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Abstract: Graph theory has a significant impact and is crucial in the structure
of many real-life situations. To simulate uncertainty and ambiguity, many
extensions of graph theoretical notions were created. Planar graphs play a
vital role in modelling which has the property of non-crossing edges. Although
crossing edges benefit, they have some drawbacks, which paved the way for
the introduction of planar graphs. The overall purpose of the study is to
contribute to the conceptual development of the Pythagorean Neutrosophic
graph. The basic methodology of our research is the incorporation of the
analogous concepts of planar graphs in the Pythagorean Neutrosophic graphs.
The significant finding of our research is the introduction of Pythagorean
Neutrosophic Planar graphs, a conceptual blending of Pythagorean Neutro-
sophic and Planar graphs. The idea of Pythagorean Neutrosophic multigraphs
and dual graphs are also introduced to deal with the ambiguous situations.
This paper investigates the Pythagorean Neutrosophic planar values, which
form the edges of the Pythagorean neutrosophic graphs. The concept of
Pythagorean Neutrosophic dual graphs, isomorphism, co-weak and weak
isomorphism have also been explored for Pythagorean Neutrosophic planar
graphs. A decision-making algorithm was proposed with a numerical illustra-
tion by using the Pythagorean Neutrosophic fuzzy graph.

Keywords: Pythagorean neutrosophic planar graph; planarity value;
isomorphism; dual graphs; multigraph

1 Introduction

Graphs are illustrative representations that express the relation between objects and their data.
When the relationships are ambiguous, a graph can be implemented as a fuzzy graph model, which
has the same structure as a crisp graph but works with ambiguous data. The fuzzy set theory for
dealing with incomplete and vague information originated from the work of Zadeh [1]. Following the
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fuzzy sets, Intuitionistic sets [2], in which the elements possess membership (μ) and non-membership
(ρ) grades with the condition that μ + ρ ≤ 1. By considering the vagueness of information, adding
some restrictions leads to the extension and development of the neutrosophic set by Smarandache [3],
which assigns a truth, indeterminacy, and false membership grade to the elements, with the condition
that the sum of the membership grades is within the range of 0 and 3. To expand this concept, Yager
[4] proposed the concept of Pythagorean sets, which have an added relaxation in their condition as
μ2 + ρ2 ≤ 1. The fusion of Pythagorean and Neutrosophic sets resulted in the development of the
Pythagorean Neutrosophic set, which allows the element to have the membership (μ), indeterminacy
(σ ) and non-membership grade (γ ) with the constraint that μ2 + ρ2 + γ 2 ≤ 2.

Kaufmann [5], based on fuzzy relation [6], developed the idea of Fuzzy Graphs (FGs). Later,
Rosenfeld [7] defined the basic properties of fuzzy relations, which are generalized with a fuzzy set as a
base set, and fuzzy analogs of graphic theoretical concepts like bridges and trees were established with
their properties. Bhattacharya [8] introduced the notions of eccentricity, and center explored how a
fuzzy group can be associated with a fuzzy graph. Fundamental operations on FGs and their properties
were discussed by Mordeson et al. in [9].

Shannon et al. introduced intuitionistic fuzzy relations in [10], and intuitionistic fuzzy graphs
(IFG) with their properties were investigated in [11]. The operations of IFGs were described by
Parvathi et al. in [12]. In [13,14], Akram et al. established ideas such as strong IFGs and IF hypergraphs.
Pythagorean Fuzzy Graphs (PFGs) and their applications were explored by Naz et al. in [15], and the
energy of a Pythagorean Fuzzy Graph (PFG) was studied by Akram et al. in [16], followed by the
assertion of some PFG operations by Akram et al. in [17]. Akram et al. [18] proposed certain graphs
using the base Pythagorean and the abstraction of the fuzzy dual graph with the investigation of its
properties in [19].

Yager proposed the concept of fuzzy multiset in [20], and fuzzy planar graphs were developed
along with their properties in [21] and [22]. Alshehri et al. [23] established some exciting proofs of
Intuitionistic fuzzy planar graphs, and the concept of bipolar fuzzy planar graphs was described in
[24]. Strong neutrosophic graphs were introduced in [25], and single-valued neutrosophic graphs were
instituted by Broumi et al. [26]. Akram et al. introduced neutrosophic graphs and neutrosophic soft
graphs along with their applications [27]. Single-valued neutrosophic hypergraphs and intuitionistic
neutrosophic soft graphs were studied in [28,29]. The recent development of planar graphs in this area
can be seen in [30–34]. The concept of the Pythagorean Neutrosophic graphs [35] was developed using
the Pythagorean Neutrosophic set [36] and further into other graph-theoretical concepts in [37–40].

In this study, the graph-theoretical results are applied in the Pythagorean Neutrosophic fuzzy
environment. The concept of planar graphs is more captivating because of their complexity. In
designing circuits, circuits or lines are arranged so they do not intersect to avoid circuit problems, and
planar graphs can be used to tackle this problem. Though all developments in fuzzy graph theory
have advantages, the Pythagorean Neutrosophic graphs have their advantage with more fuzzified
inputs. This research article elaborates on the abstraction of Pythagorean Neutrosophic Multi Graphs
(PNMGs), Pythagorean Neutrosophic Planar Graphs (PNPGs), and Pythagorean Neutrosophic Dual
Graphs (PNDGs). The potential applications of these graphs can be used to assess and design a variety
of real-world challenges. Planarity is a crucial feature that is investigated in this work. A significant
addition to the literature is the development of the Pythagorean neutrosophic planar and multigraphs
with their characterizations.

The following is the order in which this article is organized: Section 2 deals with introducing
the Pythagorean Neutrosophic Multi Graphs (PNMGs) and investigating their properties. Section 3
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proposes the concept of the Pythagorean Neutrosophic Planar Graphs (PNPGs) along with the results
and the investigation of its characteristics. An algorithm for decision-making using Pythagorean Neu-
trosophic fuzzy graphs has been proposed with the examination of a practical numerical illustration
in Section 4 and the work is concluded in Section 5.

2 Pythagorean Neutrosophic Multigraphs

Definition 2.1. A Pythagorean Neutrosophic Multi Set (PNMS) C of a non-void set H is grouped
by functions, ‘count M’, ‘count NM’ and ‘count I ’ of C symbolized by CMC, CNMC, and CIC and given
as CMC, CNMC, CIC : H → R with R, a collection of all multisets from interval [0, 1] . A PNMS C is
represented by C = {

< z,
(
μ1

C (z), μ2
C (z), . . . , μ

g
C (z)

)
,
(
σ 1

C (z), σ 2
C (z), . . . , σ

g
C (z)

)
,
(
γ 1

C (z), γ 2
C(z), . . . ,

γ
g

C (z)
)

> |z ∈ H
}
. where the M sequence

(
μ1

C (z), μ2
C (z), . . . , μ

g
C (z)

)
, the I sequence σ 1

C (z), σ 2
C (z),

. . . , σ
g
C (z) and the NM sequence

(
γ 1

C (z), γ 2
C (z), . . . , γ

g
C (z)

)
may be increasing (or) decreasing order,

and sum of μ
f
C (z), σ

f
C (z), γ

f
C(z) ∈ [0, 1] satisfies the criteria 0 ≤ sup μ

f
C(z) + sup σ

f
C(z) + sup γ

f
C(z) ≤ 2

for z ∈ H and C = {< z, μC(z)f , σC(z)f , γC(z)f >/z ∈ H, f = 1, 2, . . . , g}.
Definition 2.2. C = {< s, μC(s)k, σC(s)k, γC(s)k >/w ∈ H, k = 1, 2, . . . , q} and O = {< s, μO(s)k,

σO(s)k, γO(s)k >/s ∈ H, k = 1 − q} be two PNMSs in H. Then,

1. C ⊆ O iff μC(s)k ≤ μO(s)k, σC(s)k ≤ σO(s)k, γC(s)k ≥ γO(s)k for k = 1 − q and s ∈ H;
2. C = O iff C ⊆ O and O ⊆ C.
3. Cc = {< s, γC(s)k, 1 − σC(s)k, μC(s)k >/s ∈ H, k = 1 − q}.
4. C ∪ O = {s, μC(s)k ∨ μO(s)k, σC(s)k ∨ σO(s)k, γC(s)k ∧ γO(s)k, /s ∈ H, k = 1 − q}.
5. C ∩ O = {s, μC(s)k ∧ μO(s)k, σC(s)k ∧ σO(s)k, γC(s)k ∨ γO(s)k, /s ∈ H, k = 1 − q}.
Definition 2.3. Let C = (μC, σC, γC) be a Pythagorean Neutrosophic (PN) set on V and O = {ds,

μO(ds)k, σO(ds)k, γO(ds)k i = 1 − m
ds

∈ V × V
}

a PNMS of V ×V with μO(ds)k ≤ min{μO(d), μO(s)},
σO(ds)k ≤ min{σO(d), σO(s)}, γO(ds)k ≤ max{γO(d), γO(s)}, ∀ k = 1 − m. G = (C, O) is a PN
Multi Graph (PNMG). μO(ds)k, σO(ds)k, γO(ds)k Symbolize the M, I and NM value of ds in G,
correspondingly. m represents the count of edges among the vertices. In PNMG G, O represents a
PN Multi Edge set (PNME).

Example 2.1. Let the multigraph be G = (V , E) with V = {a, b, c, d}, E = {ab, bc, bc, bc, bd}.
Let C = (μC, σC, γC) be a PN set on V and O = (μO, σO, γO) be a PNME set on V × V defined as

C = {< a, .5, .3, .3 >, < b, .4, .2, .4 >, < c, .5, .4, .3 >, < d, .4, .3, .4 >} ,

O = {< ab, .3, .2, .3 >< bc, .3, .2, .3 >, < bc, .2, .1, .2 >, < bc, .4, .2, .4 >, < bd, .3, .2, .2 >} .

Definition 2.4. Let O = {< ds, μO(ds)k, σO(ds)k, γO(ds)k >, k = 1 − m|ds ∈ V × V}, a PNME in
PNMG G. Degree of a vertex d ∈ V is

deg(d) =
(

m∑
k=1

μO(ds)k,
m∑

k=1

σO(ds)k,
m∑

k=1

γO(ds)k

)
, ∀ s ∈ V .

Example 2.2. The vertices a, b, c and d in example 2.1, hold the degrees

deg(a) = (.3, .2, .3), deg(b) = (1.2, .7, 1.1), deg(c) = (.9, .5, .9), deg(d) = (.3, .2, .2).
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Definition 2.5. Let O = {(ds, μO(ds)k, σO(ds)k, γO(ds)k, k = 1 to m/ds ∈ V × V} be a PNMS of
PNMG G. Multi edge ds of G is strong if
1
2

min [μC(d), μC(s)] ≤ μO(ds)k,
1
2

min [σC(d), σC(s)] ≤ σO(ds)k,

1
2

max [γC(d), γC(s)] ≥ γO(ds)k, for all k = 1 to m.

Definition 2.6. Let O =
{
(ds, μO(ds)k, σO(ds)k, γO(ds)k, k = 1 to

m
ds

∈ V × V
}

be a PNMS in

PNMG G.

1. G has order,

O(G) =
∑
d∈V

μC(d),
∑
d∈V

σC(d),
∑
d∈V

γC(d),

2. G has size,

S(G) =
(

n∑
k=1

μO(ds)k,
n∑

k=1

σO(ds)k,
n∑

k=1

γO(ds)k

)
, ∀ds ∈ V × V.

3. The total degree of d ∈ V is,

tdG(d) =
(

n∑
k=1

μO(ds)k,
n∑

k=1

σO(ds)k,
n∑

k=1

γO(ds)k

)
, ∀d ∈ V .

Definition 2.7. Let O = {(ds, μO(ds)k, σO(ds)k, γO(ds)k, k = 1 to m/ds ∈ V × V}, a PNME in
PNMG G. G is complete if min [μC(d), μC(s)] = μO(ds)k, min [σC(d), σC(s)] = σO(ds)k, max [γC(d),
γC(s)] = γO(ds)k, ∀ k = 1 − m and ∀ d, s ∈ V .

Example 2.3. Consider PNMG G in Fig. 1. Using the calculation as defined, it is verified that G
in Fig. 1 is a complete PNMG.

Figure 1: Pythagorean neutrosophic multigraph

Definition 2.8. If each node of G has the same degree of M, I and NM values, then G is a regular
PNMG.
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Definition 2.9. Let G be a PNMG such that O = {ds, μO(ds)i, σO(ds)i, γO(ds)i, i = 1 to m/ds ∈
V × V}.

1. The edge ds has degree

DG(ds) = (
(degμ)G(d) + (degμ)G(s) − 2μO(ds)i

)
, ((degσ )G(d) + (degσ )G(s) − 2σO(ds)i) ,

((degσ )G(d) + (degσ )G(s) − 2σO(ds)i) .

2. The edge ds has degree
tDG(ds) = (

(degμ)G(d) + (degμ)G(s) − 2μO(ds)i

)
, ((degσ )G(d) + (degσ )G(s) − 2σO(ds)i) ,

((degσ )G(d) + (degσ )G(s) − 2σO(ds)i),

where ((ds)i) is the ith edge between d & s.

Definition 2.10. If the degree of M, I and NM of every edge in PNMG G are equal, then G is Edge
Regular (ER).

Example 2.4. Degree of the edges in Example 1 are DG(ab) = (1.2, .7, 1.1), DG(bd) = (1.2, .7, 1.2),
DG(bc) = (1.2, .7, 1.1), DG(bc) = (1.1, .7, 1), DG(bc) = (1.3, .8, 1.2) and total degree of edges are
tDG(ab) = (1.5, 0.9, 1.4), tDG(bd) = (1.5, 0.9, 1.4), tDG(bc) = (1.5, 0.9, 1.4), tDG(bc) = (1.5, 0.9, 1.4),
tDG(bc) = (1.5, 0.9, 1.4).

Theorem 2.1. Let G = (C, O) be a PNMG. If G is regular and edge regular PNMG, then the
M μ(ds)k, I σ(ds)k, NM γ (ds)k for every line (ds) ∈ V × V are constants.

Proof. Consider, G = (C, O), a PNMG; G is regular and edge regular PNMG. There exists
constants p1, p2, p3 and q1, q2, q3 for regular and edge regular correspondingly so that for every node,

deg G(d) = (
(degμ)G(d), (degσ )G(d), (degσ )G(d)

) = p1, p 2, p3 for every edge ds ∈ V × V ,

DG(ds) = ((Dμ)G(ds), (Dσ)G(ds), (Dγ )G(ds)) ,

= (
(degμ)G(d) + (degμ)G(s) − 2μO(ds)k

)
, ((degσ )G(d) + (degσ )G(s) − 2σO(ds)k) , ((degσ )G(d)

+(degσ )G(s) − 2γO(ds)k) .

= (q1, q2, q3).

Thus, for the M, I and NM values, p1 + p1 − 2μO(ds)k = 2q1, p1 + p1 − μO(ds)k = 2q1, 2p1 − 2q1 =
2μO(ds)k, p1 − q1 = μO(ds)k, Similarly, p2 − q2 = σO(ds)k and p3 − q3 = γO(ds)k.

Thus, the M, I and NM values of a regular PNMG with edge regular are constant.

Theorem 2.2. Let G = (C, O) be a PNMG on G∗ = (V , E). If G∗ is y–regular multigraph,
μO(ds)k, σO(ds)k and γO(ds)k are constants for every edge ds ∈ V × V , then G is a regular and edge
regular PNMG.

Proof. Consider G∗ = (V , E) as a y− regular multigraph. Consider μO(ds)k = q1, σO(ds)k = q2 and
γO(ds)k = q3. For every vertex d ∈ V ,

degG(d) = (
(degμ)G(d), (degσ )G(d), (degσ )G(d)

)
,

=
(∑

d =s

μO(ds)k,
∑
d =s

σO(ds)k,
∑
d =s

γO(ds)k

)
,

= (y × q1, y × q2, y × q3 ),
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=
(∑

d =s

μO(yx)k,
∑
d =s

σO(yx)k,
∑
d =s

γO(yx)k

)
,

= (
(degμ)G(s), (degσ )G(s), (degσ )G(s)

) = degG(s).

For every edge, ds ∈ V × V ,

DG(ds) = ((Dμ)G(ds), (Dσ)G(ds), (Dγ )G(ds))

= (
(degμ)G(d) + (degμ)G(s) − 2μO(ds)k

)
, ((degσ )G(d) + (degσ )G(s) − 2σO(ds)k) ,

((degσ )G(d) + (degσ )G(s) − 2γO(ds)k) .

= ((y × q1) + (y × q1) – 2(q1), (y × q2) + (y × q2)

− 2(q2), (y × q3) + (y ×; q3) − 2(q3))

= (2q1 (y − 1), 2q2 (y − 1), 2q3 (y − 1)) .

Thus, G is regular and edge regular PNMG.

Definition 2.11. The strength of PN edge fj is determined by the value

Sfi = (
(Sμ)fi, (Sσ )fi, (Sγ )fi

) =
(

μO(fj)i

min (μ C(f ), μ C(j))
,

σO(fj)i

min (σ C(f ), σ C(j))
,

γO(fj)i

min (γ C(f ), γC(j))

)
.

An edge fj of a PNMG is PN strong if (Sμ)fj ≥ 0.5, (Sσ )fj ≥ 0.5, (Sγ )fj ≥ 0.5.

Definition 2.12. Let G be a PNMG such that O has 2 edges (ab, μo(ab)k, σo(ab)k, γo(ab)k) and
(cd, μo(ab)y, σo(ab)y, γo(ab)y ), which intersect at P, k and y are fixed integers. At P, the intersecting
value is defined by,

S P = (
(Sμ)P, (Sσ )P, (Sγ )P

) =
(

(Sμ)ab + (Sμ)cd

2
+ (Sσ )ab + (Sσ )cd

2
+ (Sγ )ab + (Sγ )cd

2

)
.

The planarity decreases when the number of points of intersection in PNMG increases.

SP is inversely proportional to the planarity for PNMG.

3 Pythagorean Neutrosophic Planar Graphs

The concept of the Pythagorean Neutrosophic planar graphs has been discussed.

Definition 3.1. Let G be a PNMG and the point of intersections among the edges be
P1, P2, . . . , P m, G is a PN Planar Graph (PNPG) with PN Planarity Value (PNPV) f = (fμ, fσ , fγ ),
where

f = (fμ, fσ , fγ ) =
(

1
1 + {(Sμ)P1

+ (Sμ)P2
+ . . . + (Sμ)Pm} ,

1
1 + {(Sσ )P1

+ (Sσ )P2
+ . . . + (Sσ )Pm} ,

1
1 + {(Sγ )P1

+ (Sγ )P2
+ . . . + (Sγ )Pm}

)
.

0 ≤ fμ ≤ 1, 0 ≤ fσ ≤ 1, 0 ≤ fγ ≤ 1. The PNPV is (1, 1, 1) for a geometrical representation of
PNPG if it has no intersecting point.

Example 3.1. Take a multigraph G∗ = (V , E) such that V = {a, b, c, d, e}, E = {ab, ac, ad, ad,
bc, bd, cd, ce, ae, de, be}. Let C = (μC, σC, γC) be a PN set on V and O = (μO, σO, γO) be a PNME
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set on V × V as are described as,

C = {< a, .5, .5, .2 >, < b, .6, .7, .3 >, < c, .4, .6, .4 >, < d, .7, .5, .3 >, < e, .8, .6, .5 >} ,

O = {< ab, .5, .4, .2 >, < ac, .4, .5, .3 >, < ad, .5, .5, .3 >, < ad, .4, .4, .2 >,
< bc, .4, .6, .4 >, < bd, .6, .5, .2 >, < cd, .3, .5, .3 >, < ae, .5, .5, .4 >,
< ce, .3, .6, .5 >, < de, .7, .5, .4 >, < be, .6, .6, .4 >}.

The PNMG has two points of intersection in Fig. 2 (P1 and P2).P1 is a point among the lines
(ad, .5, .5, .3) and (bc, .4, .6, .4) and P2 is a point among the edges (ad, .4, .4, .2) and (bc, .4, .6, .4).

Figure 2: Pythagorean neutrosophic planar graph

The strength for the edges ab, ad and bc are Sad =
(

.5

.5
,

.5

.5
,

.3

.3

)
= (1, 1, 1), Sad =

(
.4
.5

,
.4
.5

,
.2
.3

)
=

(.8, .8, .67), Sbc =
(

.4

.4
,

.6

.6
,

.4

.4

)
= (1, 1, 1). For P1, intersecting value SP1

is (1, 1, 1) and for P2, SP2
is

(.9, .9, .835).

Therefore PNPV for the PNMG given in Fig. 2 is (.345, .345, .353).

Theorem 3.1. Let G be a complete PNMG. The PNPV , f = (fμ, fσ , fγ ) of G is given by fμ = 1
1 + np

,

fσ = 1
1 + np

and fγ = 1
1 + np

such that fμ + fσ + fγ ≤ 3, where np is the count of point of intersection

among the lines in G.

Definition 3.2. A PNPG G is called strong (SPNPG) if the PNPV f = ( fμ, fσ , fγ ) of the graph is
fμ ≥ 0.5, fσ ≥ 0.5, fγ ≥ 0.5.

Theorem 3.2. Let G be a SPNPG. The number of points of intersections among S lines in G is
utmost one.
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Proof. Let G be aSPNPG. Consider G has at least 2 points of intersections P1 and P2 between 2 S

lines in G. For any S edge (wq, μO(wq)i, σO(wq)i, γO(wq)i), μO(wq)i ≥ 1
2

min {μC(w), μC(q)}, σO(wq)i ≥
1
2

min {σC(w), σC(q)}, γO(wq)i ≤ 1
2

max {γC(w), γC(q)}.
Thus, (Sμ)wq, (Sμσ )wq, (Sγ )wq ≥ .5. Thus, for two intersecting S edges (wq, μO(wq)k, σO(wq)k,

γO(wq)k) and (cd, μO(cd)j, σO(cd)j, γO(cd)j),

(Sμ)wq + (Sμ)cd

2
+ (Sσ )wq + (Sσ )cd

2
+ (Sγ )wq + (Sγ )cd

2
≥ .5,

(i.e.,) (Sμ)P1
, (Sσ )P1

≥ .5, (Sγ )P1
≤ .5, Likewise, (Sμ)P2

, (Sσ )P2
≥ .5, (Sγ )P2

≤ .5.

⇒ 1 + (Sμ)P1
+ (Sμ)P2

≥ 2, 1 + (Sσ )P1
+ (Sσ )P2

≥ 2, 1 + (Sγ )P1
+ (Sγ )P2

≥ 2.

fμ = 1
1 + (Sμ)P1

+ (Sμ)P2

≤ .5 fσ = 1
1 + (Sσ )P1

+ (Sσ )P2

≤ .5 fγ = 1
1 + (Sγ )P1

+ (Sγ )P2

≥ .5.

This becomes a contradiction to the fact PN graph is a SPNPG. Thus the number of points
of intersections between S edges cannot be two. If the count of point of intersections of PN edges
increases, the PNPV decreases. When the count of the point of intersection of S edges is 1, then the
PNPV fμ ≥ 0.5, fσ ≥ 0.5, fγ ≥ 0.5. ASPNPG is a PNPG without any crossing between edges. Thus, the
largest number of points of intersections among the S edges in G is 1 parameter. The region bounded
by PN edges is a face of a PN graph. Every PN Face (PNF) in its boundary is characterized by PN
edges. If every edge in the boundary of a PNF have μO, σO, γO values (1, 1, 1) and (0, 0, 0), then it is
a crisp face. When one among those edges is removed or has μO, σO, γO values (0, 0, 0) and (1, 1, 1)

correspondingly, the PNF does not exist. The existence of a PNF depends on the minimal strength of
PN edges in its boundary. A PNF and its μO, σO, γO Values of PNG are expressed below.

Definition 3.3. Let G be a PNPG and O = {(ds, μO(ds)k, σO(ds)k, γO(ds)k, k = 1 to m/ds ∈
V × V}. A PNF of G is a region and is bounded by the set of PN lines E′ ⊂ E, of a pictorial
demonstration of G. The M, I and NM of PNF are:

min
{

μO(ds)k

min {μC(d), μC(s)} , k = 1, 2, . . .
m
ds

∈ E ′
}

,

min
{

σO(ds)k

min {σC(d), σC(s)} , k = 1, 2, . . .
m
ds

∈ E ′
}

,

max
{

γO(ds)k

max {γC(d), γC(s)} , k = 1, 2, . . .
m
ds

∈ E ′
}

.

Definition 3.4. A PNF is (S) PNF if the value of M, I is larger than 0.5, NM is below 0.5, and
weak otherwise. The infinite region in every PNPG is termed as an outer PNF , and other faces are
called inner PNFs.

Example 3.2. The PNPG as in Fig. 3, has the following faces: PNF F1 is bounded by the edges
(ab, .4, .4, .1), (bc, .5, .5, .1), (ac, .4, .4, .1). Outer PNF F2 surrounded by edges (ac, .4, .4, .1), (ad, .4, .4,
.1),(bd, .5, .5, .1), (bc, .5, .5, .1).PNF F3 is bounded by lines (ab, .4, .4, .1), (bd, .5, .5, .1), (ad, .4, .4, .1).

Clearly, the M, I and NM value of a PNF F1 is (.8, .8, .5). Thus, F1 is a SPNF .

Definition 3.5. Let G be a PNPG and let O = {(ds, μO(ds)k, σO(ds)k, γO(ds)k, k = 1 − m/ds ∈
V × V}. Let F1, F2, . . . , Fk be the SPNFs of G. The PN Dual Graph (PNDG) of G is a PNPG G′ =
(V ′, C ′, O′) with V = {xk, k = 1 − k} , and the vertex xk of G′ is for Fk of G. The M, I , NM values
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of vertices are C ′ = (μ
′
C, σ

′
C, γ

′
C) : V ′ → [0, 1]3 such that

μ
′
C(xk) = max

{
μ

′
O(ua)k, k = 1 to

p
ua

is in the boundary of SPNF Fk

}
,

σ
′
C(xk) = max

{
σ

′
O(ua)k, k = 1 to

p
ua

is in the boundary of SPNF Fk

}
,

γ
′

C(xk) = min
{
γ

′
O(ua)k, k = 1 to

p
ua

is in the boundary of SPNF Fk

}
.

Figure 3: Faces in pythagorean neutrosophic planar graph

Two common faces Fk and F b of G might exist between one common line. There may be more
than 1 edge among 2 vertices xk and xb in PNDG G′. μ

′
O (xkxb) represent the M value of the lth edge

among xk and xb and γ
′

O(xkxb) represent the NM value of the lth edge amidst xk and xb. M, I and
NM values of PN edges of the PNDG are presented by μ

′
O(xkxb)l = μ

′
O(ua)b, σ

′
O(xkxb)l = σ

′
O(ua)b,

γ
′

O(xkxb)l = γ
′

O(ua)b, with (ua)b is an edge in the boundary between 2 SPNF Fk and F b and l = 1 to S,
where S is the count of lines among xk and xb. PNDG of PNPG does not hold point of intersection
of edges for a some representation, so it is PNPG with PNPV (1, 1, 1). The PNF of PNDG can be
similarly expressed as in PNPG.

Theorem 3.3. Let G be a PNPG whose count of vertices, total of PN edges, count of SPNF are
symbolized by m, p, n correspondingly. G′ be the PNDG of G, then count of vertices, edges, PNF of
G′ equals m, p, n correspondingly.

Theorem 3.4. Let G = (V , C, O) be a PNPG without weak lines and the PNPG of G be G′ =
(V ′, C ′, O′). The M, I and NM values of PN lines of G′ equals values of G.

Definition 3.6. Let G = (C, O) be a PNPG where O = {
(ds, μO(ds)k, σO(ds)k, γO(ds)k, b) = 1

to
n
ab

∈ V × V
}
. Let F1, F2 , . . . , Fk be SPNFs of G. Then PNDG of G is a PNPG G′ = (C ′, O′),

where V ′ = {rb, b = 1 to K} and the vertex rb of G′ is taken for Fb of G.
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The M, I , NM by mapping G′ = (V ′, C ′, O′) : V ′ → [0, 1]3 such that

μ
′
C(rb) = max

{
μ

′
O(ua)b, b = 1 to

m
ab

is in the neighbourhood of SPNF Fb

}
,

σ
′
C(rb) = max

{
σ

′
O(ua)b, b = 1 to

m
ab

is in the neighbourhood of SPNF Fb

}
,

γ
′

C(rb) = min
{
γ

′
O(ua)b, b = 1 to

m
ab

is in the neighbourhood of SPNF Fb

}
.

Between Fk and Fb of G, at least one common edge may occur. Among two vertices, there may exist
beyond a single edge rkrb in PNDG G′. M, I and NM values of PN edges of PNDG are μ

′
C(rkrb)S =

μS
O(ua)k, σ

′
C(rkrb)S = σ S

O(ua)k, γ
′

C(rkrb)S = γ S
O (ua)k where (ab)S is in the surrounding among SPN faces

Fk and Fb and S = 1 – l, is the count of common edges in the neighborhood of Fk and Fb. The
PNDG G′of PNDG Ghas no crossing among lines for some definite geometric representation, PNPG
of PNPV (1, 1, 1).

Example 3.3. Take a PNG G = (V , C, O) as displayed in Fig. 4 with V = {a1, a2, a3, a4, a5}. Let
C and O be PN vertex set and PN edge set.

C =< (a1, .7, .5, .3), (a1, .69, .55, .4), (a1, .35, .45, .5), (a4, .76, .8, .3) > .

O =< (a1a2, .6, .48, .2), (a2a3, .3, .4, .43), (a3a4, .3, .4, .45), (a4a1, .65, .4, .25), (a1a3, .3, .4, .4) > .

PNF F1 is enclosed by the edges (a1a3, .3, .4, .4), (a3a4, .3, .4, .45), (a4a1, .65, .4, .25).

PNF F2 is enclosed by the edges (a1a2, .6, .48, .2), (a2a3, .3, .4, .43), (a1a3, .3, .4, .4).

PNF F3 is enclosed by the edges (a1a2, .6, .48, .2), (a2a3, .3, .4, .43), (a3a4, .3, .4, .45), (a4a1,
.65, .4, .25).

Figure 4: Pythagorean neutrosophic dual graph

We symbolize the vertices of PN Dual Graph (PNDG) by a dot and edges by dashed lines. We
take a vertex for each face of PNDG with V ′ = {r1, r2, r3, r4}.
μC′(r1) = max {.3, .3, .65} = .65, σC′(r1) = max {.4, .4, .4} = .4, γC′(r1) = min {.4, .45, .25} = .25,

μC′(r2) = max {.6, .3, .3} = .6, σC′(r2) = max {.48, .4, .4} = .48, γC′(r2) = min {.2, .43, .4} = .2,
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μC′(r3) = max {.6, .3, .3, .65} = .65, σC′(r3) = max {.48, .4, .4, .4} = .48, γC′(r3)

= min {.2, .43, .45, .25} = .2

The vertex set V ′ has the vertices < r1, (.65, .4, .25) >, < r2, (.6, .48, .2) >,< r3, (.65, .48, .2) >.

There is one common edge a1a3 amidst F1, F2 in G. Thus, there exists a single line among vertices
r1 and r2 in PNDG of G. The edges for the PNDG are constructed as in Fig. 4.

Definition 3.7. An isomorphism of two PNPGs G1 and G2, y : G1 → G2 is a bijective mapping
y : V1 → V2 that holds the following

1. μC1
(r) = μC2

(y(r)), σC1
(r) = σC2

(y(r)), γC1
(r) = γC2

(y(r)).
2. μO1

(rs) = μO2
(y(r) y(s)), σO1

(rs) = σO2
(y(r) y(s)), γO1

(rs) = γO2
(y(r) y(s)), ∀ r ∈ V1, ∀ rs ∈

E1.

Example 3.4. Consider two PNPGs G1 = (C1, O1) and G2 = (C2, O2) as in Fig. 5 such that

C1 = {< a1, .8, .7, .2 >, < a2, .7, .6, .4 >, < a3, .6, .5, .5 >, < a4, .5, .4, .4 >} ,

O1 = {< a1a2, .6, .5, .3 >, < a2a3, .5, .4, .4 >, < a3a4, .4, .3, .3 >, < a4a1, .3, .2, .3 >} ,

C2 = {< r1, .5, .4, .4 >, < r3, .7, .6, .4 >, < r2, .6, .5, .5 >, < r4, .8, .7, .2 >} ,

O2 = {< r1r2, .4, .3, .3 >, < r2r3, .5, .4, .4 >, < r3r4, .6, .5, .3 >, < r4r1, .3, .2, .3 >} .

Figure 5: Pythagorean neutrosophic planar graph

y : V1 → V2 given by y(a1) = r4, y(a2) = r3, y(a3) = r2, y(a4) = r1 satisfies

μC1
(rk) = μC2

(y(rk)), σC1
(rk) = σC2

(y(rk)), γC1
(rk) = γC2

(y(rk)), μO1
(rkrb) = μO2

(y(rk)y(rb)),σO1

(rkrb) = σO2
(y(rk)y(rb)), γO1

(rkrb) = γO2
(y(rk)y(rb)) for all rk ∈ V1, rkrb ∈ E1, where i, j = 1 to 4. Thus

G1 is isomorphic to G2.

The M, I and NM of the edges of PNDG are μO′(r1r2) = μO(a1a3) = .3, σO′(r1r2) = σO(a1a3) = .4,
γO′(r1r2) = γO(a1a3) = .4, μO′(r2r3) = μO(a1a2) = .6, σO′(r2r3) = σO(a1a2) = .48, γO′(r2r3) = γO(a1a2) =
.2, μO′(r3r1) = μO(a3a4) = .65, σO′(r3r1) = σO(a3a4) = .4, γO′(r3r1) = γO(a3a4) = .45, μO′(r1r3) =
μO(a4a1) = .65, σO′(r1r3) = σO(a4a1) = .4, γO′(r1r3) = γO(a4a1) = .25, μO′(r2r3) = μO(a2a3) = .3,
σO′(r2r3) = σO(a2a3) = .4, γO′(r2r3) = γO(a2a3) = .43.
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Thus, the PNDG edge set is,

O′ = <(r1r2, .3, .4, .4), (r2r3, .6, .48, .2), (r3r1, .65, .4, .45), (r1r3, .65, .4, .25), (r2r3, .3, .4, .43)>. Thus
G1 is a PNDG of G2.

Definition 3.8. A weak isomorphism of two PNPGs G1 and G2, y : G1 → G2 is a bijective mapping
y : V1 → V2 that holds the following:

1. y is a homomorphism.
2. μC1

(r) = μC2
(y(r)), σC1

(r) = σC2
(y(r)), γC1

(r) = γC2
(y(r))∀ r ∈ V1.

Example 3.5. Consider two PNPG, G1 = (C1, O1) and G2 = (C2, O2) as in Fig. 6 such that

C1 = {< a1, .9, .5, .3 >, < a2, .8, .6, .2 >, < a3, .7, .4, .4 >, < a4, .6, .3, .4 >, < a5, .5, .4, .3 >} ,

O1 = {< a1a2, .7, .4, .2 >, < a2a3, .6, .4, .3 >, < a3a4, .4, .3, .3 >, < a4a1, .5, .3, .2 >,

< a4a5, .5, .3, .2 >, < a5a1, .4, .3, .1 >, < a2a5, .4, .3, .15 >},
C2 = {< r1, .7, .4, .4 >, < r2, .6, .3, .4 >, < r3, .8, .6, .2 >, < r4, .5, .4, .3 >, < r5, .9, .5, .3 >} ,

O2 = {< r1r2, .4, .2, .1 >, < r2r3, .5, .3, .2 >, < r3r5, .5, .2, .1 >, < r3r4, .3, .2, .1 >, < r2r4, .4, .2, .1 >

< r4r5, .2, .2, .5 >}.

Figure 6: Pythagorean neutrosophic planar graphs

A mapping y: V1→ V2 given by y(a1) = r5, y(a2) = r3, y(a3) = r1, y(a4) = r2, y(a5) = r4 satisfies
μC1

(rk) = μ2(y(rk), σC1
(rk) = σ2 (y(rk)) , γC1

(rk) = γ2 (y(rk)) for all rk ∈ V1, where k, b = 1, 2, 3, 4, 5.

But μC1
(rkrb) = μC2

(y(rk) y(rb)), σC1
(rkrb) = σC2

(y(rk) y(rb)), γC1
(rkrb) = γC2

(y(rk) y(rb)).

Thus G1 is a weak isomorphic to G2.

Definition 3.9. A co-weak isomorphism of two PNPGs G1 and G2, y : G1 → G2 is a bijective
mapping y : V1→ V2 that holds

1. y is a homomorphism.
2. μC1

(rs) = μC2
(y(r) y(s)), σC1

(rs) = σC2
(y(r) y(s)), γC1

(rs) = γC2
(y(r) y(s)), ∀ rs ∈ E1.
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Example 3.6. Take PNPG, G1 = (C1, O1) and G2 = (C2, O2) as in Fig. 7 such that

C1 = {< a1, .8, .7, .6 >, < a2, .7, .6, .5 >, < a3, .9, .5, .4 >, < a4, .8, .6, .2 >, < a5, .7, .5, .3 >}
O1 = {< a1a2, .6, .5, .4 >, < a2a3, .5, .4, .35 >, < a1a4, .65, .5, .3 >, < a2a5, .55, .4, .25 >,

< a4a5, .6, .4, .1 >, < a2a5, .6, .4, .35 >}
C2 = {< p1, .75, .65, .5 >, < p2, .6, .5, .45 >, < p3, .8, .4, .3 >, < p4, .7, .5, .1 >, < p5, .65, .45, .25 >}
O2 = {< p1p2, .6, .5, .4 >, < p2p3, .5, .4, .35 >, < p1 p4, .65, .5, .3 >, < p2 p5, .55, .4, .25 >,

< p2 p4, .5, .4, .2 >, < p3 p5, .6, .4, .2 >, < p4 p5, .6, .4, .1 >, < p2 p5, .6, .4, .35 >}.

Figure 7: Pythagorean neutrosophic planar graphs

A mapping y : V1 → V2 illustrated by y(a1) = p1, y(a2) = p2, y(a3) = p3, y(a4) = p4, y(a5) = p5

satisfies μO1
(rkrb) = μO2

(y(rk)y(rb)), σO1
(rkrb) = σO2

(y(rk)y(rb)), γO1
(rkrb) = γO2

(y(rk)y(rb)) .

forall rkrb ∈ E1 , where k, b = 1, 2, 3, 4, 5 but μC1
(rk) = μC2

(y(rk)), σC1
(rk) = σC2

(y(rk)),γC1
(rk) =

γC2
(y(rk)). Thus G1 is a weak isomorphic to G2.

4 Application in Decision Making Problem
4.1 Algorithm

The following algorithm is our proposed technique for multi-criteria decision making.

Step 1: Input the alternatives B = (B1, B2, . . . , Bn) and set of criteria’s C = (C1, C2, . . . , Cm) and
create the PNF relation

(
M (k) = m(k)

lp

)
nxn

according to each criteria.

Step 2: Aggregate all m(k)

lp = (
μ

(k)

lp , β
(k)

lp , σ
(k)

lp

)
(l, p = 1, 2, . . . , n) regarding criteria Cj and derive

M (k) = (mlp)nxn where mlp is the value assigned for alternate ml over mp according to criteria Cj by PNF
averaging (PNFA) operator. p(k)

i = PNFA
(
m(k)

i1 , m(k)

i2 , . . . , m(k)

in

)
, (k = 1, 2, . . . , m)

=
⎛
⎝

√√√√1 −
(

n∏
j=1

(
1 − μ2

ij

))1/n

,

√√√√1 −
(

n∏
j=1

(
1 − β2

ij

))1/n

,

(
n∏

j=1

(
1 − σ 2

ij

))1/n
⎞
⎠ , i = 1, 2, . . . , m

Step 3: Calculate the aggregated value of each criteria Cm and compute the aggregated matrix.

Step 4: Use the score function,

S
(
B(j)

i

) = 1 + μ + β − σ

3
, (i = 1 to n, j = 1 to m).

calculate the score matrix for the problem.
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Step 5: Calculate the choice matrix by the function

S(Bi) =
n∑

j=1

Bij

n
, (i = 1 to m).

Step 6: Now arrange the alternatives in an order and choose the maximum as the optimal decision.

4.2 Numerical Approach

In this competitive world, time is the most precious asset for everyone. In the given 24 h a day,
saving time and using it for multiple duties, and chores is an important quality. Even though time
management is in our hands, travelling from one point destination for the people who doesn’t drive is
hard in recent times, cabs and travelling applications is one of the trending and useful facility in our
cities. By the existing trends and techniques, the fastest and money-saving possibility is vital in day-
to-day life. Consider the following scenario: a person wants to travel from a point to his destination
and is given a set of mobile booking applications to choose a ride. Let there be these 5 cabs booking
applications namely Bi (i = 1 to 5) that are effective nowadays. The decision-makers provide their
priors by comparing these applications concerning criteria’s Cj (j = 1, 2, 3, 4, 5).

C1 = Availability, C2 = Travelling speed, C3 = Safety, C4 = Cost, C5 = User friendly

Step 1: The alternatives are B = (B1, B2, B3, B4, B5) and the criteria’s are C = (C1, C2, C3, C4, C5).
The Pythagorean neutrosophic fuzzy relation according to criteria Ci = (i = 1, 2, . . . , 5) is given in
structure as in Fig. 8 and values are detailed in Tables 1 to 5.

Step 2 and 3: Using PNFA operator, the aggregated values are calculated as follows:

C1 : B(1)

1 = (.5269, .3984, .0423), B(1)

2 = (.4687, .3543, .08662), B(1)

3 = (.521, .325, .0321),

B(1)

4 = (.7275, .3791, .04975), B(1)

5 = (.69123, .61604, .0321).

C2 : B(2)

1 = (.5967, .2851, .0234), B(2)

2 = (.7223, .26435, .0184), B(2)

3 = (.48703, .3332, .04975),

B(2)

4 = (.2121, .2851, .0321), B(2)

5 = (.6953, .5701, .0321).

C3 : B(3)

1 = (.6088, .3248, .0321), B(3)

2 = (.51595, .4729, .0558), B(3)

3 = (.7763, .3248, .0243),

B(3)

4 = (.5847, .3922, .0443), B(3)

5 = (.6214, .3543, .0321).

C4 : B(4)

1 = (.6247, .3407, .0321), B(4)

2 = (.5523, .3332, .0321), B(4)

3 = (.5376, .3734, .0377),

B(4)

4 = (.70114, .3017, .0321), B(4)

5 = (.6955, .3248, .0377).

C5 : B(5)

1 = (.5316, .347, .0497), B(5)

2 = (.7029, .3161, .0243), B(5)

3 = (.5523, .3922, .0423),

B(5)

4 = (.5931, .3108, .0423), B(5)

5 = (.6807, .2766, .0243).
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Figure 8: Pythagorean neutrosophic fuzzy directed graph for M(k) (k = 1, 2, 3, 4, 5)

Table 1: Pythagorean neutrosophic fuzzy relation of criteria C 1

M1 B1 B2 B3 B4 B5

B1 (.46, .46, .46) (.6, .5, .4) (.3, .2, .1) (.4, .5, .2) (.7, .1, .1)
B2 (.3, .2, .2) (.46, .46, .46) (.4, .3, .3) (.5, .1, .2) (.6, .5, .4)
B3 (.7, .1, .1) (.3, .2, .2) (.46, .46, .46) (.5, .4, .2) (.5, .3, .1)
B4 (.4, .6, .2) (.7, .2, .3) (.8, .2, .2) (.46, .46, .46) (.9, .1, .1)
B5 (.9, .1, .2) (.8, .3, .2) (.2, .2, .1) (.5, .3, .1) (.46, .46, .46)

Table 2: Pythagorean neutrosophic fuzzy relation of criteria C 2

M2 B1 B2 B3 B4 B5

B1 (.46, .46, .46) (.3, .2, .1) (.4, .3, .2) (.8, .1, .1) (.7, .2, .1)

(Continued)
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Table 2: Continued
M2 B1 B2 B3 B4 B5

B2 (.9, .1, .1) (.46, .46, .46) (.8, .3, .1) (.7, .1, .1) (.3, .1, .1)
B3 (.5, .3, .2) (.3, .2, .2) (.46, .46, .46) (.5, .2, .1) (.6, .4, .3)
B4 (.4, .2, .1) (.3, .1, .1) (.5, .3, .2) (.46, .46, .46) (.8, .2, .2)
B5 (.9, .2, .1) (.8, .3, .2) (.5, .1, .2) (.3, .1, .1) (.46, .46, .46)

Table 3: Pythagorean neutrosophic fuzzy relation of criteria C 3

M3 B1 B2 B3 B4 B5

B1 (.46, .46, .46) (.8, .3, .2) (.7, .4, .2) (.3, .2, .1) (.5, .1, .1)
B2 (.4, .6, .2) (.46, .46, .46) (.5, .3, .1) (.4, .6, .4) (.7, .2, .2)
B3 (.8, .2, .1) (.9, .1, .1) (.46, .46, .46) (.8, .3, .1) (.7, .4, .2)
B4 (.6, .3, .1) (.7, .2, .1) (.6, .5, .3) (.46, .46, .46) (.5, .4, .3)
B5 (.5, .3, .1) (.6, .2, .2) (.8, .1, .1) (.6, .5, .2) (.46, .46, .46)

Table 4: Pythagorean neutrosophic fuzzy relation of criteria C 4

M4 B1 B2 B3 B4 B5

B1 (.46, .46, .46) (.8, .2, .2) (.7, .1, .1) (.6, .5, .2) (.3, .2, .1)
B2 (.5, .4, .2) (.46, .46, .46) (.4, .3, .2) (.6, .2, .1) (.7, .2, .1)
B3 (.6, .2, .1) (.5, .1, .1) (.46, .46, .46) (.6, .4, .3) (.5, .5, .2)
B4 (.5, .3, .1) (.4, .2, .2) (.8, .1, .1) (.46, .46, .46) (.9, .3, .2)
B5 (.6, .2, .2) (.3, .4, .1) (.9, .1, .1) (.7, .3, .3) (.46, .46, .46)

Table 5: Pythagorean neutrosophic fuzzy relation of criteria C 5

M5 B1 B2 B3 B4 B5

B1 (.46, .46, .46) (.7, .3, .3) (.5, .2, .2) (.5, .4, .1) (.4, .3, .2)
B2 (.9, .3, .1) (.46, .46, .46) (.6, .1, .1) (.8, .4, .2) (.2, .1, .1)
B3 (.7, .4, .2) (.6, .5, .1) (.46, .46, .46) (.5, .3, .2) (.4, .2, .2)
B4 (.4, .3, .2) (.6, .2, .4) (.5, .3, .1) (.46, .46, .46) (.8, .2, .1)
B5 (.7, .3, .2) (.3, .2, .1) (.6, .1, .1) (.9, .1, .1) (.46, .46, .46)

Step 4: By using the score function, the score matrix is calculated in Table 6.

Step 5: Deriving the choice values of alternatives using the function, we get

S(B1) = .62702, S(B2) = .6324, S(B3) = .629, S(B4) = .6192, S(B5) = .691.
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Table 6: Score matrix of alternatives to concerning criteria

Criteria\value B1 B2 B3 B4 B5

C1 .628 .579 .605 .686 .758
C2 .6195 .656 .488 .488 .744
C3 .634 .644 .644 .644 .648
C4 .644 .618 .657 .657 .661
C5 .6096 .665 .621 .621 .644

Step 6: The order of ranking obtained for the problem is

B5 > B2 > B3 > B1 > B4.

Thus, the alternate with maximum value B5 is chosen to be the optimal decision.

4.3 Comparative Analysis

The proposed model is compared with the decision-making method in [39] and is verified that
the same ranking is obtained. Table 7 provides a comparison of both algorithms, showing the optimal
alternative and results. Both algorithms provide the same optimum decision, as can be seen in the
comparison table.

Table 7: Comparison analysis

Method Ranking Optimal alternative

Decision-making method in [39] B5 > B2 > B3 > B1 > B4 B5

Our proposed method B5 > B2 > B3 > B1 > B4 B5

5 Discussion

Graph theory is known for its vast applications in various fields most vitally in designing net-
working problems. In particular, numerous graph theoretical concepts have been introduced to model
vagueness in networking problems. PN graphs, an extension of FGs, and a fusion of Pythagorean
and Neutrosophic graphs have better flexibility to be applied in real-world problems. The article has
initiated the concept of PN Multi Graph and PN Planar Graph employing the concept of PNGs.
The concept of PN Dual Graph, isomorphism, weak and co-weak isomorphism has been explored
for PN Planar Graphs and their results have been examined. An algorithm has been proposed
using Pythagorean Neutrosophic fuzzy graphs with a numerical example for a real-life problem. The
limitation of the set and study is that it is limited when it is compared with the newly proposed
sets, but the advancements pave for the new concept of planar graphs in Pythagorean neutrosophic
environment. The advantage of this proposed study is this set is more fuzzifying than the previous
studies because of the set and their properties. This research can be extended further to investigate
Interval- valued PNGs, bipolar PNGs, and their implementation in real-life situations.
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