
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.036033
Article

An Erebus Attack Detection Method Oriented to Blockchain Network Layer

Qianyi Dai1,2,*, Bin Zhang1,2, Kaiyong Xu1,2 and Shuqin Dong1,2

1Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001, Henan Province, China
2Henan Key Laboratory of Information Security, Zhengzhou, 450001, Henan Province, China

*Corresponding Author: Qianyi Dai. Email: qianyi.dai@mail.chzu.edu.cn
Received: 14 September 2022; Accepted: 29 January 2023

Abstract: Recently, the Erebus attack has proved to be a security threat to
the blockchain network layer, and the existing research has faced challenges
in detecting the Erebus attack on the blockchain network layer. The cloud-
based active defense and one-sidedness detection strategies are the hindrances
in detecting Erebus attacks. This study designs a detection approach by
establishing a ReliefF_WMRmR-based two-stage feature selection algorithm
and a deep learning-based multimodal classification detection model for
Erebus attacks and responding to security threats to the blockchain network
layer. The goal is to improve the performance of Erebus attack detection
methods, by combining the traffic behavior with the routing status based on
multimodal deep feature learning. The traffic behavior and routing status were
first defined and used to describe the attack characteristics at diverse stages of
s leak monitoring, hidden traffic overlay, and transaction identity forgery. The
goal is to clarify how an Erebus attack affects the routing transfer and traffic
state on the blockchain network layer. Consequently, detecting objects is
expected to become more relevant and sensitive. A two-stage feature selection
algorithm was designed based on ReliefF and weighted maximum relevance
minimum redundancy (ReliefF_WMRmR) to alleviate the overfitting of the
training model caused by redundant information and noise in multiple source
features of the routing status and traffic behavior. The ReliefF algorithm
was introduced to select strong correlations and highly informative features
of the labeled data. According to WMRmR, a feature selection framework
was defined to eliminate weakly correlated features, eliminate redundant
information, and reduce the detection overhead of the model. A multimodal
deep learning model was constructed based on the multilayer perceptron
(MLP) to settle the high false alarm rates incurred by multisource data. Using
this model, isolated inputs and deep learning were conducted on the selected
routing status and traffic behavior. Redundant intermodal information was
removed because of the complementarity of the multimodal network, which
was followed by feature fusion and output feature representation to boost
classification detection precision. The experimental results demonstrate that
the proposed method can detect features, such as traffic data, at key link nodes
and route messages in a real blockchain network environment. Additionally,
the model can detect Erebus attacks effectively. This study provides novelty to
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the existing Erebus attack detection by increasing the accuracy detection by
1.05%, the recall rate by 2.01%, and the F1-score by 2.43%.

Keywords: Blockchain network; Erebus attack; attack detection; machine
learning

1 Introduction

Wide blockchain applications, such as cryptocurrency and smart contracts, have advantages such
as open-source, dynamic, and decentralized. However, the blockchain network layer is vulnerable to
network attacks because of its inherent defects, such as an imperfect security control mechanism,
difficulty in deploying active defense strategies, and an asymmetrical attack-and-defense game.
Tran et al. [1] reported that a decentralized blockchain network layer (e.g., Bitcoin and Ethereum)
is characterized by a fragile authentication threatened by a new attack called Erebus [1]. This attack
greatly threatens the blockchain system’s hash rate balance and stability. An Erebus attack also
integrates various attack patterns, such as Sybil and Eclipse, showing a long penetration cycle,
high behavior imperceptibility, and a large sphere of influence. Without any doubt, the Erebus
attack may severely impact the regular running and security control of autonomous systems (ASs)
in the blockchain network layer [2]. In June 2021, Internet Nayana Inc. was attacked by Erebus.
Consequently, masses of infiltrated transaction server data were maliciously damaged by ransomware,
and several transaction websites were affected and forced to stop trading. The attacker can launch
Erebus attacks to extract computing resources from blockchain network layer nodes and perform
more destructive attacks (e.g., double-spend attack or 51% attack) to the hashrate [3]. Therefore, the
detection of the Erebus attack is vital to the blockchain network layer.

Two primary detection approaches are vital in addressing the threatening problem of Erebus
attacks. The abnormal distribution of transaction traffic information is the first approach; the second
is based on the routing status on the blockchain network layer.

In the first Erebus attack detection method, the technique is to create a security authentication
mechanism of traffic information and transaction identities in the blockchain network layer. The
goal is to detect the attack because an Erebus attacker uses a weak identity check mechanism at the
stage of identity forgery and establishes out-trades and illicit network relationships by creating several
dummy Internet Protocol (IP) addresses and Sybil transaction identities. This method reinforces
the blockchain network layer protocol security and improves the security strength, frequency of
transaction identities, and traffic information. Network security can be enhanced [4,5] using this
method. When Bitcoin networks are protected with an identity authentication mechanism oriented
to the blockchain network layer, the vulnerability of ‘a single IP address with multiple identities’ in
a peer-to-peer network is repaired, and its robustness in coping with Sybil attacks is improved [6,7].
Facing Erebus attacks, the method can create Sybil peer identity vulnerability by combining multiple
different IP addresses/ports, based on a single peer node. Moreover, nodes are from the same IP address
that possesses the same identity [8] and constraints traffic with abnormal identities are distributed.
Fan et al. [9] proposed an active defense strategy by dynamically detecting traffic and transaction
identification information in the blockchain network layer. According to Fan et al. [9], distribution
detection at different traffic IP nodes, the abnormal distribution check of transaction identities,
and restrictions over relevant transactions can be used to inhibit the forgery attacks of identities
caused by Erebus. Apart from updating the corresponding protocol according to the network status
and reducing the time for identity authentication, protocol patch uploading and network protocol
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updating are performed to dynamically alter the node identification under attack and protect the
Bitcoin node from being isolated [10–12]. As revealed by a study [13], Erebus attacks cannot be entirely
suppressed through traffic identity authentication or protocol repair/update because this attack is a
persistent threat that integrates Sybil and Eclipse. Moreover, strategies based on authentication or
protocol repair and updating the passives in attack-defense games increase the overhead time for
an Erebus attack. Additionally, non-licensed chains represented by Bitcoin enable a multi-identity
transaction mechanism, allow Erebus attackers to generate fake IP addresses, create several malicious
peer identities in AS, and gain control over the network connections of a node. Although the existing
methods can improve the blockchain network layer security to some extent, such as protocol analysis,
update, vulnerability detection, and repair, they still face certain deficiencies of hysteresis, poor
integrity, and unsatisfactory active defense effects.

The Routing-Aware Peering (RAP) is the second method, which detects Erebus attacks through
peer routing awareness of the blockchain network layer. The RAP is used to detect and suppress
abnormal routing in a TorP2P network. This method can authorize partial nodes in the blockchain
network layer to acquire the path information of all peer nodes. It can also be used to check peer node
identities in routing and routing validity [14]. The RAP has been adopted for routing authentication for
the Bitcoin network layer. However, such a method has some shortcomings. First, the routing protocol
of the existing blockchain network layer must be amended. Moreover, the AS protocol extensions,
which require a high deployment cost, are significantly difficult to implement. RAP is also only valid
for preventing routing attacks in the blockchain network layer domain, which includes prefix hijacking
and path forgery [15]. RAP performs rather poorly in the interdomain route leaking detection of
Erebus attacks [2]. Third, the RAP targeting at the blockchain network layer cannot prevent the
routing leaking caused by Erebus attacks, which involves the principle of node identity peering in
a blockchain system. Under such a circumstance, the RAP can only discriminate the identities of
attackers and incorrect routing but cannot suppress routing or implement effective defense strategies
[16]. RAP also makes false-negative and erroneous decisions during attack detection. Tran et al. [12]
pointed out that a high rate of missed judgments is noted in RAP detection in a permissionless
blockchain network. Erebus attackers may also use such vulnerabilities to dynamically generate Sybil
identities, which may serve as advantages for attackers in the asymmetric attack-and-defense game
relative to the goal node.

Thus, existing Erebus attack detection faces the following challenges. First, detection objects
selected using the existing methods are rather monotonous. Erebus attack detection, based on
routing status or identity information, may lead to one-sidedness feature selection, making it less to
comprehensively depict the core features of an Erebus attack. Consequently, the corresponding false
alarm or negative rates can be rather high. Second, an Erebus attack may adopt multipath routing
strategies, making the attack targets unfixed. The existing detection methods are limited in detecting
certain objects, thereby causing poor dynamic awareness of Erebus attacks, low detection accuracy,
and making the corresponding defense strategy less pertinent. Third, blockchain system resources are
probably allocated to functional computing resources. In practice, node security defense resources
are rare for the blockchain network layer. However, the detection and active defense mechanisms
in the existing studies increase high network communication and node resource requirements. Thus,
the existing Erebus attack detection systems must be improved, regarding their adaptability in the
blockchain network layer.

This study designs a specific detection approach effective in Erebus attacks and responding
to security threats to the blockchain network layer. We define the features of traffic behavior and
routing status after summarizing the behavioral characteristics in a multistage Erebus attack process.
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Moreover, the study establishes a ReliefF_WMRmR-based two-stage feature selection algorithm and
a deep learning-based multimodal classification detection model by combining the defined features
and characteristics. This study offers the following contributions:

1) We summarize the relevant studies on Erebus attack detection and defense through profound
investigations of the characteristics of multistage Erebus attacks. Moreover, we raise the idea of attack
detection according to the routing status and traffic behavior features to explore the influence of
multistage Erebus attacks on flat routing and traffic at the blockchain network layer. Additionally,
careful consideration is given to distinct characteristics in the entire process of multistage Erebus
attacks, which include route leaking, traffic attacks, and identity forgery. We remove relevant defects
of low detection accuracy and precision, caused by detection object monotony and one-sidedness
detection. Our goal is to improve the detection pertinency, enhance the adaptability of the detection
method, and decrease the detection complexity.

2) Erebus attacks are simulated in a real blockchain intranet environment. Additionally, we
summarize the traffic behavior and routing status features during a multistage Erebus attack to collect
and analyze the routing and traffic data. We also define various routing status features to explore
how Erebus attacks affect routing structures in nodes, such as Critical AS Data (CAD), and how
Erebus attacks generate abnormalities in the route update messages during route leaking. Additionally,
the features of the traffic behavior are defined to elaborate its characteristics and traffic information
distribution characteristics at the traffic coverage stage of an Erebus attack. Thus, attack traffic can
be susceptivity found and accurately positioned, which depends on the multidimensional features.
Transaction identity information in the traffic is also parsed to describe the abnormal differences
in IP address and identity information distribution characteristics during identity forgery. This may
contribute to the deep mining of hidden relationships in identity forgery. Erebus attack features are
also described from a multidimensional perspective, thereby improving the model’s perception and
feature sensitivity toward the Erebus attacks. Consequently, both the accuracy and precision of the
detection method are boosted.

3) Certain high dimension and heterogeneity characteristics exist, including redundant informa-
tion and noise as shown in the routing status and Erebus attack traffic features on the blockchain
network. Hence, the computing resource overhead and detection instantaneity increase and decrease,
respectively. Thus, overfitting of the detection model occurs easily. Based on this problem, this study
proposes a ReliefF_WMRmR-based two-stage feature selection algorithm to increase the information
in various preselected feature subset features. Moreover, the ReliefF algorithm is used to evaluate, rate,
and search the degree of importance of a mixed feature set, which comprises the routing status and
traffic behavior. In this way, a low-dimensional feature subset is formed. Afterward, the preselected
feature subset is input into the WMRmR algorithm. Through a designed feature selection framework,
features with high conditional mutual information levels and strong correlations are selected. Based
on the redundant features, the suspected network traffic is filtered to enhance the performance of an
optimal feature subset. Due to the two-stage feature selection algorithm, the complexity of the feature
space is reduced, assisting the detection model to learn the main feature variation and alleviate the
overfitting phenomenon. Finally, the stability and robustness of the detection model are promoted.

4) Since the routing status and traffic behavior features reveal the network status, heterologous
feature interaction exists between these networks. Especially, a network linking mode featuring a long
cycle, but a low rate is adopted to produce traffic. However, a simple machine learning model may
identify such traffic as normal. To solve the above problem, a Multilayer-Perceptron (MLP) based
multimodal deep learning network is introduced. First, the routing status features at the input layer of
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this model are isolated from its traffic behavior features, and the proposed deep learning model is used
to learn and extract the input and core features of an Erebus attack, respectively. Afterward, feature
learning is conducted via the MLP at the convergence layer to explore hidden feature relationships
and prevent false alarm rates caused by heterogeneous data conflicts. Eventually, classifier outputs,
indicating the probability distribution, are obtained to solve the hyperparameter sensitivity problem
of the deep learning classifier and improve the accuracy of the proposed model.

The rest of the paper is organized as follows: Section 2 demonstrates the analysis and detection
idea of the Erebus attack mode. This section also proposes Erebus-based attack detection by com-
bining traffic behavior and routing status based on the experience and strategies of existing detection
methods. Section 3 introduces the traffic behavior characteristics and routing state characteristics of
Erebus attacks. This section also proposes the characteristics of the traffic behavior and routing state
for Erebus attacks, according to the previous research. Based on the MLP-based multi-modal feature
perception model, Section 4 achieves a robust feature extraction by proposing a two-stage feature
selection algorithm based on ReliefF_WMRmR. On this basis, feature learning and model detection
are conducted for the heterogeneous features of traffic behavior and routing state. In Section 5, the
experiments and analysis are presented, in which a detection model is constructed and trained by
collecting traffic and routing data in a real blockchain network layer environment. The superiority of
the proposal was tested through experimental comparison and analysis. Section 6 concludes the paper
and presents a future research direction.

2 Analysis of Erebus Attacks
2.1 Analyses of Characteristics of Erebus Attacks

The Erebus is a typical stealth partitioning attack or a multistep compound attack on the
blockchain network layer [1]. The Erebus attack selects Eclipse as its fundamental condition to conduct
rout leaking targeted at th. Then, the network topology is damaged due to the traffic coverage. Erebus
attack also combines with Sybil to develop identity forgery for the AS and intranet nodes, thereby
achieving the targeted subnet routing shielding and network isolation. The corresponding major attack
procedures are described below:

First, an Erebus attacker launches route leaking, targets a subnet to perform network detection.
The Border Gateway Protocol (BGP) tests report traffic, toward the blockchain subnet nodes under
attack, which is sent to analyze the feedback information and deduce subnet architecture and routing
relations. Several shadow IP addresses are generated and combined with nodes under attack and
core BGP routing nodes to build a multichannel IP connection relationship. The goal is to establish
a massive network and routing connections that contain the incorrect AS information for nodes
during the attack [17]. Afterward, the Erebus attack enters a stage of traffic coverage, during which
communication nodes, routing architecture, and blockchain transaction relationships are damaged.
The victims are forced to construct erroneous routing and hinder normal blockchain nodes from
transmitting legal transaction traffic after controlling the core AS nodes and sending maliciously
built low-rate traffic to CAD nodes in a network channel where the attack occurs. Subsequently, the
attacker executes identity forgery and gradually inserts the controlled puppet routing node information
into a routing table of the targeted blockchain network layer nodes until the network connection
with malicious peer nodes is fulfilled, and network links under attack are controlled by the attacker.
Here, nodes under attack are isolated from the main part of the blockchain network layer. The Sybil
attack mode is adopted during identity forgery to build a transaction relationship with blockchain
nodes, generate several fake transaction identities, force the attacked blockchain nodes to establish
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an erroneous transaction relation, create and control the network traffic of victims, and isolate the
hashrate of the attacked nodes from the principal account. Fig. 1 shows the general approach of the
Erebus attack.
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Figure 1: Erebus attack process

Unlike the typical Eclipse attack, Erebus attackers select the Internet Service Provider (ISP) as the
main target and generate many ‘shadow IP-fake Sybil identities’ after successful infiltration in the AS.
Furthermore, an erroneous blockchain transaction relationship is established, and fake transaction
attacks are launched at the blockchain subnet to waste computing resources [18].

Compared with routing and traffic attacks in traditional IPv4 or IPv6 networks, Erebus attacks
demonstrate the following discrepancies:

• Variations in attack target distribution: Conventional traffic and routing attacks are targeted
at a single node or link; i.e., their attack targets are clear and definite, showing a distribution
characteristic of ‘one to one’ or ‘many to one.’ However, Erebus is a multipath dynamic attack
mode targeted at the blockchain network layer. The attacker must consider the resource and
traffic constraints when selecting attack targets. The attacker must also generate several shadow
IPs and fake transaction identities to hide their identities. However, Erebus attack targets
vary, making the attacker dynamically adjust the relevant strategy, based on the resources to
be attacked, the traffic changes, routing status, and values to be produced by such attacks.
Therefore, relevant statistical information (e.g., IPs, attacker’s identity and ports) is distributed
in a hybrid form, such as ‘one to one,’ ‘many to one,’ and ‘many-to-many.’

• Differences in attack destruction mechanisms: Traditional traffic attacks are primarily aimed
at controlling the congestion mechanism of the Transmission Control Protocol (TCP)-IP
protocol to exhaust core node resources. However, Erebus takes advantage of deficiencies of
the abovementioned congestion control mechanism and forces the attacked node to establish
a routing relation with the attacking node because of the routing update mechanism in the
peer nodes of the blockchain network layer. Furthermore, the routing update mechanism can
enhance attacking effects because of weak identity authentication. Thus, a routing relationship
is built between the attacked and the attacking nodes to execute network isolation.
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• Differences in effects caused by attacks: Traditional traffic attacks are primarily aimed at local
area networks to decrease valid communication traffic with TCP and User Datagram Protocol
(UDP) as transmission protocols. However, Erebus’s attacking effects are mainly manifested in
a varying state of repeated connection and disconnection of the AS nodes and routers in the
blockchain network layer link. The goal is to damage the network architecture and affect the
topological stability and reliability. As for the attacked mining nodes, some nodes are isolated
from the main blockchain network because of routing screening, wasting computing resources
and creating a hard fork of the bifurcation of the main network. Consequently, the resulting
link to the blockchain is unique.

Fig. 2 shows the multi-stage attack process and specific attack methods of the Erebus attack.

Figure 2: Multi-stage Erebus attacks
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Apart from the general behavioral characteristics of the traffic and routing attacks in the existing
traditional network, Erebus attacks also have some novel features in the operating mechanism of the
blockchain system, summarized as follows:

• Behavior concealment: Erebus attack is a data-plane attack at the blockchain network layer,
which cannot be monitored at the control level. Its attack traffic protocol shares a high
similarity with normal traffic because it is characterized by long-term traffic attacks based on
routing penetration and fake transactions. Thus, it is unlikely for a single index to describe the
topological variations, especially when considering the routing status. Consequently, it becomes
difficult for the existing defense detection to perceive the existing threats and to position
abnormal links and routing. Here, the false-negative or false alarm rate is rather high.

• Address diversity: As demonstrated in the research on Erebus attacks, information in the
common nodes and the primary and secondary ASs at the blockchain network layer can be
easily acquired in line with route evaluation results. The AS network coverage also influences
the detection results. Using wide network coverage in an interdomain topology, an Erebus
attacker can effortlessly use its asymmetry advantage to generate attacking identities for diverse
topologies. Consequently, statistical regularities of relevant information (e.g., attacking IPs and
identities) are insignificant and cannot be expressed in a simple mathematical model.

• Attack-and-defense strategy asymmetry: Subnet vulnerabilities during an Erebus attack can be
dynamically specific to a particular protocol vulnerability, causing defenders to face difficulties
in repairing links or routers rapidly. A study [10] has demonstrated that the detection strategy
delay may be caused by the existing method, caused by an active detection defense strategy that
violates the decentralization philosophy of the blockchain, or by a nontrivial protocol update
of the blockchain network layer.

2.2 Thoughts on Erebus Attack Detection

An Erebus attack unceasingly affects decisions about the AS connection and the targeted node,
turning the controlled AS into a natural man-in-the-middle network for all peer-to-peer connections
of the attacked nodes. The Erebus attackers may succeed in hiding their attacking identities and
penetrating the attacking traffic. In this context, the concealment of the attacker’s identity elevates,
and the complexity of the Erebus attack detection method increases. Thus, the existing method based
on a single detection object performs poorly in Erebus attack detection.

Hence, this study modifies the relevant detection ideas. Erebus attack features are comprehensively
perceived from two perspectives: routing status and traffic behavior. Thus, a novel detection method
was designed. Erebus attacks are detected based on the traffic behavior and the routing status
because the statistical relationship between the attacking identity and traffic information distribution
is mined according to traffic information, which effectively perceives the IP-attacking identity feature
distribution during an Erebus attack. Moreover, an Erebus attack can be long-lasting to realize
the routing coverage, thereby generating certain traffic distribution rules based on traffic statistics.
Topological changes caused by an Erebus attack are perceived from the routing perspective. Machine
learning models can also enhance the sensitivity features to explore the nonlinear variations at the
blockchain network layer incurred by such an attack.

The fundamental assumptions of the blockchain network layer under attack proposed by one
study [1] are selected herein to construct an Erebus attack detection model.

• Decentralized supervision mechanism: In a traditional peer-to-peer layer, network attackers
may monitor or restrict peer-to-peer connections within the AS domain via a trusted centralized
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supervision mechanism. Moreover, legal nodes may be stored based on whitelisting to establish
the connections of other relay nodes [19]. However, such a method is not applicable to
blockchain network layers as it violates the principle of peer-to-peer nodes of the blockchain.
Therefore, a decentralized supervision mechanism is selected for the blockchain network layer
detection method.

• No dynamic identity update mechanism is required: Attacking pertinency is somewhat lowered
at the blockchain network layer, despite that the attacked nodes can dynamically update network
identities in conformity with active defense mechanisms, such as moving targets and mimic
defenses [20]. However, dynamic and frequent host identity updates at the blockchain network
layer may dramatically influence the service quality of the blockchain network connection and
impair hashrate stability and data uplink efficiency. Consequently, an adverse impact is applied
to the blocks and transaction transmissions [21]. Therefore, the method cannot be deployed in
an unlicensed decentralized blockchain network layer.

• No adoptions of cross-layer solutions: Tran et al. [1] raised a ‘Smart Peer Eviction Policy’, in
which a consensus layer of the blockchain interacts with its network layer dynamically. Despite
its practical feasibility, such a method may tremendously increase the system’s complexity and
introduce new systematic vulnerabilities. Thus, this study focuses on the active defense against
the blockchain network layer; no cross-layer interaction strategies are adopted.

In line with the above principles, a multimodal dichotomous deep learning model is constructed
based on traffic behaviors and routing status features. Moreover, a detection method was also designed.

3 Traffic Behavior and Routing Status Features of Erebus Attacks

In a machine learning model, Erebus attack samples must be learned to extract the core attack
distinct features from the blockchain network layer. Thus, corresponding feature fields should be
configured for model detection. Thus, it is vital to describe the distinct characteristics of this attack
and routing status features during an Erebus attack to improve relevant detection accuracy.

3.1 Traffic Behavior Features

At the traffic coverage stage, routes, such as ADDR, Neighbours, and PING, are sent to the
attacked subnet of the blockchain network layer to construct the command attack traffic. Such attack
traffic has downstream traffic behavior and traffic attack features. Therefore, the statistical traffic
features may be selected from the multiple perspectives of the traffic data at the blockchain network
layer, which includes data packets and session flows. By introducing a routine traffic feature field
{f 1, f 2, . . . , f 28} for the blockchain network layer, the traffic behavior features are described from the
perspective of the detection window. Table 1 presents the proposed field {f 1, f 2, . . . , f 28}.

Table 1: Routine traffic feature fields

No. Name Description

1 duration_Time Duration of the data stream
2 pkt_Count Quantity of packets in a single data stream
3 byte_Count Number of bit packets in a single data stream
4 pkt_Size Packet size
5 access_Frequencies Node access frequency

(Continued)
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Table 1: Continued
No. Name Description

6 priority Array packet priority
7 idle_Timeout Duration of the idle timeout
8 cookie_ID Corresponding ID number of cookie
9 actions Traffic action type
10 TCP_Count Number of TCP session setup
11 UDP_Count Number of UDP session setup
12 TCP_Fail_Count Number of TCP session setup failed
13 UDP_Fail_Count Number of UDP session setup failed
14 snd_Pkt_Count Number of upstream packets
15 rcv_Pkt_Count Number of downstream packets
16 snd_Syn_Count Number of SYN packets sent
17 rcv_Syn_Count Number of SYN packets received
18 snd_Fin_Count Number of FIN packets sent
19 rcv_Fin_Count Number of FIN packets received
20 Snd_Len Upstream traffic length
21 Rcv_Len Downstream traffic length
22 connection_Per_Sec Number of connections corresponding to each IP
23 TCP/UDP_rate Proportion of TCP packets to UDP packets
24 server_port_Count Number of ports passively connected to the server
25 Conn_Per_IP Number of IPs contained in each traffic connection
26 IP_Per_Sec IP traffic per second
27 protocol Network protocol type
28 avg_Bits_Per_Sec Networked traffic rate in bytes per second

At the stage of traffic penetration of an Erebus attack, the traffic behavior features are distin-
guished and described by 10 representative features, such as the average session duration, proportions
taken by low-rate data packets, and the distance deviation values of data packets. Based on the features
of these attacks, it is vital to enhance the model’s awareness of the Erebus attack behavior features.
Moreover, transaction information in traffic is parsed, and the distribution features of the attackers’
identities are defined based on the multiple fake identity attacks. Detailed feature definitions are as
follows:

1) Average session duration: The attacker continuously occupies the link channels of the AS during
the routing penetration of an Erebus attack to achieve the goal of route table coverage and route
topology damages. Therefore, the attacker may extend the duration of a traffic session to link the
attacking conditions. In this context, the average session duration is obtained to describe the traffic
behavior of the Erebus attack shown as follows:

fT1
: Session_Duration_Avg =

∑T

t=0session_Durationt

T
(1)

where t is the number of times in statistics, and T is the total number of times of collecting data within
the window.
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2) Proportions of low-rate data packets: Data packet rate is the time interval from the first data
packet transmission when attacking the host to the time when such a data packet arrives at the targeted
node of the attack. Since a blockchain network layer is a heterogeneous network, the nodes interact
at a low transmission rate to reduce communication overhead and ensure communication service
quality among node traffic. At the stage of penetrating the ISP, an Erebus attack proactively emulates
interactive behavior among normal node traffic to increase the hidden attacking traffic. The data
packets are sent at a low rate, and the low-rate data packets are adapted to measure the traffic behavior
of the Erebus attack.

fT2
: LowRate_Pkt_Ratio =

∑T

t=0LowRate_Pkt_Durationt∑T

t=0Pkt_Durationt

(2)

3) Average idle time of traffic: The difference in the idle time of traffic is the time interval between
respective sets of traffic in a traffic session. In practice, the consensus mechanisms differ between
different types of blockchain. Thus, significant differences exist between the network environment
and service quality of various blockchain network layers, making the difference in traffic idle time
inconsistent between normal nodes. For example, traffic is generated during the Erebus attack,
producing features of periodicity and a small idle time difference. Considering this, autocorrelation
coefficients were used to figure out weighted idle time difference deviation values and describe the
overall spatiotemporal distribution and periodic distribution of the network traffic.

flow_idle =
∑T

t=0| flow_idlet|∑T

t=0 flow_Numt

(3)

fT3
: flow_var_idle = 1/

∑T

t=0| flow_idlet − flow_idleavg|∑T

t=0 flow_Numt

(4)

4) An average number of data packets in a session flow: The number of data packets in the Erebus
attack traffic differs from that of the traffic of the normal blockchain network layer. Each session in
the normal blockchain network layer traffic contains massive data packets; whereas an Erebus attacker
generates fake traffic of the source IP at the traffic coverage stage and initiates a session traffic coverage
targeted at the CAD nodes in a blockchain network. Such behavior may lead to a drop in the average
number of data packets in each session. Therefore, the average number of data packets in a session
flow is introduced here to describe the relevant traffic behavior characteristics.

fT4
: PktNum_Avg_TrafficNum =

∑T

t=0pkt_Numt∑T

t=0traffic_Numt

(5)

5) An average number of bytes in a data packet: Interactive traffic load information at a normal
blockchain network layer comprises several blockchain transaction messages; the length of such load
information exceeds that of the attacking traffic. In an Erebus attack, efficient improvement is required
at the traffic penetration stage. Moreover, the attacking traffic load information comprises route
construction commands. This data category is generated by an attacking program or a script, in
which the corresponding packet length remains comparatively constant. The byte length of the load
information and the total byte length is relatively small. Thus, the average number of bytes in a data
packet is introduced to describe differences in traffic behaviors.

fT5
: pktSize_Avg_trafficNum =

∑T

t=0 pkt_Size∑T

t=0traffic_Numt

(6)
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6) Percentage of non-peer-to-peer session flows: Peer-to-peer session flow is the IP_src of a session
flow A serving the IP_dest of a session flow B, and the IP_dest of session flow A is the IP_src of session
flow B. Under such circumstances, the protocols of session flows A and B are peer-to-peer because
traffic is in a dynamically interactive mode in the normal blockchain network layer environments. In
this process, the statistical distribution of various sessions is highly random. However, an Erebus attack
aims at executing the routing coverage and the traffic penetration. In this wise, the source IP addresses
must be forged, where the downstream traffic plays a major role. Additionally, the percentage of non-
peer-to-peer session flows increases, this percentage is adopted to express the corresponding traffic
behaviors.

fT6
: Bidirectional_Session_Traffic_Ratio = 1 −

∑T

t=0Bidirectional_Session_Traffict∑T

t=0Session_Traffict

(7)

7) Entropy value distribution of network host IDs: Many fake IDs and Sybil attack transaction
identities are randomly generated during the identity forgery of an Erebus attack. Consequently, the
distribution of randomness of identity information becomes obvious in the host. The entropy values,
representing the host identity distribution of the Erebus attack traffic, are above that of the normal
traffic. By analyzing the transaction identification information in data packets and obtaining the
frequency and entropy value distribution through statistics, the distribution of abnormal identities
is more clearly defined as follows:

fT7
: H (IDsrc) = −

∑
x∈IDsrc

p (x) log p (x) (8)

fT8
: H (IDdest) = −

∑
x∈IDdest

p (x) log p (x) (9)

where H (·) represents the information entropy formula, and p (·) represents the probability of an event
in a sample.

8) Entropy ratios of source IP address to host identity: The source IP attack traffic may contain
traffic information of different transaction identities to conceal an Erebus attack. Thus, both the
IP_src address and the transaction identity distributions are highly random in Erebus attack traffic;
whereas the distribution of transaction hosts and IP_src addresses remains unchanged in a normal
blockchain network layer. Moreover, the entropy ratios of the src_IP in the Erebus attacking traffic to
host identities are above those of the normal attacking traffic.

fT9
: DKL (IDsrc||IDdest) =

∑
x∈IDdest

∑
y∈IDsrc

p (x) log
(

x
y

)
(10)

9) Traffic variation rate at the portal: Once an Erebus attack starts building routing relationships,
malicious attacking traffic is transmitted to the AS or a subnet. Consequently, more connection
requests are developed from the subnet host, and the traffic rate at the network portal increases
significantly within a specified statistical time window. Therefore, the traffic variation rate at the portal
is based on the corresponding traffic behaviors:

fR10
: Inbound_Traffic_Rate =

∑T

t=0Inbound_Traffic_Numlt

T
(11)

All traffic behaviors are adopted to form a feature set, denoted as fF = { fF1, fF2, fF3, . . . , fFn}, where
n = 38.
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3.2 Routing Status Features

A multistage Erebus attack is characterized by important nodes, such as the CAD within the AS
of the blockchain network layer. Thus, routing status features are defined to objectively describe both
the process and characteristics of the Erebus attack, which include the routing status features of the
route update information and routing architecture.

1) CAD state parameter variation rate: The routing penetration of an Erebus attack is targeted
at the CAD nodes of the blockchain network layer, such as ISP, routers, and switches. Moreover, an
Erebus program must control many CAD nodes to execute selective isolation of the blockchain nodes
attacked in the AS. Through frequent statistics and feature extraction from the data associated with the
CAD nodes of adding a new router (ANNOUNCE messages), removing the old router (WITHDRAW
messages), session reset, and route update messages and variation rate of the message quantity feature
in unit time are calculated to describe state variations of the key route nodes:

fR1
: ANNOUNCECAD_Num_Ratio =

∑L

l=0

∑T

t=0ANNOUNCE_Numlt

T
(12)

fR2
: WITHDRAWCAD_Num_Ratio =

∑L

l=0

∑T

t=0WITHDRAW_Numlt

T
(13)

fR3
: UPDATECAD_Num_Ratio =

∑L

l=0

∑T

t=0UPDATE_Numlt

T
(14)

fR4
: RESETSESSIONCAD_Num_Ratio =

∑L

l=0

∑T

t=0RESETSESSION_Numlt

T
(15)

where, l represents the serial numbers of routes at respective nodes, and L is the total number of subnet
routes within the statistical window.

2) Routing request construction traffic of CAD nodes and links: Under an Erebus attack, the
attacker may generate route request construction traffic for CAD nodes and the corresponding links.
In most cases, a routing construction command comprises a program and a script, periodically
distributes the command traffic. On this occasion, the routing status variations of the CAD nodes
are described by the periodical distribution of the routing construction command quantities:

fR5
: RouteCAD_REQUEST_Num =

∑L

l=0

∑T

t=0Route_REQUEST_Numlt

T
(16)

3) Node request traffic of subnet route: At the routing coverage stage, routing update messages
are extensively forwarded to all nodes in the subnet to cover the subnet routing architecture. Thus, the
subnet routing status variations are expressed in the session reset and routing update messages of all
subnet routing nodes in the AS as follows:

fR6
: UPDATE

SubNet
_Num_Ratio =

∑L

l=0

∑T

t=0
UPDATE_Numlt (17)

fR7
: RESETSESSIONSubNet_Num_Ratio =

∑L

l=0

∑T

t=0
RESETSESSION_Numlt (18)

4) AS prefix variation rate: Under an Erebus attack, the prefix hijacking is adopted to execute the
routing penetration, in which the attacker broadcasts that they own AS prefixes in the blockchain
network layer. This may lead to route switches and network traffic diversion. In this process, the
hijacked route becomes illegitimate; it continuously broadcasts among nodes of the blockchain
network layer and destroys the routing architecture. Finally, the prefix information of the involved



5408 CMC, 2023, vol.75, no.3

route may change significantly. In normal blockchain network layers, communication paths between
respective nodes are stable. The network distance from a node of the blockchain network layer to the
targeted prefix node is also stable. Under such circumstances, the variation rates of the attribute values
(e.g., AS_Path, SRC_Path, and Next_Hop in AS) in unit time are selected here to determine whether
an Erebus attacker executes the routing penetration or traffic hijacking targeted at the AS [14]:

fR8
: ASPath_Rate =

∑L

l=0

∑T

t=0ASPath_Lenlt

T
(19)

fR9
: SRCPath_Rate =

∑L

l=0

∑T

t=0SRCPath_Lenlt

T
(20)

fR10
: NextHop_Rate =

∑L

l=0

∑T

t=0NextHop_Lenlt

T
(21)

5) Subnet architecture measurement: The number of nodes in the respective subnets may change
because an Erebus attack may destroy the routing structures of various subnet nodes during routing
penetration. Therefore, the average number of neighbor nodes corresponding to each subnet node is
obtained and used to describe the subnet node architectural variations as follows:

fR11
: RouteSubNet_Neighbor_Ratio =

∑L

l=0

∑T

t=0RouteSubNet_ASNeighbor_Numt

T
(22)

6) Path variation rates for routing nodes: When the CAD nodes, such as the AS, are under the
routing penetration attack at the blockchain network layer, the architectural routing information, such
as the ASPath, forces a change in the AS paths of nodes under attack. During an Erebus attack, the
BGM in the controlled AS dynamically informs the surrounding nodes about the path accessibility and
length. At the routing penetration stage, topological or AS routing strategy variations may correspond
to the generation of many ASPath update messages. The topological variations of the AS under attack
are described after measuring the various rates of the ASPath attributes for all paths in the blockchain
network layer at different times. Here, the rate of summation path length is introduced to evaluate the
differences in the total ASPath length at different times:

fR12
: RouteCAD_Length_Ratio =

∑L

l=0

∑T

t=0Route_ASPath_Lenlt

T
(23)

Routing status features are collected to form a routing status feature set fR, where fR = {fR1, fR2,
fR3, . . . , fRm}, and m = 12.

4 A MLP-Based Multi-Modal Feature Awareness Model

The Erebus attack features are comprehensively perceived according to the routing status and
traffic behavior. Moreover, a detection method is designed when transforming the Erebus attack
detection into a machine learning-based classification and detection problem. The corresponding
detection process is presented below. First, the normal traffic and the traffic under an Erebus attack are
collected from a real blockchain network layer. The traffic routing status in normal cases and during
an Erebus attack is also collected. Moreover, network traffic and routing status messages with the same
time stamp and data stream ID are classified into the same set. Afterward, two-stage feature selection
algorithms, such as ReliefF and WMRmR, are used to select and filter the features. Then, the features
that are strongly correlated and less redundant are adopted. Then, features of the traffic behavior
and routing status are respectively extracted from a set of traffic data and messages and inputted
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into the T2R2C_Deep Neural Network (T2R2C_DNN) or deep feature learning and extraction. This
way, abstract features are generated and fused. Finally, the SoftMax classifier is utilized to output
dichotomous detection outcomes. Fig. 3 shows the overall operation mode of the proposed Erebus
attack detection method.
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Figure 3: A flow diagram of the proposed Erebus attack detection model

4.1 Two-Stage Feature Selection Algorithm Based on ReliefF_Wmrmr

Since the routing status and traffic behavior features are derived from heterologous data, input
feature dimensions are raised for the deep learning model during the heterologous feature extraction.
Moreover, features containing a small amount of information and interfering variables are introduced.
Consequently, model complexity and detection time overhead are elevated. Traffic behavior and
routing status are features that describe the system security of the blockchain network layer. Moreover,
superposed information about features exists and redundant information between these features. Data
conflicts and training model overfitting are incurred during the deep learning model training, which
further affects the detection accuracy and model stability. Therefore, essential heterogeneous features
are selected from various features as the model input to reduce space and time overheads of detection
and prevent input feature model overfitting.

The existing feature selection algorithms are classified into two. The first depends on the classifi-
cation, such as a filter or wrapper-based feature selection; the second is independent of classification,
which includes the embedded-based feature selection. However, the wrapper-and embedded-based
feature selection methods do not measure the combined effect of features. Thus, their performance
in selecting redundant mutual information among multisource input features is rather poor, and the
selected features may contain redundant feature information. A two-stage feature selection algorithm
based on ReliefF_WMRmR is introduced herein to suppress redundant features, select features with
high mutual information from multisource features, and reduce feature dimensions. First, feature
selection is performed using ReliefF built on the original routing status and traffic behavior features
during Erebus attack detection. Then, correlations between the original features and label information
are calculated. Next, a subset of weight features that significantly influence classification results is
selected. Hence, the neural network learns the main feature variation during training. Thereafter, the
WMRmR algorithm is used to filter the redundant features in a feature subset, simplify the feature
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subsets, improve the Erebus attack feature dataset detection effects of classification based on the
model, and enhance the stability and robustness of the model. Fig. 4 shows the corresponding process.

Figure 4: A flow diagram of feature selection based on ReliefF_WMRmR

ReliefF is a filter-based feature selection method of continuous eigenvalues that can effectively
perceive insensitive feature items among various features and select feature items strongly correlated
with the classification labels. This method is adopted to select a subset of the dimension reduction
features from the original features of the routing status and traffic behavior during the preprocessing
stage. Moreover, the features are sorted according to the feature correlation weights [22]. The main
steps are as follows: a sample R is randomly extracted each time from the original samples. Afterward,
k neighboring samples (i.e., Hj (j = 1, 2, . . . , k)) are searched in the same class as sample R, and k
neighboring samples are denoted as M in other classes. Then, we determine the weights representing
correlations between respective feature items A and the classification label. The features are ranked in
line with the feature importance W , and highly important features are selected. Thus, such a process
should be repeated m times, and the corresponding correlation weights are expressed as follows [23]:

W (A) = W (A) −
k∑

j=1

diff (A,W ,H)/(m · k) +
∑
T /∈R

[
p(Class(T))

1 − p(Class(R))

] k∑
j=1

diff
(
A,W ,Mj (T)

)
/(m · k)

(24)

where W (A) is the correlation weight of feature item A. The higher the value of W (A), the better the
performance of feature item A in distinguishing samples. Moreover, diff (A, R1, R2) is a correlation
weight residual of sample R1 relative to R2. In addition, Mj (T) is the jth nearest sample in class T. The
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corresponding equation of diff (A, R1, R2) is given as follows:

diff (A, R1, R2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|R1[A] − R2[A]|
max(A) − min(A)

if A is continuous

0 if A is discrete and R1[A] = R2[A]
1 if A is discrete and R1[A] �= R2[A]

(25)

The process of the ReliefF-based feature selection algorithm is described as follows:

Algorithm 1: ReliefF based feature selection algorithm
Input: Raw dataset D; Class label set C; Input feature set f; selecting threshold δ of ReliefF; frequency
in sampling m;
Output: A feature set f ’ after extraction
Start

1: Weight item W for respective features is set at 0;
2: f ’←�;
3: for i = 1 to m do:
4: A sample R is randomly extracted from D;
5: To search k nearest samples denoted by Hj in the same class of R;
6: To search k nearest samples denoted by Mj(T) of R in other classes;
7: for i = 1 to N All features do:
8: To calculate W (fi) according to the equation:
9: if W (fi) > δ

10: fi is added to f ’
11: End For

End

The routing status feature f R and the traffic behavior feature f F are substituted into algorithm 1,
which outputs the sorted and selected eigenvectors f ′

R and f ′
F , respectively, thereby forming an

eigenvector set fasb.

f ′
R = {f ′

R1
, f ′

R2
, f ′

R3
, . . . , f ′

Rμ
} (26)

f ′
F = {f ′

F1
, f ′

F2
, f ′

F3
, . . . , f ′

Fν
} (27)

f asb = {f ′
F , f ′

R} (28)

A failure of the ReliefF in measuring the combined effect of multisource feature subsets enables the
model to generate similar redundant features. Herein, the feature selection framework and evaluation
criteria, proposed by Brown et al. [24] and Zhang et al. [25], respectively, were employed to raise a
WMRmR-based feature evaluation standard JWMRmR and to design a detection algorithm. A feature
subset was generated in combination with ReliefF to select strongly correlated features of much
conditional mutual information. Suppressing the redundant features is vital to improving the selection
quality of the optimal feature subset. Here, the standard JWMRmR is expressed as follows:

JWMRmR( fcdd) = I( fcdd; C) + α × Rel( fcdd) − β × Red( fcdd; fslt) (29)

Rel ( fcdd) =
∑
fslt∈f s

I ( fslt; fcdd) (30)
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Red (fcdd; fslt) = Rel (fslt) − H(fslt|fcdd)

H(fslt)
Rel (fslt) (31)

where J(·) is the feature evaluation standard, and I(·) is the mutual information formula [26]. More
particularly, fcdd and fslt are the features to be selected and selected features, respectively, where fslt ∈ fs

and f cdd ∈ f asb−fs. Moreover, fS is the optimal feature subset (S⊂ f asb); | f asb | represents the number of
features outputted by ReliefF from the feature subset; C is a label set, and |C| represents the number
of labels. According to JWMRmR, I (fcdd;C) is the correlation between fcdd and C. Through the Rel (fcdd)
maximization approach, the amount of independent mutual information lost is minimized. Through
the Red (fcdd; fslt) minimization approach, conditional correlation and redundant information of fcdd

and fslt are decreased. JWMRmR is designed by referring to a feature selection algorithm standard of
minimum redundancy and maximum relevance. Considering the correlations of features and labels,
this process influences important features on the overall datasets and labels and the performance of
mutual information during feature selection.

We also weigh the impact of the redundant information and independent mutual information
of features on the JWMRmR standard design to establish the weighted values α and β. In this case, a
standard deviation is introduced to calculate their weights. Considering that standard deviations can
measure the system stability, the relative importance between the redundant and independent mutual
information is dynamically and adaptively balanced. As a result, the weights of respective items are
denoted as follows:

μα = 1
|fs|

|fs|∑
i=1

I (C; fcdd|fslt) (32)

α =
√√√√ 1

|fs|
|fs|∑
i=1

(I(C; fcdd|fslt) − μα)2 (33)

μβ = 1
|fs|

∑|fs|

i=1
I (C; fslt|fcdd) (34)

β =
√√√√ 1

|fs|
|fs|∑
i=1

(I (C; fslt|fcdd) − μβ)2 (35)

where |fs| represents the number of features in an optimal feature subset. The two-stage feature
selection algorithm based on ReliefF and JWMRmR is described.

Algorithm 2: two-stage feature selection algorithm based on ReliefF and JWMRmR

Input: Dataset D; Class label set C; Routing status feature set fR;traffic behavior feature set fF; threshold
κ of JWMRmR;
Output: Optimal feature set fs

Start
1: Initialization

2: f
′
R ← �

3: f
′
F ← �

(Continued)
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Algorithm 2: Continued
4: f s ← �

5: set_JMRmR ←�

6: To select features from f R according to Algorithm 1, and generate f
′
R

7: To select features from fF according to Algorithm 1, and generate f
′
F

8: f asb = {f ′
F ,f

′
R}

9: for each ∀ fi∈{fasb} do:
10: To calculate I(fi: C), and input it into the set_JMRmR set;
11: f max = argmax (set_JMRmR)
12: Set f asb ← f asb\{fmax}
13: Set f s ← {fmax}
14: while fasbis not a null set && cdd < κ:
15: for each fcdd ∈ fasb do:
16: To calculate parameter items μα, α, μβ , β based on
17: To calculate JWMRmR(fcdd) according to Equation
18: To search the optimal candidate feature fcddaccording to JWMRmR (fcdd)
19: Set f asb ← f asb\{fcdd}
20: Set f s ← {fcdd}
21: cdd = cdd + 1
22: end while

End

In algorithm 2, the optimal feature set fs and the relevant parameter sets are initialized in steps
1–5. From steps 6–8, the preliminary selection of f

′
R and f

′
F are conducted under ReliefF, generating a

rough eigenvector set f asb and requiring further selection. In steps 9–13, the feature items, correlated to
labels, are preliminarily selected from f asb. Moreover, the maximum correlated feature item is pre-set;
then, this is eliminated from f asb and added to fs. Finally, in steps 14–22, the greedy algorithm with
a forward-looking search strategy is used to calculate the weights of items in JWMRmR based on the
equation, thereby producing assessed values denoted by JWMRmR (fcdd) for candidate feature items fcdd.
Moreover, features exceeding the optimal feature items are selected from JWMRmR (fcdd), deleted from
f asb, and eventually added to fs.

4.2 A Multi-Modal Deep Learning Model Based on MLP

The routing status and traffic behavior fall into the heterogeneous data category. A multimodal
deep neural network was selected for abstract expression, dichotomous detection of the routing status,
and processed traffic behavior features to prevent a decline in detection accuracy caused by source data
conflicts. The fusion of heterogeneous feature data comprehensively improves the model’s ability to
detect Erebus attack samples.

MLP is a classification model that can construct a hyperplane in the space of multiple hetero-
geneous samples. Relevant data are classified within the hyperplane after minimizing the distance
from a misclassification point to a separating hyperplane. Herein, the proposed multimodal deep
learning network model is portrayed in Fig. 5. The model comprises five DNNs, i.e., two DNNs of
the traffic behavior (i.e., Traffic-DNN1 and Traffic-DNN2), two DNNS of the routing status (i.e.,
Routing-DNN1 and Routing-DNN2), and a DNN of the processing units and the convergence layer
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(i.e., Converge-DNN). The model is named T2R2C_DNN, considering the architecture. First, Traffic-
DNN1 and Routing-DNN1 form no direct correlations independent mutually extracting abstract
features from two of the traffic behavior and routing status features, respectively. The goal is to
effectively prevent data conflicts between traffic behavior and routing status features. Subsequently,
Traffic-DNN2 and Routing-DNN2 recode the generated features. By increasing the deep learning
model’s depth, the proposed model is boosted to express the intermediately distinguishing feature
information reconstruction. Finally, the Converge-DNN performs feature extraction and fusion
specific to abstract features extracted by Traffic-DNN2 and Routing-DNN2, thereby producing fusion
features of the output data.
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Figure 5: T2R2C_DNN model architecture

The T2R2C_DNN detection process is as follows: xT and xR refer to the eigenvectors of the traffic
behavior and routing status, respectively. Vector set {xT, xR} serves as the input of the multimodal deep
neural network, and the preliminary feature extraction is performed by Traffic-DNN1 and Routing-
DNN1. Considering that Traffic-DNN1, Traffic-DNN2, Routing-DNN1, and Routing-DNN2 have the
same DNN model structure, only the Traffic-DNN1 structure is described. Moreover, lT represents the
serial numbers of the respective layers in Traffic-DNN1; hlTrepresents the output value of layer lT; W lT

is the weight coefficient of layer lT, and blT is the offset of layer lT. The swish activation function is
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denoted by f (x) [27], expressed as follows:

σ(x) = x · (1 + e−x)−1 (36)

In Traffic-DNN, the following equation is written for the output hlT of the respective layers in this
neural network:

hlT =
{

σ(xT · W lT + blT ), lt = 0
σ(hlT −1 · W lT + blT ), lt = 1, 2, ..., n

(37)

The traffic behavior and routing status eigenvectors output the abstract eigenvector set {yT, yR}
after feature extraction through Traffic-DNN12 and Routing-DNN12. By executing this combination,
an output vector of convergence is obtained and written as follows:

yConverge = yT ⊕ yR (38)

Furthermore, yConverge is used as the Converge-DNN input to execute feature extraction the feature
fusion. Similar to Traffic-DNN1, lM represents the serial numbers of various layers in the Converge-
DNN. Moreover, hlM, W lM, and blM refer to the output value, the weight coefficient, and the offset of
layer lM, respectively. The Sigmoid activation function is selected for the last layer of the Converge-
DNN, expressed as follows:

g(x) = (1 + e−x)−1 (39)

A layer hlM of the Converge-DNN is also written as follows:

hlM =

⎧⎪⎨
⎪⎩

σ(yConverge · W lM + blM ), lM = 0
σ(hlM −1 · W lM + blM ), lM = 1, 2, ..., m − 1
g(hlM −1 · W lM + blM ), lM = m

(40)

The SoftMax classifier is used to normalize the output values zM of Converge-DNN and the output
classification results from k types of traffic. According to the probability values, the SoftMax classifier
may map the output of multiple neurons into [0, 1); and the sum of output values is 1, expressed as
follows:

S
(
zM

) = ezM
i∑

k ezM
i

(41)

The SoftMax function maps the model output to [0, 1), with the cumulative sum of the outputs
as 1. As a result, the output value of the SoftMax function conforms to the probability distribution.
Moreover, the maximum output probability is selected as the output result of the detection model
during the output results, or the probability that the input detection sample is an Erebus attack. Under
this circumstance, dichotomous detection, T2R2C_DNN, k, is set as 2. When the output value of S (zM)
exceeds 0.5, it signifies that an Erebus attack occurs at the blockchain network layer.

5 Experimental Analyses

The proposed model was tested in a real blockchain network environment to simulate the actual
transaction behavior and Erebus attacks. The proposed model is comprehensively evaluated based on
the following: First, the T2R2C_DNN model was trained to verify the validity of the proposed model.
Second, the ReliefF_WMRmR-based two-stage feature selection algorithm was tested by analyzing
the rationality of the traffic behavior and routing status features associated with Erebus attacks.
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Additionally, the optimal feature number in a set was identified. Finally, the performance of the
existing detection methods was experimentally compared with that of the classical machine learning
algorithm to clarify the advantages and disadvantages of the proposed Erebus attack detection model.

5.1 Experimental Configurations and Evaluation Indexes

Model training and contrast experiments are performed in the Windows 10 operating system with
the following system requirements: a CPU of Intel Core i7-9750, a memory of 32.0 GB RAM, a GPU
of NVIDIA GeForce GTX 2060, and 8 G video memory. A deep learning framework PyTorch 1.5 of
Anaconda Python and the JetBrain PyCharm 2020.3 software operating environment were used to
implement the proposed model.

Indexes of accuracy (Acc), such as precision, false alarm rate, F 1-score, and the Area Under Curve
(AUC), are configured to evaluate its detection performance.

Acc = TP + TN
TP + TN + FP + FN

(42)

Recall = TP
TP + FN

(43)

Precision = TP
TP + FP

(44)

FAR = FP
TN + FP

(45)

F1-score = 2 × Recall × Precision
Recall + Precision

(46)

AUC = 1 − 1
m+m−

∑
x+∈D+

∑
x−∈D−

(F(
(
f

(
x+)

< f
(
x−)) + 1

2
F

((
f
(
x+) = f

(
x−)))

(47)

where TP represents True Positive to correctly classify the attacked samples; FP represents False
Positive, which is the erroneously classified attacked samples; TN represents True Negative, which
is the normally classified normal samples; and FN represents False Positive, which is erroneously the
normally classified samples. AUC is the area under the Receiver Operating Characteristic (ROC) curve.
Moreover, the vertical and horizontal axes represent the True Positive Rates and False Positive Rates
(TPR and FPR), respectively.

FPR = FP
FP + TN

(48)

TPR = TP
TP + FN

(49)

In (47), m+, and m− represent the number of obtained positive and negative examples, respectively,
and D+ and D− are the positive and negative example sets, respectively. Additionally, f (x+) is the
probability of detecting positive samples, and F(x) is the performance index function. If x is true,
the value assigned to F(x) is 1. To test unevenly distributed datasets, higher ACC values, F 1-score,
G-Means, and AUC shows that the detection performance of the proposed model is better than the
conventional detection methods.

Particularly, an evaluation index of the Average Effective Classification Information (AECI) [28],
expressed in (50), was introduced to test the performance of the proposed RelifF_WMRmR-based
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two-stage feature selection algorithm in extracting strongly correlated features and filtering redundant
features. Moreover, the evaluation index compares its performance with that of other typical feature
selection algorithms.

AECI
(
f slt

) = 1
|f slt|

∑
xi∈f slt

I (C; xi) − 2
|f slt|(|f slt| − 1)

∑
xi ,xy∈f slt

I
(
C; xi; xj

)
(50)

In (50), the preceding item is the average correlation of features with the label class; whereas the
subsequent item represents the average redundancy of the features. AECI value is high when features
have rich information.

5.2 Data Pre-Processing

Data pre-processing comprises three manipulations: data validation, symbolic attribute feature
numeralization, and data normalization.

Data preprocessing comprises three main manipulations: data validation, symbolic attribute
feature numeralization, and data normalization.

1© Data validation

Some feature data collected in a real network environment are default. Default items in attribute
values, and features with all values equal were removed and replaced with zero for the validity and
integrity of model input vectors.

2© Symbolic attribute feature numeralization

Through attribute mapping, symbolic features were transformed into binary numeric features,
and eigenvalues in a hexadecimal system were converted into decimal eigenvalues. Additionally, non-
numeric address-type attribute values are substituted by the occurrence frequency of such values in
the entire dataset.

3© Data normalization

Numeric features were normalized to eliminate the influence of such differences in the proposed
model because a significant value field difference exists between different features in a dataset.
Moreover, relevant eigenvalues were mapped in a range of [0, 1] to ensure that the quantitative
attributes are at the same magnitude. The equation is written as follows:

x′
i = xi − min(x)

max(x) − min(x)
(51)

where x’i represents a normalization result of the ith eigenvalue, and min(x) and max(x) represent the
minimum and maximum values of the attribute feature, respectively.

5.3 Experimental Environment and Data

The experimental traffic data were collected from the traffic behavior, and the routing status fea-
tures were collected when operating the blockchain system. The corresponding topology environment
comprises a node cluster of the normal blockchain network layer, Erebus-attacked nodes, and CAD
nodes represented by ISP. These topologies were used to simulate and acquire traffic and routing
features in a running environment during an Erebus attack on a normal blockchain network layer.
The experimental traffic data was derived from the real UDP and TCP traffic samples, collected by
Wireshark, and generated pcap files. Simultaneously, the dissector plug-in of the Ethereum Devp2p
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protocol was added to Wireshark to parse the information in Ethereum packets. As noted by a study
[29], the routing features were extracted by RouteViews [30]. During the experiment, 20 detection
nodes were designed. Along with the Visualroute tool, the routing information of normal and attacked
blockchain network layers were captured to perform feature analyses.

For the normal blockchain network layer nodes, the transaction traffic of Ethereum 2.0 and the
operating traffic of Hyperledger Fabric1.4 were selected to simulate the traffic in multiple types at the
blockchain network layer. The Ethereum 2.0 environment was formed by five virtual hosts. In this
environment, the core-Geth was manipulated on Ubuntu 18.04 to run transactions among blockchain
mining rigs (IP address segment: 192.168.127.0/24). Hyperledger Fabric1.4 comprises eight virtual
hosts operating a blockchain program in a Docker container (IP segment: 192.168.103.0/24).

Three nodes were selected for the Erebus-attacked nodes, to practically simulate the multistage
Erebus attack scenarios and generate the corresponding traffic and routing information. First, the
attack tool, Yersinia, was used to deceive neighboring nodes by forging particular information and
data in a protocol through vulnerability mining based on the network protocol, thus fulfilling routing
penetration and routing topology damages. Second, Scapy-based attack scripts were written on Python
3.9 to periodically generate Erebus traffic attack commands of ping, pong, findnode, neighbors, and
ADDR construction. The traffic nodes were attacked through multiplexing. During each nodal attack,
the corresponding traffic pulse was set at 0.1–1 Mbps to add the routing information of the node
into the attacked AS. Regarding the attacking script, the above command was continuously executed
periodically to attack subnet nodes and routers, forcing them to construct erroneous routing and
shield subnet nodal routing under attack. Third, Netwox was selected for the blockchain network
to generate fake node messages, simulate interactions between the normal transaction traffic of the
regular and attacked nodes at the blockchain network layer, and send routing status information of
nodes to neighbor nodes and in AS regularly. The IP segment address was set as 192.168.27.0/24 in
the Erebus attack network environment. Fig. 6 shows the experimental topology.

RouteViews [31] and Wireshark were adopted to collect the routing status and traffic behavior
data at each CAD and blockchain network layer for link node acquisition. This experiment aims to
generate a feature dataset that can be directly used for model detection. The routing status and traffic
behavior data, collected on February 7–16, 2022 subject to experimental conditions, were used for the
experiment to analyze variations in the system security of the blockchain network layer during this
period. Moreover, 47,000 pieces of normal traffic and 12,000 sets of routing data acquired on 7–12,
2022 served as the normal dataset. Fig. 7 shows the average network traffic and total routing node path
length in the normal blockchain network layer state on February 7. Fig. 8 shows the average network
traffic and total path length of routing nodes in the state of the blockchain network layer in the attack
state on February 14.

5.4 Model Training Results and Model Validity Verification

The training of the T2R2C_DNN model was performed in a mini-batch mode. After sample
preprocessing, independent random sampling was conducted to generate multiple new datasets, which
were further divided into the training and data sets. The training dataset forward underwent training in
line with the model structure. Based on the model error, backward parameter training was conducted
for the parameter optimization to obtain an optimal parameter set. Additionally, a testing dataset was
adopted to verify the model performance. During the minibatch model training, Bootstrap iteration
was conducted for samples after the training was repeated 50 times. During each iteration, 5000 data
samples were extracted (ratio of normal and Erebus attack samples = 1:1). For unbiased experimental
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results, the datasets experienced independently repeated experiments, and 10-fold cross-validation
was performed among testing datasets. Moreover, the detection results of each dataset were averaged
during the experiment.

Attacked
Blockchain Node

Routing
Permeate
Command

Controled
A.S.

Detected
Autonomous
System (A.S)

Blockchain
Network

192.168.103.0/24

Hyperledger Fabric1.4
Nodes

Detected
A.S.

thereum 2.0
iner Nodes

Blockchain
Network

192.168.127.0/24

Traffic
Attack
Command

Malicious
Packets
Command

Attack
Cluster

192.168.27.0/24

Figure 6: Experimental topology

Loss variations of classical deep learning models (e.g., T2R2C_DNN, 3-layer CNN (Convolution
Neural Network), 5-layer CNN, and Long short-term memory (LSTM)) were configured under the
same experimental conditions. The goal is to verify the validity of the proposed T2R2C_DNN model
under the Erebus-attacked sample detection and verify its convergence rate in the same experimental
conditions.

The training and testing datasets were subjected to 60 iterations, i.e., a total of 3000 rounds of
training. The relevant parameters were adjusted according to the accuracy variations in different
rounds (Fig. 9). At 20 rounds of the model training iteration, the average training accuracy exceeds 90%
and 93.3% for the training and testing datasets, respectively. Thus, the training level of the proposed
T2R2C_DNN model is satisfactory and suitable for experiments and tests in a real blockchain network
layer environment.
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Figure 7: Average network traffic and the sum of path length at the blockchain network layer in a
normal network state

Figure 8: Average network traffic and the sum of path length at the blockchain network layer during
an Erebus attack
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Figure 9: Accuracy variations of training and testing datasets

Fig. 10 shows the loss variations of the four models in different rounds of training. The experi-
mental results show that when the number of training iterations is low, the T2R2C_DNN model shows
some high loss value and a low convergence rate at the early phase for the following two reasons: (1)
the model cannot sufficiently train sample features, and (2) the high complexity of hybrid features
formed by traffic behavior and routing status features increase the training model complexity. Within
the first 20 rounds of training, the T2R2C_DNN has a significant loss value, exceeding the other three
algorithms. However, as the number of iterations increases, its loss value gradually decreases to < that
of the other three algorithms. Additionally, the convergence rate of the T2R2C_DNN model is inclined
to be stable, which signifies that the feature awareness of this model is rapidly enhanced, and model
convergence is eventually realized. After 75 rounds of training, the loss value of the T2R2C_DNN
model falls below 0.05, revealing that the proposed model has a strong capability of Erebus attack
awareness.

Figure 10: Loss values of the model in different iteration rounds



5422 CMC, 2023, vol.75, no.3

As shown in Fig. 11, the iteration rounds and detection accuracy of the training dataset vary in
the same experimental conditions based on T2R2C_DNN, 3-layer CNN, 5-layer CNN, and LSTM.
Regarding the T2R2C_DNN, the average detection accuracy of the corresponding training dataset
reaches 95.25% in 10 rounds; whereas those of the other three models are >93.5%. Thus, T2R2C_DNN
outperforms 3-layer CNN, 5-layer CNN, and LSTM in detection accuracy based on the experimental
results. As the iteration round increases, the accuracy of the proposed T2R2C_DNN model exceeds
that of the other models considerably, indicating that the T2R2C_DNN can effectively mine the hybrid
feature formed by traffic behavior and routing status and boost the model’s capability in detecting
Erebus-attacked samples.

Figure 11: Training accuracy variations of deep learning models in a condition of different iteration
rounds

5.5 Feature Selection Results

The AECI values of the feature items were calculated and visualized in a thermodynamic chart
to verify whether the proposed Erebus attack features were reasonable. This way, the importance of
feature attributes in Erebus attack detection is explored. Classical machine learning models with a
strong feature awareness capability are selected for horizontal comparison, which includes support
vector machine (SVM), C4.5 decision tree, 3-layer CNN, 5-layer CNN, and LSTM.

Fig. 12 shows the results, in which the y-axis refers to different detection methods; whereas the
x-axis represents the AECI values of different Erebus feature items. Blue and red signify that the
corresponding feature item is less important and highly important, respectively. Moreover, the AECI
values of the SVM, 3-layer CNN, 5-layer CNN, and LSTM are similar to those of the proposed
T2R2C_DNN model. Items 5, 6, 9, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43,
45, 47, 48, and 49 are of high heat degrees, manifesting the importance of these items. From these
results, the proposed Erebus attack features can preferably describe the structural characteristics of
Eclipse attacks, indicating the rationality of the feature items.

The detection accuracy of diverse feature selection algorithms was experimentally compared under
the different feature data sizes. The goal is to validate the rationality of the proposed Relief_WMRmR-
based two-stage feature selection algorithm in feature selection from Erebus attack samples. Typical
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feature selection algorithms of RelifF, JMMC, IG, MRmR, and DEAFS with a strong feature selection
capability were selected to perform the horizontal comparison. Features selected through the above
six algorithms were inputted into the T2R2C_DNN model for training and for clarifying variations in
model accuracy. Fig. 13 compares the results. Thus, the feature selection results of these algorithms
are distributed in a centralized way. When the number of features ranges from 23 to 27, maximum
accuracy beyond 85% is reached in all cases. This manifests that feature selection results of the
abovementioned six algorithms remain consistent. Therefore, the number of features selected was 24
for the Relief_WMRmR-based method.

Figure 12: AECI values of the defined feature items

Figure 13: Feature selection results of different algorithms

Although the AECI values are selected to demonstrate the effective classification information of
the selected features, the following defects still exist. The strongly correlated low redundant feature
items of AECI values are the same as those of the weakly correlated highly redundant features.
Considering this, the AECI fails to express correlation information of the selected features. For
this reason, a thermodynamic correlation diagram was selected for the experiment to visualize
the correlation information. Moreover, the Pearson correlation demonstrates the correlation of the
features (Fig. 14). The correlations of features are symmetrically distributed diagonally. Red and blue
represent high and low correlations, respectively. Thus, the experimental results show that the routing
status features are strongly correlated to other primary features, signifying that the routing status
defined here still shows a strong correlation of features after feature selection by the Relief_WMRmR
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algorithm. The routing status during an Erebus attack remains rather sensitive to variations on relevant
features. This indirectly manifests that routing status features are closely associated with other features
during an Erebus attack, and the variability of routing status features depends on variations in other
features.

Figure 14: Correlation information values of the features selected according to Relief_WMRmR

5.6 Detection Performance Comparison Through Experiments

The same datasets were adopted, and relevant results were compared with those of classical
machine learning algorithms and the existing detection approach. The goal was to prove the superiority
of the proposed detection model in the Erebus attack to other existing detection approaches.

First, the experiment was designed to simulate the dichotomous detection of the Erebus attacks
on a real blockchain network layer within different time windows based on different ratios of attack
traffic. The network traffic was extracted from the simulated blockchain network layer in real-time, and
the actual Erebus attack behavior was simulated. The density of the Erebus attack traffic, the routing
request link rate, and the attack injection cycle were set at 1000 times/s, 200/s, and 10 s, respectively.
The quantities of Ethereum and HpyerLedger users for simulation were 100 separately, and the visit
view was 10 times/s. The average traffic rate at the blockchain network layer was 1 MB/s. The interval
between acquisition time windows was selected to be 60, 120, 180, 240, or 300 min. Within diverse time
windows, differences in recall and accuracy between the proposed method and a classical machine
learning model were dynamically tested. Figs. 15 and 16 shows the relevant results.
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Figure 15: Erebus attack detection precision comparison of various machine learning models in a
condition of different time windows

Figure 16: Erebus attack detection recall comparison of various machine learning models in a condition
of different time windows

Second, the selected features were compared using 3-layer CNN, 5-layer CNN, and LSTM
following the same experimental conditions based on their TPRs, FPRs, and AUCs. This way, the
intertype detection performance characteristics of the deep learning models were validated. The AUC
of the proposed method is proved to be 0.880, which exceeds that of the other three methods (Fig. 17).
This indicates the superiority of the proposed model over the classical deep learning model in detecting
Erebus attacks.

Third, the blockchain network layer was attacked by Erebus in a condition of different traffic rates
of attacks to verify the detection precision and recall the variations of the proposed model subject to
different Erebus attack scenarios at the blockchain network layer. Moreover, the experiment adopted
a box plot to realize visualization (Figs. 18 and 19). In such two figures, the horizontal axes reflect
different Erebus attack traffic rates within a range of 5%–50%, whereas the vertical axes correspond
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to detection precision and recall. Additionally, each box in the figures represents the statistical results
of six traffic volumes (i.e., 1, 2, 5, 10, 20, and 50 MB/s) in a condition of the same attack traffic rate.
The analysis of the relevant results shows that the detection precision and recall of the model increase
steadily as the attack traffic rate increases. Furthermore, the average values of the detected precision
and recall exceed 70%. However, the detection precision range gradually decreases at a particular
attack traffic rate when the detection ratio is raised. Here, the range of the detected precision results
is gradually extended.

Figure 17: ROC comparison between the proposed method and the existing deep learning models

Figure 18: Statistical results of detection precision in a condition of different attack traffic rates

Identical datasets were used to validate the superiority of the proposed mode in the attack
detection performance. The results were compared with those described by Fan et al. [9], Tran et al.
[12], Maria et al. [19], Additionally, the accuracy, F 1-score, Recall, and AUCs reveal the advantages of
the proposed model.
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Figure 19: Statistical results of detection recall in a condition of different attack traffic rates

Initially, 20% of the daily sample data from February 7 to February 10 were extracted as the
validation set for the experiment. Then, the comprehensive detection capabilities of the four detection
methods for Erebus attacks were analyzed by comparing the AUC value performance with the separate
inputs of Tran et al. [12], Maria et al. [19] and Hildrum et al. [8], and the proposed model. The AUC
values of the detection methods proposed by Tran et al. [12] and Maria et al. [19] greatly varied
in the detection period and were poorly stabilized, indicating that the two detection methods had
insignificant advantages in the detection performance, based on the results shown in Fig. 20. The
proposed Erebus attack detection method and the detection method proposed by Fan et al. [9] have
detection AUC values higher than 93.15% with a stable detection performance, indicating that the
two methods have robust comprehensive performance. Furthermore, the average AUC value of the
proposed Erebus attack detection method is better than those of the other three detection methods,
showing that the proposed model is more advantageous in detection performance.

Figure 20: Changes in the AUC values of the four detection methods in the detection period

The stabilized models proposed by Tran et al. [12], Maria et al. [19], and Hildrum et al. [8], and the
proposed detection model were sampled for testing of 15,000 sets randomly selected from the overall
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dataset. The ROC curves and changes in the detection accuracy of the four detection methods for
different sample numbers are shown in Figs. 21 and 22, respectively. The proposed detection model has
achieved satisfactory detection results for the samples, with the area under the ROC curve being larger
than those of the other three detection methods, as shown in Fig. 21. This finding indicates that the
proposed detection model is more superior to other methods in comprehensive detection performance.
For the detection sample with a small data volume (less than 2000), a small number of outlier samples
have a certain impact on the accuracy performance of the four detection methods since the dataset
is sparsely distributed, as shown in Fig. 22. Hence, the accuracy rates of the four methods are below
80%. As the number of samples increases, the influence of a few outlier samples on the accuracy rate
weakens. Moreover, the accuracy rates of the four detection methods reach more than 85%. Thus, the
proposed method is highly advantageous as its average accuracy reaches up to 94.43%. Furthermore,
the proposed model has strong detection adaptability over large-scale samples by effectively separating
the Erebus attack traffic.

Figure 21: ROC curves of the four detection methods in random samples

Figure 22: Changes in the accuracy of the four detection methods in random samples
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The proposed model performed excellently according to these three indexes. As shown in Fig. 23,
the average performance of the proposed model overmatched the other two detection approaches
based on two primary reasons. First, the proposed T2R2C_DNN model can describe the influence
of the traffic behavior and routing status features on Erebus attacks, perceiving the correlation
information about such features and fulfilling classified output and expressions of the attack features.
Second, the proposed features can describe the core features of an Erebus attack. By combining the
ReliefF and WMRmR feature selection algorithms, the redundant feature information is effectively
removed, which can enhance the model’s feature mining and awareness capability.

Figure 23: Average detection performance comparison between the proposed method and the existing
detection approaches

6 Conclusions

A multimodal deep learning algorithm was proposed based on the routing status and traffic behav-
ior specific to multistage Erebus attacks on the blockchain network layer. Core traffic behavior and
routing status features are first defined for multistage Erebus attacks to describe their distinguishing
characteristics accurately. Then, a RelieF_WMRmR-based two-stage feature selection algorithm is
designed to extract the features that contain much information, eliminate redundant information, and
improve the quality of the selected features. Finally, an MLP-based multimodal neural network was
created to extract core features from heterologous features, thereby boosting the detection performance
of the model. As demonstrated by the experimental results, the proposed model can effectively identify
the Erebus attack behavior on the blockchain network layer and offer high detection performance.
Built on the proposed detection model, Erebus attack-defense schemes will be further investigated to
design Erebus attack-defense strategies and dynamically customize defense frameworks. It is expected
to make reasonable decisions in further suppressing Erebus attacks and adapting dynamically to a
blockchain network layer environment with a dynamically varying topology.
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