipped with the intel®Core i5—9400F CPU 2.90 GHz × 6 and
the NVIDIA GeForce RTX 2070 8G GPU was adopted.

4.1 Experimental Settings

Two scenarios were set for the experiment, one was the style transfer from real image to artistic
painting, and the other was the style transfer from artistic painting to artistic painting. Three
representative datasets were adopted: ChipPhi [9], MetFaces [51], and CUHK Face Sketch Database
(CUFS) [52]. Among them, the ChipPhi set collected in ChipGAN [9] contains 1478 real horse photos
and 822 ink paintings of horses. It serves as an evaluation test set for the ink style transfer models
[9,10] and can be used for transfer experiments from real pictures to ink paintings. The MetFaces set
contains 1336 images of western artistic face paintings, including oil paintings, prints, gouache, etc.
The CUFS set is composed of 606 face sketch images of different races. These two sets can be used
for the experiment of style transfer from other artistic paintings to sketches. For better training effect,
CUFS was reversed and trimmed to increase the number of sketches to a total of 1212.

To evaluate the style transfer from real pictures to artistic paintings, MSEc,ĉ, Style Error, training
time, and testing time were used as evaluation indexes to quantitatively evaluate the generated
results. These evaluations comprehensively compared the results of different model architectures, loss
functions, and related parameters. The average of 50 results for each method was selected as the
final result. Here, MSEc,ĉ refers to the Mean Squared Error (MSE) between the fake content image Îc

restored from the generated stylized image Ics and the content image Ic. The MSE evaluation indicator
is given by:

MSE = 1
N

∑N

i=1
(yi − ŷi)

2 (26)

The other evaluation index, Style Error, calculates the distance of the style features between the
generated stylized image Ics and the style image Is. As described in Eq. (6), it calculates the Euclidean
distance between the variance σ and the mean μ of the stylized image Ics and the style image Is via
the VGG19 specific layer φi, respectively. SSIM is designed to evaluate the similarity of two images (Ics

and Is) in terms of brightness, contrast, and structure, and is a commonly used evaluation indicator
for style transfer tasks.

SSIM(G) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(27)

Peak Signal-to-Noise Ratio (PSNR) is also a widely used image evaluation index, and it is based
on the error between corresponding pixels. PSNR is calculated by the following formula, where MAXI

represents the maximum of the pixel color.

PSNR = 20 · log10

(
MAXI√

MSE

)
(28)
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In this paper, the APST-Flow model details are realized on the PyTorch framework. The Adam
optimizer (0.5, 0.999) was applied to train APST-Flow for 60,000 iterations, with batch size of 1,
initial learning rate of 1e-4, and learning rate decay of 0. The WAC-Flow had 2 blocks, each of which
contained 2 Flows, and the scale of the discrete Wavelet pyramid in WAC was set as L = 2. On a single
RTX 2070 GPU, the APST-Flow was trained for about 24 h. In the linear combination of the total loss
function, the coefficients of content loss and style loss were set to 1 and 0.1 respectively, the coefficient
of edge loss to 0.1, and the coefficients of other loss terms to 1.0 by default.

4.2 Experimental Results and Discussion

To verify the effectiveness of the proposed method, it is compared both qualitatively and
quantitatively on two tasks with several state-of-the-art models including ChipGAN [9], AdaIN [22],
ArtFlow [46], CycleGAN [49], Distance-GAN [50], AesUST [53], and MicroAST [54].

4.2.1 Qualitative Comparison

Fig. 4 shows the comparison between the generated results of the proposed model and existing
transfer methods in the transfer task from real images to ink paintings on the ChipPhi set. As can
be seen from the figure, only our method and ArtFlow which also uses the Flow model can roughly
separate the main part of the horse and generate the necessary gaps in ink paintings. For example, as
shown in the 2nd and 5th rows of Fig. 4, the other 6 methods except our method have complex artifacts
in the shadow behind the horse, which affects the overall generation effect. Although ChipGAN,
Distance-GAN, and CycleGAN have removed artifacts to a certain extent, their overall generation
effect is not ideal, that is because the style tester T in our method can maintain the overall style.
In addition, as shown in lines 3 and 6, the other 6 methods do not work efficiently on background
segmentation, while our method has clearer lines and better shows ink painting style in the simulation
of brush strokes. These illustrate that our model can well achieve ink painting style transfer of
brushstrokes. From the generated results of ChipGAN in the 6th row, it can be observed that the leaves
on the left side are generated as horse tails and the ears are missing. In contrast, our results preserve
the image content while transferring the style well. This is attributed to the ability of WAC-Flow to
preserve the content details in style transfer tasks.

To verify the effectiveness of the proposed model, its performance on the task of style transfer
between artistic paintings is also evaluated. Fig. 5 shows the comparison between the proposed model
and the existing methods in the task from the artistic face painting set MetFaces to the face sketch
set CUFS. As shown in Fig. 5, ChipGAN, Distance-GAN, and CycleGAN have content deviations in
the generated sketches, and part of the content cannot be generated. Also, they have many artifacts
on the generated texture, making them difficult to preserve the style of the sketch. Moreover, AdaIN,
ArtFlow, AesUST, and MicroAST fail to learn the characteristics of sketches well, and the generated
images lack the texture of sketches. AdaIN and AesUST learn only the color features of sketches,
and it still maintains the texture of oil paintings. Although ArtFlow retains the general content of
the content image, the generated pencil texture is blurred, and the strokes are still in the style of oil
paintings rather than sketches. MicroAST generated colors that should not appear in the sketch. Only
the proposed method can transfer the style features of sketches well without any bias in content. This
is mainly because the WAC-Flow network and the discriminator D of PatchGAN in our model are
more focused on detail generation than the other models. At the same time, due to the precise content-
preserving ability of the reversible network, our model can preserve more reasonable details than the
irreversible transfer models.
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Figure 4: The style transfer from real pictures to ink paintings on the ChipPhi set. The left side of the
dotted line is the input content image and style image, and the right side is the generated images by
APST-Flow and the comparative methods

To visualize the content deviations, a set of reconstruction experiments are performed, as shown
in Fig. 6. Several methods (ChipGAN, AdaIN, CycleGAN) that allow reconstruction is selected for
comparison. The generated image Ics is reconstructed into Îc, which is qualitatively compared with the
content image. Obviously, except for our method, the other schemes cannot reconstruct the generated
image accurately and completely. ChipGAN and CycleGAN can retain most texture details of the
content image, with some deviations, whereas the result of AdaIN is completely based on the generated
image, and it differs most significantly from the content image. This demonstrates the unbiased
mapping ability of the proposed reversible model to completely transfer the original content image
Ic, as well as the ability to fully retain the details in the transfer processing.

In addition to horses, various categories of pictures, such as cats, dogs, human faces, and fruits, are
selected as the test set. The two models previously trained by the real picture to ink painting transfer
task and MetFaces to CUFS transfer task are used to generate these images into ink paintings and
sketches. The final results are shown in Fig. 7. It can be seen that the transfer results of different types
of images conform to the style of artistic paintings while retaining the content of the original images,
indicating that our model has high style transfer efficiency and strong generalization ability.
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Figure 5: Results of the MetFaces to CUFS transfer task. The left side of the dotted line is the input
content image and style image, and the right side is the generated images by APST-Flow and the
comparative methods

Figure 6: Comparison of the results of the four methods for reconstructing the content image Ic into
the reconstructed image Iĉ. The first and second rows show the content image and the style image
respectively, and the third row is the result Iĉ restored by the method in the corresponding column
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Figure 7: Transfer results of various images by APST-Flow. Each group has three columns, the first of
which is the content image, the second is the results of transferring to ink paintings, and the third is
the results of transferring to sketches

In conclusion, ChipGAN, Distance-GAN, and CycleGAN generate a certain degree of content
deviation and background artifacts. AdaIN and MicroAST produce textures that are not realistic
enough and have artifacts. ArtFlow has messy brushstrokes. They cannot faithfully reflect the
style features of ink paintings and sketches. AesUST produces sketchy textures that are too strong.
Compared with these methods, our method can well transfer the style of artistic paintings without
changing the content. Our method can generate images with reasonable style on both tasks, and the
trained model can be applied to the other types of input and achieve reasonable generation results.
This is because the proposed WAC-Flow reversible network can preserve the content details, and the
adaptive stroke loss can improve the effect of edge transition. Thus, it achieves excellent results in
qualitative comparison with the other methods. Furthermore, the style-checking network can ensure
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the consistency of the overall style and enhance the generalization ability of the model transfer, so it
can generate high-quality results in the other types of images.

4.2.2 Quantitative Comparison

Since the generated images are sometimes difficult to evaluate with the naked eye, multiple sets
of quantitative tests are conducted for a fair comparison. MSEc,ĉ, Style Error, SSIM, and PSNR are
used as evaluation indicators for quantitative comparison. It can be seen from Tables 1 and 2 that our
method has better results on most indicators and requires less training time. In addition, the SSIM
index also has the best performance due to the unbiased mapping ability of the reversible model, and
this is also reflected in ArtFlow. Our method also has an advantage in style loss, presumably due to
the fact that WAC-Flow can process deeper features. This shows that the proposed method can not
only preserve the content information of images but also learn the style features of paintings well. The
image generated by our method is better than those of the other methods in image evaluation indicators
PSNR. Our method has the most obvious improvement in the transfer task from real pictures to ink
paintings. Specifically, compared with the previous best method ArtFlow, ours improves PSNR by
1.5975 and SSIM by 0.0583 and decreases Style Error by 0.005. In the MetFaces to CUFS transfer
tasks, our method outperforms the previous best method by 0.0789 and 0.0013 in PSNR and SSIM
indicators, respectively, and reduces Style Error by 0.0006. This shows that the proposed method
achieves the best transfer effect on the two tasks, and the greatest improvement is achieved in the
real to ink painting task. In terms of training time, AdaIN, AesUST, and MicroAST use the pre-
trained model. ChipGAN is cyclic training, which has two identical generators and discriminators, and
ArtFlow is one-way training. Our model is also one-way training but has some more cyclic constraints
than ArtFlow, so our method is shorter than ChipGAN but longer than ArtFlow in training time.
Nevertheless, our model has a longer test time than AdaIN, which may be ascribed to the lightweight
model of AdaIN.

Table 1: Quantitative comparison of evaluations in the task of real image-to-ink painting transfer by
different methods on the ChipPhi set. The best measurements are in bold

Model ChipPhi
MSEc,ĉ ↓ Style error ↓ SSIM ↑ PSNR ↑ Training

time ↓
Testing time
(256 px) ↓

Real data 0.0000 0.0000 1.0000 / / /
ChipGAN 0.0406 0.0149 0.9021 28.7358 51.5 h 0.473
CycleGAN 0.0315 0.0153 0.9101 28.5244 54.4 h 0.400
Distance-GAN / 0.0377 0.8482 27.0533 55 h 0.417
ArtFlow 0.0002 ∗ 10−2 0.0240 0.9343 31.7672 23.4 h 0.035
AdaIN 0.1963 0.0933 0.8907 30.2563 / 0.018
AesUST 0.0341 0.0083 0.8129 28.5983 / 0.082
MicroAST 0.0317 0.0017 0.8050 29.8966 / 0.091
Ours 0.0002 ∗ 10−2 0.0012 0.9926 33.3647 24 h 0.039
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Table 2: Quantitative comparison of evaluations by different methods on the transfer task of MetFaces
to CUFS. The best measurements are in bold

Model ChipPhi

MSEc,ĉ ↓ Style error ↓ SSIM ↑ PSNR ↑ Training
time ↓

Testing time
(256 px) ↓

Real data 0.0000 0.0000 1.0000 / / /
ChipGAN 0.0735 0.0045 0.9836 33.7325 33.5 h 0.441
CycleGAN 0.0470 0.0047 0.9871 33.7901 34.4 h 0.382
Distance-GAN / 0.0056 0.9693 30.8253 36 h 0.397
ArtFlow 0.0003 ∗ 10−2 0.0052 0.9891 31.8546 17.7 h 0.033
AdaIN 0.2295 0.0010 0.9861 34.5576 / 0.015
AesUST 0.0751 0.0012 0.7573 30.1383 / 0.083
MicroAST 0.0487 0.0011 0.7554 29.8660 / 0.094
Ours 0.0003 ∗ 10−2 0.0004 0.9904 34.6365 19 h 0.035

4.2.3 Ablation Experiment

To verify the effectiveness of the proposed loss, ablation experiments are performed on the two
losses. In Fig. 8, “Without Lsn” refers to removing the tester T from the model, and “Without Lbrush”
refers to removing the adaptive painting stroke edge loss. The first and fifth columns of the test results
are the input real images. The three columns following the first column are the ablation comparison of
sketches and the three following the fifth column are the ablation comparison of ink paintings. It can be
seen from the generation results on the ChipPhi set that the generated images without Lbrush are blurrier
on the whole, and though have an advantage in the definition of content and texture, there are lots of
artifacts at the edges. The results without Lsn are close to the real image in the generation of edges,
while the results without Lbrush have poor generation effect, especially in gap processing. For example,
many artifacts can be observed in the images in the second and sixth columns, but not in the results
without Lbrush or with the full model. On the MetFaces to CUFS transfer task, the results without Lbrush

partly retain the color and fail to completely transfer the black and white style of sketches, as shown in
the first and third rows. Also, the generated result is more like the original image with changed colors
and lacks the sketch style in the stroke texture. The generated images without Lsn are better than those
without Lbrush in texture details but still cannot achieve high-quality results in color generation.

In the experiment, it is found that the stroke contour, gap, and texture details of ink paintings
can be well learned by using these two losses at the same time, with the best generation effect. To
demonstrate the effectiveness of the proposed WAC-Flow network, Fig. 9 with obvious visualization
is chosen to show our experimental results. The first column on the left is the content image, and the
two on the right are the generated results by Glow and WAC-Flow respectively. It can be seen that the
generation effect by WAC-Flow not only retains the original outline but also generates fine texture
details. For example, as shown in the horse’s neck in the first and third columns, the images generated
with WAC-Flow are closer to ink painting in texture than those with Glow, and the transition is natural
and closer to the real painting. The reason is that the proposed method can better distinguish content
and texture, and generate texture features that are more in line with the content.
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Figure 8: Ablation results for both two tasks. The left half is the result of the MetFaces to CUFS
transfer task, and the right half is the result of the real image to ink painting transfer task

Figure 9: Comparative experiment with/without WAC. The first row is the input content image, the
second is the generated image by Glow, and the third is the generated result with the WAC network
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The quantitative analysis results are presented in Tables 3 and 4. The values of MSEc,ĉ in the
ablation results are the same, which means that the models without Lsn or Lbrush can fully save the
content without content offset. This also demonstrates the advantage of unbiased mapping in full
mode. In the image-to-ink painting transfer task, the model without Lsn module performs the best on
Style Error, which is less than the full model by 0.0009. The reason for the poorer performance of the
full model may lie in the large deviation between the overall style and the specific style, but it is slightly
better than the model without Lsn on the generation effect. Furthermore, the model without Lsn module
is slightly lower than that without Lbrush module in SSIM and PSNR. It has a poorer generation effect
than the full model. In the MetFaces to CUFS transfer task, the ablation results are similar. On the
whole, the model without Lsn module is inferior to the model without Lsn module, except in PSNR,
the former exceeds the latter by 0.014. All indicators of the full model are the best, proving that the
proposed method can achieve the best performance.

Table 3: Ablation comparison results in the transfer task of real image to ink painting on the the
ChipPhi set. The best measurements are in bold

Model ChipPhi

MSEc,ĉ ↓ Style error ↓ SSIM ↑ PSNR ↑
Real data 0.0000 0.0000 1.0000 /
Without Lsn 0.0002 ∗ 10−2 0.0003 0.9820 31.0677
Without Lbru 0.0002 ∗ 10−2 0.0067 0.9762 33.1009
Full 0.0002 ∗ 10−2 0.0012 0.9932 33.3647

Table 4: Ablation comparison results in the MetFaces to CUFS transfer task. The best measurements
are in bold

Model MetFaces to CUFS

MSEc,ĉ ↓ Style error ↓ SSIM ↑ PSNR ↑
Real data 0.0000 0.0000 1.0000 /
Without Lsn 0.0003 ∗ 10−2 0.0006 0.9815 34.3754
Without Lbru 0.0003 ∗ 10−2 0.0004 0.9909 34.3618
Full 0.0003 ∗ 10−2 0.0004 0.9912 34.6365

Unlike CycleGAN, Distance-GAN, ChipGAN, or AdaIN which will cause artifacts and loss of
content, the proposed en-decoder shared framework can generate excellent transfer results without
missing more content. It is because our model utilizes the reversibility of WAC-Flow to achieve
compact feedforward en-decoding processing. Compared with ArtFlow [46], which is also an en-
decoding style transfer scheme, our method shows a significant advantage in the transfer tasks, which
is ascribed to the multiple improvements in content details and overall style. Consequently, our method
can be applied in many scenes of reality, such as providing inspiration for artistic painting. Although
the proposed method is excellent, it still requires optimizing numerous model parameters, which makes
the generation process inefficient. Additionally, the model cannot realize the adaptive transfer of
different artistic painting styles, thus its generalization ability needs to be further enhanced.
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5 Conclusions

Aiming at the problems of content detail deviation and the difficult convergence of model training
in APST, this paper proposes a novel style transfer network APST-Flow based on a multi-scaled
reversible model. Experiments on different scenarios demonstrate that APST-Flow can effectively and
accurately guide the style transferring process and outperforms the state-of-the-art baselines in both
qualitative and quantitative evaluations. In addition, the loss Lbrush can effectively guide the learning
of style strokes, and the PatchGAN discriminator reduces the uncertainty of generated results so that
the reversible WAC-Flow generates high-quality details. The introduced discriminant module T can
globally enhance the generalization ability, thereby improving the generative performance on various
APST tasks. Compared with existing baselines, APST-Flow improves PSNR and SSIM by 1.5975
and 0.0583 respectively on the ChipPhi set and by 0.0789 and 0.0013 in the MetFaces to CUFS
transfer task. The competitive results verify that APST-Flow achieves high-quality generation with
less content deviation and enhanced generalization, thereby can be further applied to more APST
scenes. The limitations lie in the parameter scale being still too large and the ability to adapt and
transfer various styles cannot be totally satisfied. Further work might be carried out in two folds:
improve the generator by incorporating the concept of super-resolution to generate more general art-
style paintings, and integrate the attention mechanism to control the distribution of stylization to
generate more interpretable style transfer results.
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