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Abstract: Automatic deception recognition has received considerable atten-
tion from the machine learning community due to recent research on its
vast application to social media, interviews, law enforcement, and the mil-
itary. Video analysis-based techniques for automated deception detection
have received increasing interest. This study develops a new self-adaptive
population-based firefly algorithm with a deep learning-enabled automated
deception detection (SAPFF-DLADD) model for analyzing facial cues. Ini-
tially, the input video is separated into a set of video frames. Then, the SAPFF-
DLADD model applies the MobileNet-based feature extractor to produce a
useful set of features. The long short-term memory (LSTM) model is exploited
for deception detection and classification. In the final stage, the SAPFF
technique is applied to optimally alter the hyperparameter values of the LSTM
model, showing the novelty of the work. The experimental validation of
the SAPFF-DLADD model is tested using the Miami University Deception
Detection Database (MU3D), a database comprised of two classes, namely,
truth and deception. An extensive comparative analysis reported a better
performance of the SAPFF-DLADD model compared to recent approaches,
with a higher accuracy of 99%.

Keywords: Deception detection; facial cues; deep learning; computer vision;
hyperparameter tuning

1 Introduction

The detection of human emotions has piqued researchers’ interest for generations. However,
how well humans or machines ultimately perform in detecting deceptive speech is still an ongoing
issue for criminal investigations. Generally, deception is integrated into day-to-day interactions,
yet it is challenging for untrained people and trained professionals to detect deception accurately
without using intrusive measures. Facial expressions, one of the main channels for understanding and
interpreting emotions in social interactions, have been studied extensively in recent decades. Deception
is sharing or conveying facts, ideas, or concepts transformed for advancement and personal gain.
The process might range from fabricating information in a minor disagreement to manipulating the
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masses [1]. It is very complex to determine whether a statement is deceptive or genuine; therefore, it
is important to utilize a deception detection technique to validate critical data. For this reason, many
deception detection techniques and systems have been introduced [2].

Facial expressions help to reveal emotions that sometimes words do not sufficiently convey.
From this principle, deception recognition based on facial expressions is derived [3]. It is easier to
identify actions and emotions such as anger, laughter, and sadness, yet slight modifications can
go completely unobserved by the inexperienced eye. Macro-expressions associated with fear, anger,
sadness, happiness, and so on are apparent and understandable. They last between 0.5 and 5 s. Micro-
expressions display a concealed emotion, occur unconsciously [4] and last less than 0.5 s. Anxiety,
amusement, embarrassment, shame, relief, guilt, and pleasure are micro-expressions. While it is easy
to categorize macro-expressions since they last longer and occur more frequently, micro-expressions
go unobserved by the inexperienced eye for the opposite reasons [5]. Micro-expressions are portrayed
by somebody trying to deceive someone else or hide any particular emotion.

A critical aspect of suitably conducting a lie-detection study is the public availability of a
satisfactory dataset. This open innovation is one key component of accelerating the present study, as
opposed to closed innovation, which relies on a private or closed dataset [6,7]. Despite existing progress,
obtaining training and assessment material for lie recognition is a challenge, especially concerning the
verification of ground truth to ascertain whether an individual is lying or not [8]. A major problem
emerges since the ground truth collection knowledge is not beneficial when the scenario is simulated
naively (for example, it is not satisfactory to train an individual to tell a lie merely) [9,10].

In [11], the authors presented a deep learning (DL) technique dependent upon an attentional
convolutional network capable of concentrating on essential parts of faces and attaining improvement
compared to preceding methods on several datasets, including FER-2013, CK+, FERG, and JAFFE.
It also utilizes a visualization approach to recognize significant facial regions and identify emotions
according to the classifier output. Li et al. [12] introduced a facial expression dataset, the Realistic
Affective Face Database (RAF-DB), which comprises approximately 30,000 facial images with varied
illumination and unconstrained poses from thousands of people of varied races and ages. An
expectation-maximization system designed to evaluate the dependability of emotion labels revealed
that real-time faces frequently express compound or mixed emotions. To address the detection of
multiple modal expressions, a deep locality-preserving convolutional neural network (DLP-CNN)
technique was presented to enhance the discrimination of in-depth features by maintaining the locality
of the classes while maximizing interclass scatter.

Xie et al. [13] presented a new technique called deep comprehensive multiple patches aggregation
CNN to resolve the facial expression recognition (FER) issue. The suggested technique is a deep-based
architecture that mainly comprises 2 fields of CNN. One field extracts local features from the image
patch, whereas another extract holistic features from the complete expressional image. Wang et al. [14]
developed a facial expression detection methodology based on the CNN method. To simulate a
hierarchic mechanism, an activation function is essential in the CNN method since the nonlinear
capability of the activation function helps to design reliable AI. Among the activation functions, the
rectified linear unit (ReLU) is a better technique; however, it needs improvement. Tsai et al. [15]
developed a FER approach which involves a face detection technique that integrates the Haar-
like feature approach with the self-quotient image (SQI) filter. Consequently, the FERS approach
demonstrates the best detection rate since the face detection technique more precisely discovers the
face region of the image.
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Though several FER models are available in the literature, there is still required to improve
the detection rate. Since manual and trial-and-error hyperparameter tuning is a tedious process,
metaheuristic algorithms can be employed. Therefore, this study develops a new self-adaptive
population-based firefly algorithm with a deep learning-enabled automated deception detection
(SAPFF-DLADD) model for analyzing facial cues. The SAPFF-DLADD model examines facial cues
to identify which are associated with truth or deception. Initially, the input video is separated into a
set of video frames. Then, the SAPFF-DLADD model applies a MobileNet-based feature extractor
to produce a useful set of features. SAPFF with a long short-term memory (LSTM) model is exploited
for deception detection and classification. The experimental validation of the SAPFF-DLADD model
is tested using the MU3D, a database comprising two classes, namely, truth and deception.

2 The Proposed SAPFF-DLADD Model

This study established a new SAPFF-DLADD approach to identify deception from facial cues.
The input video is separated into a set of video frames at the primary level. Then, the SAPFF-DLADD
model applies a MobileNet-based feature extractor to produce a useful set of features. For deception
detection and classification, the LSTM model is exploited. In the final stage, the SAPFF technique is
applied to alter the LSTM model’s hyperparameter values optimally.

2.1 Feature Extractor

In this study, the SAPFF-DLADD model applies a MobileNet-based feature extractor to pro-
duce useful features. The MobileNet method is a network model that uses depthwise separable
convolution as its elementary component [16], consisting of depthwise and pointwise convolutions.
Dense-MobileNet models consider the depthwise convolution and the point convolution layer as two
individual convolution layers. Viz., the input feature map of every depthwise convolutional layer in
the dense block is the superposition of the output feature map in the preceding convolutional layer. To
tune the hyperparameters for the MobileNet approach, root means square propagation (RMSProp)
optimization is utilized. RMSprop is an adaptive learning system that drives to increase the AdaGrad
rate by taking the exponential moving average as opposed to AdaGrad’s cumulative sum of squared
gradients.

wt+1 = wt − αt

(vt + ε)
1
2

∗
[

δL
δwt

]
(1)

where

vt = βvt−1 + (1 − β) ∗
[

δL
δwt

]2

(2)

It is the weight at time t.

Wt+1 represents the weight at time t + 1.

αt stands for the learning rate at time t.

∂L signifies the derivative of the loss function.

∂Wt denotes the derivative of weight at time t.

Vt indicates the sum of the squares of past gradients.

β depicts the moving average parameter (const, 0.9).

ε refers to the lesser positive constant (10−8).
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2.2 Deception Classification Using the LSTM Model

LSTM is utilized for deception detection and classification. The LSTM model is an alternative
form of the recurrent neural network (RNN) model. LSTMs substitute the hidden state computation
with distinct gate functions [17]. This technique allows the LSTM network to capture the long-term
series dependency in the temporal dataset. The operation of the LSTM mechanism is demonstrated
in Fig. 1. In contrast to traditional RNNs, the LSTM network presents a novel flow, the cell state
mt ∈ R

n. LSTMs can remove or add data to the cell structure. The cell structure preserves memory in
the LSTM network. The three gates, which control the data stream in LSTMs, consist of 0t ∈ R

n (the
output gate), it ∈ R

n (the input gate), and ft ∈ R
n (the forget gate). The input gate alters the data level

from the existing xt input dataset, and the preceding st−1 hidden layers are input to the existing state.
The forget gate controls the amount of data from the earlier mt−1 cell structure to preserve. The output
gate controls what amount of data to pass to the existing st hidden structure. The operation of those
gates is given in the following:

it = σ(Vixt + Wist−1 + bi) (3)

ft = σ(Vf xt + Wf st−1 + bf ) (4)

ot = σ(Voxt + Wost−1 + bo) (5)

From these expressions, the variables Vi, Vf , Vo ∈ R
n×p; Wi, Wf , Wo ∈ R

n×n; and bi, bf , bo ∈ R
n×1;

σ represents the sigmoid function. Next, the cell and hidden states are obtained as follows.

gt = tanh (Vmxt + Wmst−1 + bm) (6)

mt = ft ◦ mt−1 + it ◦ gt (7)

st = 0t ◦ tanh(mt) (8)

In these equations, Vm ∈ R
n×p, Wm ∈ R

n×n, and bm ∈ R
n×1; tanh represents the hyperbolic tangent

function. 0 is component-wise multiplication. Backpropagation Through Time (BPTT) performs the
LSTM training by minimising the objective function on a subset of the trained series. The gradient of
weight and bias is evaluated in each time step.

Figure 1: Structure of an LSTM

2.3 Hyperparameter Tuning Using the SAPFF-DLADD Model

In the final stage, the SAPFF technique is applied to alter the LSTM model’s hyperparameter
values optimally. The FF approach is a metaheuristic algorithm that optimizes using nature-inspired
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techniques based on the social (flashing) behaviours of lightning bugs, or fireflies, in the tropical
temperature region. Insects, fish, and birds can exhibit swarming behaviour [18]. In particular, the
FF approach has a collection of features in common with other approaches, but the FF concept is
easier to understand and implement. According to a recent study, the approach is very efficient, and it
outperforms distinct conventional methodologies, such as genetic algorithms (GA), to solve different
optimization issues. The key advantage is that it mainly employs random real numbers and depends
on global transmission among the swarming particles (fireflies). As a result, it seems very effective
in multiobjective optimizations such as WS composition planning generation. Fig . 2 illustrated the
flowchart of the FF algorithm.

The FF method comprises 3 guidelines based on idealized flashing features of real fireflies. (1)
Each firefly’s light intensity or brightness is related to the objective function of a presented challenge.
(2) Each firefly is unisex; therefore, the attraction is only based on brightness. (3) The attraction to
each firefly corresponds to its brightness, and the brightness decreases with increasing distance from
other fireflies since air absorbs light. It moves randomly if there is no brighter firefly compared to a
certain firefly.

Furthermore, the brightness decreases with distance due to the inverse square law, as shown below.

I ≺ 1
r2

(9)

Once the light intensity reduction from traversing a medium with light absorption coefficient γ is
taken into account, then the light concentration at r distance from the source is presented as

I = I0e−γ r2
(10)

I0 denotes the light intensity at the source. Similarly, the brightness, β, is given by

β = β0e−γ r2
(11)

The generalized reduction function for any constant ω ≥ 1 is shown below.

β = β0e−γ rω (12)

An arbitrarily produced feasible potential solution is assigned a brightness based on efficacy in
the FF technique. This brightness is used to compute the brightness of each firefly, i.e., each firefly’s
brightness is directly proportional to the brightness of the solution at that position. Once the brightness
or intensity of the solution is assigned, each firefly follows a firefly with optimum brightness. A firefly’s
brightness serves as the neighbourhood’s local subjective search parameter. Thus, for 2 fireflies, FFi

and FFj, with FFj brighter than FFi, FFi moves toward FFj. The position of FFi updates with the
following position formula:

xi : = xi + β0e
−γ r2

ij︸ ︷︷ ︸
=β

(
xj − xi

) + α (ε () − 0.5) (13)

In Eq. (13), β0 indicates the attractiveness of xj at r = 0 and is recommended to be set as
β0 = 1 for implementation, γ characterizes the variable that determines the degree to which the method
depends on the distance squared between 2 fireflies, α denotes the variable for step length of arbitrary
progression. ε () denotes the arbitrary vector from a uniformly distributed number within the range
zero to one.

xb : = xb + a (ε () − 0.5) (14)
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Figure 2: Flowchart of the FF algorithm

Algorithm 1: Pseudocode of the FF algorithm
Input algorithm parameters (α, γ )

Begin model setup (number of initial solutions and maximum iterations (N, MaxGen))
Generate N initial solutions randomly
for iteration = 1: MaxGen

Evaluate the intensity, I
Sort the solution such that Ii ≥ Ii−1, ∀i
for i = 1: n − 1

For j = i + 1: n
If Ij > Ii

(Continued)
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Algorithm 1: Continued
move FFi toward FFj

end if
end for

end for
calculate FF, N, (xb) randomly

end for
Report the optimum solution

The location of each firefly is updated by iteration until one of the ending criteria is satisfied. The
ending criteria are meeting the maximum iteration count, reaching a tolerance in the best value once it
is predictable or obtaining no improvement in successive iterations. To improve the performance of the
FF algorithm, the SAPFF is derived. Like other metaheuristic optimized techniques, the FF model
is a population-based technique, and its optimization procedure begins with creating the primary
population. Thus, it requires a control parameter for determining the population sizes. However,
selecting the size of the population is a complex and challenging task. The self-adaptive population
method alters the size of the populations from all the iterations. Since this important feature modifies
the population size automatically from all the iterations, the user is not required to determine it. In
the initial approach, the primary population size is determined by:

PopSize = 10 × d (15)

where d signifies the dimensionality of the problem. In the SAPFF approach, the novel population
size is determined by:

PopSizenew = max (d, round (PopSize + r ∗ PopSize)) (16)

where r signifies an arbitrary number between −0.5 and 0.5 if the size of the population for the
following iteration is greater than the population size in the preceding iteration (PopSizenew > PopSize),
each member of the current population is retained, and the other members of the population are
formed by the elitism method. Consequently, the optimal solution obtained in the preceding iteration
is employed. Suppose the new population size is less than the population size in the preceding
iteration (PopSizenew < PopSize), the best members of the existing population are reserved, and the
failed members are detached. Once the population size does not alter (PopSizenew = PopSize), no
population changes occur if the size of the novel population falls below the dimension of the problem
(PopSizenew < d), and the size of the population becomes equivalent to the dimension of the problem.

The SAPFF system resolves a fitness function for accomplishing maximal classifier performances.
Here, the minimized classifier error rate is assumed to be the fitness function provided in Eq. (17).

fitness (xi) = ClassifierErrorRate (xi) = number of misclassified samples
total number of samples

∗ 100 (17)

3 Results and Discussion

The experimental validation of the SAPFF-DLADD model is tested using the MU3D [19], a
database that comprises data samples of two classes. Table 1 shows a detailed description of the dataset.

Fig. 3 depicts the confusion matrices formed by the SAPFF-DLADD model, with 90% of the
data as training (TR) and 10% as testing (TS) data. With the 90% TR data, the SAPFF-DLADD
model recognized 1737 samples in the truth class and 1755 in the deception class. Likewise, with the



5440 CMC, 2023, vol.75, no.3

10% TS data, the SAPFF-DLADD approach recognized 193 samples in the truth class and 199 in the
deception class.

Table 1: Dataset details

Class No. of images

Truth 2000
Deception 2000

Total Number of Images 4000

Figure 3: Confusion matrices of the SAPFF-DLADD approach: (a) 90% training data and (b) 10%
test data

Table 2 and Fig. 4 report the comparative classifier results of the SAPFF-DLADD model on
the 90% training TR data and 10% TS data. The results indicate that the SAPFF-DLADD model
reached enhanced results in both cases. For instance, with the 90% TR data, the SAPFF-DLADD
model attained an average accuy of 97%, recal of 97%, specy of 97%, Fscore of 97%, and AUCscore of 97%.
Additionally, with the 10% TS data, the SAPFF-DLADD algorithm reached an average accuy of 98%,
recal of 98%, specy of 98%, Fscore of 98%, and AUCscore of 98%.

Table 2: Result analysis of the SAPFF-DLADD approach with various measures on 90:10 TR/TS data

Training/Testing (90:10)
Labels Accuracy Recall Specificity F-score AUC score

Training phase
Truth 97.00 96.34 97.66 96.98 97.00
Deception 97.00 97.66 96.34 97.01 97.00
Average 97.00 97.00 97.00 97.00 97.00

(Continued)
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Table 2: Continued
Training/Testing (90:10)

Labels Accuracy Recall Specificity F-score AUC score

Testing phase
Truth 98.00 97.97 98.03 97.97 98.00
Deception 98.00 98.03 97.97 98.03 98.00
Average 98.00 98.00 98.00 98.00 98.00

Figure 4: Result analysis of the SAPFF-DLADD approach for 90:10 TR/TS data

Fig. 5 illustrates the confusion matrices formed by the SAPFF-DLADD approach, with 80%
of the data as TR data and 20% as TS data. With the 80% TR data, the SAPFF-DLADD system
recognized 1583 samples in the truth class and 1597 samples in the deception class. Similarly, with
the 20% TS data, the SAPFF-DLADD algorithm recognized 396 samples in the truth class and 396
samples in the deception class.

Table 3 and Fig. 6 report the comparative classifier outcome of the SAPFF-DLADD approach
on the 90% TR data and 10% TS data. The outcome indicates that the SAPFF-DLADD technique
achieved better results in both respects. For example, with the 80% TR data, the SAPFF-DLADD
system attained an average accuy of 99.38%, recal of 99.37%, specy of 99.37%, Fscore of 99.37%, and
AUCscore of 99.37%. In addition, with the 20% TS data, the SAPFF-DLADD methodology reached an
average accuy of 99%, recal of 99%, specy of 99%, Fscore of 99%, and AUCscore of 99%.

Fig. 7 illustrates the confusion matrices formed by the SAPFF-DLADD technique using 70% of
the data as TR data and 30% of the data as TS data. With the 70% TR data, the SAPFF-DLADD
approach recognized 1387 samples in the truth class and 1382 in the deception class. At the same time,
with the 30% TS data, the SAPFF-DLADD system recognized 595 samples in the truth class and 584
samples in the deception class.
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Figure 5: Confusion matrices of the SAPFF-DLADD approach: (a) 80% TR data and (b) 20% TS
data

Table 3: Result analysis of the SAPFF-DLADD approach with various measures on 80:20 TR/TS data

Training/Testing (80:20)

Labels Accuracy Recall Specificity F-score AUC score

Training phase

Truth 99.38 99.06 99.69 99.37 99.37
Deception 99.38 99.69 99.06 99.38 99.37

Average 99.38 99.38 99.38 99.38 99.38

Testing phase

Truth 99.00 98.51 99.50 99.00 99.00
Deception 99.00 99.50 98.51 99.00 99.00

Average 99.00 99.00 99.00 99.00 99.00

Table 4 and Fig. 8 depict the comparative classifier outcome of the SAPFF-DLADD algorithm on
the 70% TR data and 30% TS data. The outcomes of this SAPFF-DLADD system attained superior
outcomes in both sets. With the 70% TR data, the SAPFF-DLADD algorithm attained an average
accuy of 98.89%, recal of 98.89%, specy of 98.89%, Fscore of 98.89%, and AUCscore of 98.89%. With the
30% TS data, the SAPFF-DLADD methodology attained an average accuy of 98.25%, recal of 98.25%,
specy of 98.25%, Fscore of 98.25%, and AUCscore of 98.25%.
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Figure 6: Result analysis of the SAPFF-DLADD approach for 80:20 TR/TS data

Figure 7: Confusion matrices of the SAPFF-DLADD approach: (a) 70% TR data and (b) 30% TS
data

Fig. 9 shows the confusion matrices formed by the SAPFF-DLADD algorithm using 60% of the
data as TR and 40% as TS data. With the 60% TR data, the SAPFF-DLADD technique recognized
1197 samples in the truth class and 1159 samples in the deception class. Moreover, with the 40% TS
data, the SAPFF-DLADD methodology recognized 778 samples in the truth class and 798 samples
in the deception class.
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Table 4: Result analysis of the SAPFF-DLADD approach with various measures on 70:30 TR/TS data

Training/Testing (70:30)

Labels Accuracy Recall Specificity F-score AUC score

Training phase

Truth 98.89 99.07 98.71 98.89 98.89
Deception 98.89 98.71 99.07 98.89 98.89

Average 98.89 98.89 98.89 98.89 98.89

Testing phase

Truth 98.25 99.17 97.33 98.27 98.25
Deception 98.25 97.33 99.17 98.23 98.25

Average 98.25 98.25 98.25 98.25 98.25

Figure 8: Result analysis of the SAPFF-DLADD approach for 70:30 TR/TS data

Table 5 and Fig. 10 report the comparative classifier outcome of the SAPFF-DLADD technique
on the 60% TR data and 40% TS data. The results show that the SAPFF-DLADD approach gained
maximal outcomes in both respects. With the 60% TR data, the SAPFF-DLADD system attained an
average accuy of 98.17%, recal of 98.16%, specy of 98.16%, Fscore of 98.17%, and AUCscore of 98.16%.
In addition, with the 40% TS data, the SAPFF-DLADD methodology obtained an average accuy of
98.50%, recal of 98.52%, specy of 98.52%, Fscore of 98.50%, and AUCscore of 98.52.
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The training accuracy (TA) and validation accuracy (VA) achieved by the SAPFF-DLADD
methodology on the test dataset is illustrated in Fig. 11. The experimental outcome reveals that the
SAPFF-DLADD technique attained higher values of TA and VA. In particular, VA outperformed TA.

Figure 9: Confusion matrices of the SAPFF-DLADD approach: (a) 60% TR data and (b) 40% TS
data

Table 5: Result analysis of the SAPFF-DLADD approach with various measures on 60:40 TR/TS data

Training/Testing (60:40)

Labels Accuracy Recall Specificity F-score AUC score

Training phase

Truth 98.17 98.36 97.97 98.20 98.16
Deception 98.17 97.97 98.36 98.14 98.16

Average 98.17 98.16 98.16 98.17 98.16

Testing phase

Truth 98.50 99.36 97.67 98.48 98.52
Deception 98.50 97.67 99.36 98.52 98.52

Average 98.50 98.50 98.50 98.50 98.50

The training loss (TL) and validation loss (VL) gained by the SAPFF-DLADD system on the
test dataset are depicted in Fig. 12. The experimental outcome reveals the TL and VL values for the
SAPFF-DLADD algorithm decreased. Specifically, VL is less than TL.
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To demonstrate the accuracy of the SAPFF-DLADD model, a brief comparative accuy exam-
ination is made in Table 6 [20–23]. The results imply that the deception in the eyes of the deceiver
(DED) and identity unbiased deception detection (IUDD) models have poor performance with lower
accuy values of 77.76% and 67.98%, respectively. At the same time, the DLDMF model and LieNet
demonstrate slightly improved accuy values of 96.59% and 98.12%, respectively.

Figure 10: Result analysis of the SAPFF-DLADD approach for 60:40 TR/TS data

Figure 11: TA and VA analysis of the SAPFF-DLADD algorithm
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However, the SAPFF-DLADD model results in a higher accuy of 99%. Therefore, the experimen-
tal outcomes show that the SAPFF-DLADD technique attains maximal performance compared to
other models.

Figure 12: TL and VL analysis of the SAPFF-DLADD algorithm

Table 6: Comparative analysis of the SAPFF-DLADD approach with existing methodologies

Methods Accuracy

SAPFF-DLADD 99.00
DLDMF [21] 96.59
IUDD Model [21] 77.76
DED Model [22] 67.98
LieNet [23] 98.12

4 Conclusion

This study established a novel SAPFF-DLADD approach to identify deception from facial
cues. First, the input video was separated into a set of video frames. Then, the SAPFF-DLADD
model applied a MobileNet-based feature extractor to produce a useful set of features. For deception
detection and classification, the LSTM model was exploited. In the final stage, the SAPFF technique
was executed to alter the LSTM model’s hyperparameter values optimally. The experimental validation
of the SAPFF-DLADD system was tested utilizing the MU3D, a database comprising two classes,
namely, truth and deception. The extensive comparative analysis reported better performance of the
SAPFF-DLADD model compared to recent approaches with a higher accuracy of 99%. In the future,
an ensemble of DL-based fusion techniques will be designed to improve detection performance.
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